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Abstract

Due to the ever-rising network security threats, the domain of in-
trusion detection is progressing at a fast pace, and new detection
techniques are being proposed quite frequently. However, little
effort is being expended into carrying out comparative evalua-
tions of the techniques and summarizing the body of knowledge
that exists. Consequently, there is a lack of guidelines based on
the state of art, which can help shape the design of future detec-
tors. In this thesis, we make an effort to address this gap in the
research literature in two sub domains of intrusion detection: (i)
entropy based anomaly detection, and (ii) botnet detection.

First part of the thesis focuses on entropy based anomaly
detection systems (ADSes). Although entropy based measures
have been widely used in ADSes to quantify behavioral patterns,
and these measures have shown promise in detecting diverse set
of anomalies present in networks and end-hosts, it is unclear if
full potential of the entropy tool is being exploited. We survey
and investigate the usage of entropy for anomaly detection and
show that the full potential of entropy-based anomaly detection
is currently not being exploited because of its inefficient use.
We highlight three important shortcomings of existing entropy-
based ADSes and propose efficient entropy usage to mitigate
these shortcomings.

Second part of the thesis focuses on botnets, which are re-
garded as the most significant security threat facing the Internet
today because of their massive computing power and bandwidth.
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Botnets are used today to launch large scale distributed denial of
service attacks, harvest loads of personal information and gen-
erate vast amounts of spam. Security response to the botnet
threat is however in its infancy; over the past years, few host
and network-based bot detection techniques have been proposed
in research literature. However, a comprehensive and judicious
performance comparison of these techniques has not been per-
formed, mainly because of the unavailability of open-source bot
detector implementations and labeled bot datasets. We perform
the first comparative evaluation of prominent bot detection tech-
niques on a dataset containing traffic patterns of a diverse set of
IRC bot malware, and release our dataset and open source detec-
tor implementations publicly for future performance evaluations
by the research community. Based on the evaluation results, we
highlight strengths and weaknesses of different techniques and
outline the state-of-the-art in bot detection research. We also
propose promising guidelines that can be used to improve the
performance of bot detectors.
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Part I

Entropy Based Anomaly
Detection
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Chapter 1

Introduction

Malware and network attacks have become significant threats
for today’s networks and hosts. These attacks not only compro-
mise information confidentiality and integrity but can also cause
disruption of service resulting in financial losses of the order of
billions of dollars. With our increasing reliability on computer
and internet for tasks ranging from personal level (e.g. buy-
ing tickets, communicating with friends) to business level (e.g.
important data transfer, e-commerce), it is imperative that ad-
equate security protection is in place. Consequently, protecting
and defending computers and computer networks has become a
mainstream research area.

In order to combat the rapidly evolving cyber security threats,
various intrusion detection systems have been designed and have
now become an intrinsic component of today’s host and net-
work security infrastructure. According to Symantec’s Annual
Threat Report 2009, Symantec created 2,895,802 new malicious
code signatures in 2009, a 71 percent increase over 2008. The
2009 figure represents 51 percent of all malicious code signatures
ever created by Symantec [39]. This signifies that a high num-
ber of new attacks are being developed daily by the intruders,
and a signature based intrusion detection technique which com-
pares the observed data against a database of rules will clearly
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CHAPTER 1. INTRODUCTION 3

fail keep up with the new attacks being developed by attackers
everyday.

In order to mitigate the shortcoming of signature based ID-
Ses, anomaly detection systems, a class of intrusion detection
systems, capable of detecting zero day attacks, model benign be-
havior and look for deviations in this benign profile to detect at-
tacks. Modeling and comparing the benign profile presents two
major design: (i) which features should be selected for modeling
the benign profile, and (ii) how to compare the benign model
to the observed realtime data. A diverse range of host and net-
work features, such as protocol type, length of packet, processes
running on the host, is available to the ADS for analyses and
monitoring. However, it is not practically possible to operate on
such a high dimensional feature set, since this would result in
unmanageable complexity. While choosing a comparison model
for benign and observed data, low complexity is a primary ob-
jective in order to enable detection with minimum delay. With
the rapid increase in bandwidth to Gbps, this consideration has
become even more important to ensure the detection of attacks
in a timely manner. Numerous research in the last few years,
has focused on the use of information theoretic measures for the
detection of anomalies [19]–[31]. This study relates to one such
particular class of ADSs - entropy based ADSs.

1.1 Motivation and Problem Statement

Entropy based measures have been widely used in ADSes to
quantify behavioral patterns. The entropy measure has shown
significant promise in detecting diverse set of anomalies present
in networks and end-hosts. Consequently, it has proved to be
a powerful information theoretic tool. However, other variants
of entropy measure remain largely unexplored which if applied
to the domain of anomaly detection can result in significant
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accuracy improvement.
A recent comparative evaluation of network based anomaly

detectors shows that the entropy based anomaly detector, Maxi-
mum entropy, performs quite well whereas another entropy based
anomaly detector, PCA, gives poor performance, even though
the second detector uses a richer feature set [16]. This behaviour
is quite surprising, because intuitively the second anomaly de-
tector is expected to perform better. Preliminary investigation
resulted in the observation that the two anomaly detectors differ
in the way they use the entropy measure. Given the findings of
the above study, we feel that a survey of entropy based anomaly
detection was necessary to investigate the use of entropy mea-
sure in ADSs. A comparative performance evaluation of the
ADSs can help us devise promising guidelines for the use of en-
tropy for anomaly detection. The objectives of this study are:

1. To investigate the current usage of entropy in the domain
of anomaly detection and gauge whether it is being used
efficiently.

2. To propose promising guidelines for future use of entropy
in anomaly detection.

The major goal of this thesis is to summarize the existing body
of knowledge via experimental evaluation and consequently to
develop a better understanding of the usage of entropy. We
formulate the problem statement of part I of thesis as,

To carry out a judicious comparative evaluation of ex-
isting entropy based detectors on a comprehensive dataset,
and to identify promising guidelines for future detec-
tors.
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1.2 Contribution

We investigate the usage of entropy in anomaly detection and
perform performance evaluation of six prominent entropy based
host and network anomaly detectors [8, 9, 11, 13, 5, 14] on pub-
licly available datasets [12, 15, 18]. We show that the full poten-
tial of entropy-based anomaly detection is currently not being
exploited because of its inefficient use. We highlight important
shortcomings of existing entropy-based ADSes and propose effi-
cient entropy usage to mitigate these shortcomings.

1.3 Organization of Part I

Part I of the thesis is organized as follows,
Chapter 2 provides essential background information on the

field of anomaly detection. It also discusses the entropy mea-
sure and provides an insight into how they can be used for the
detection of anomalies.

Chapter 3 describes our evaluation framework. The six detec-
tors evaluated in this study are discussed in detail. This chapter
also describes the characteristics of datasets used in this study.

Chapter 4 discusses the our performance evaluation results,
and proposes accuracy improving guidelines.

Chapter 5 concludes this part of the thesis and frames future
directions.



Chapter 2

Background

2.1 Intrusion Detection

Intrusion detection refers to the processes used in discovering
unauthorized uses of computer devices and networks. The his-
tory of intrusion detection dates back to 1986 with James An-
derson proposal for the usage of audit trails for the detection of
malicious activity.

IDSes are categorized as network-based, host-based or joint
network-host based classifiers depending on the point of deploy-
ment and usage of host data or network traffic. Host based
intrusion detection systems use the internal features of operat-
ing system such as system calls to detect malicious behaviour
and are deployed on individual end hosts. Network based intru-
sion detection systems, on the other hand, collectively analyze
the network data (e.g. packets or flows) of multiple computers
and are generally deployed on routers.

The first intrusion detection systems were signature based in-
trusion detection systems. These systems use a signature(rule)-
base to detect intrusions. The rules can be based on the header
fields as well as packet content. Snort [1] and Bro [2] are exam-
ples of signature based intrusion detection systems. Although
signature based systems are capable of detecting existing attacks
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CHAPTER 2. BACKGROUND 7

very well, a major limitation of these systems is their inability
to detect ‘previously unseen’ anomalies. Another drawback of
these systems is the need to continually update the signature
database.

To mitigate this shortcoming, a new class of IDSes capable of
detecting zero-day attacks was proposed. This class is known as
anomaly detection systems (ADSes) and works on the premise
that patterns in data that do not conform to expected behavior
present potential threats to the entity under observation. Gen-
erally, the expected behavior is derived from the benign traces
that are considered to be free of any anomalies.

Another class of intrusion detection systems employs both
components: a rule based detection engine and an anomaly
detection engine. Next Generation Intrusion Detection Expert
System (NIDES) [4] is an example of such an intrusion detection
system.

2.2 Entropy measures

The proposal for use of entropy in intrusion detection dates back
to 2001 when Lee and Xiang proposed the use of information
theoretic measures for data partitioning and setting parameters
for existing intrusion detection models [5]. Since then, a wide
range of entropy based anomaly detectors have been proposed
in literature [6], [7], [8], [9], [11],[13], [14]. In this section, we
provide theoretical foundations of the Shannon entropy measure
as well as its variations.

Entropy: Entropy is the average amount of information (or
the uncertainty) associated with the outcomes of a random vari-
able. This random variable constitute the observed space in
the anomaly detection process. For example, source/destination
ports, system calls, connection status etc. Let this random vari-
able be X with outcomes belonging to the set ω=1,2,...,λ. The
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underlying probability distribution is characterized by the pa-
rameter p. The entropy associated with this random variable is
given by:

H(X) =
∑
x∈ω

p(x) log2

1

p(x)
. (2.1)

A random variable with equi-probable outcomes has the highest
entropy since all outcomes have the tendency to occur with the
same probability. However, this is highly unlikely in real world
scenarios. Thus, some outcomes of the random variable are more
probable than the others hence defining the average uncertainty
associated with the random variable under observation.

Benign user behavior, pertaining to the applications being
used within the network or at the endpoint, has an associated
uncertainty that defines the benign state. However, during the
course of an anomaly, the information associated with the under-
lying outcomes of the random variable gets perturbed, resulting
in considerable variations in entropy, which is consequently used
for the detection of these intrusions.

Joint Entropy: The entropy of a vector of random variables
is the joint entropy which uses joint probability distributions,
instead of marginals, for entropy calculation. Numerous varia-
tions of the Shannon entropy measure have also been proposed
for anomaly detection in research literature [33], [34].

Conditional Entropy: Conditional Entropy deals with mul-
tiple random variables. Given two random variables X and Y
with sample spaces ω and ω̃ respectively, conditional entropy
provides a measure of the amount of information in Y not given
by X.

H(Y |X) =
∑
x∈ω

∑
y∈ω̃

p(x, y) log2

1

p(y/x)
. (2.2)
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It employs the use of joint and conditional probability distri-
butions and is thus employed when multiple features are used
by the ADS for anomaly detection. If there is no information
overlap between the random variables, the conditional entropy
assumes the value zero.

Relative Entropy: Relative Entropy, also known as infor-
mation divergence or the Kullback-Leibler (KL) divergence, is a
distance measure that represents the dissimilarity between two
probability distributions. Let the two distributions be p(x) and
q(x), then the relative entropy between the two distributions is
given by,

D(p||q) =
∑
x∈ω

p(x) log2

p(x)

q(x)
. (2.3)

During the anomaly detection process, ADS is trained on benign
traffic profiles while it is run on real-time data during actual
deployment. During the course of an anomaly, the real-time
distribution changes considerably relative to the baseline dis-
tribution. This is due to the lack of the knowledge of the the
attacker regarding the topology or the services running inside
the network. Thus a measure of the difference between the two
probability distributions can signify the presence of an anomaly.

Mutual Information: Mutual information is a measure of
the information overlap between two random variables (or dis-
tributions). If one of the random variable is known (e.g. X
and consequently p(x) ) then the other can be predicted if the
information overlap between the two random variables is con-
siderable. Mutual information between two random variables X
and Y, is given by

I(X;Y ) = H(X)−H(X|Y ), (2.4)
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where one of the random variables (say X ) represents the benign
baseline distribution while the other represents the real-time dis-
tribution. Greater the mutual information between these two
random variables, greater the similarity between the baseline
and the real-time distributions and lesser is the probability of
the presence of an anomaly and vice versa.

Entropy Rate: Average entropy measure provides the per
sample average of the amount of information associated with a
random process. Let a random process constitutes n random
variables. The average entropy measure is then the average of
the joint entropy of these n random variables constituting the
random process.

¯HX(n) =
1

n
H(X1, X2, ...Xn). (2.5)

Asymptotic evaluation of the average entropy measure is the
entropy rate, given by:

HX = limitn→∞ ¯HX(n). (2.6)

Thus, the entropy rate provides the average amount of uncer-
tainty associated with a collection of random variables consti-
tuting a random process. Another important measure of the
entropy rate of a process is the conditional entropy rate (CER).
CER measures the conditional entropy of the process at time
index n, given the history of the process:

H̀X = limitn→∞ `HX (n) = limitn→∞H(Xn|X1, X2.....Xn−1).(2.7)

2.3 Entropy Usage in Anomaly detection

This section builds on the previous section by categorizing the
ways in which entropy measures canbe used for anomaly detec-
tion.
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Figure 2.1 on the next page shows a classification of the usage
of entropy in anomaly detection. Anomaly detectors proposed
in research literature either employ the use of single feature or
multiple features for the detection process. Thus these classifiers
can use marginal, joint and/or conditional distributions pertain-
ing to these features. Moreover, detectors using single features
may analyze a single feature or multiple features in isolation.

Once the features to be analyzed have been chosen, the cor-
responding distribution(s) may be the non-parametrized his-
tograms or these may be the conditional distribution(s). In case
of single feature, a conditional distribution signifies time/space
correlation. In case of multiple features, it signifies the mutual
information (MI).

Comparison of benign baseline and the real-time distribu-
tions can be performed in either of the following two ways, 1)
Using entropy value comparison (referred to in Figure 2.1 as
EV); or 2) Using relative entropy (RE) which performs a sym-
bol by symbol comparison. For conditional distributions, the
above comparisons are referred to as conditional entropy value
(CEV) and relative conditional entropy (RCE) comparison re-
spectively. A third tool, entropy rate (ER), has also been used
for the comparison of conditional distributions in ADS research
literature.
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Chapter 3

Evaluation Framework

In the first section of this capture, we provide a detailed de-
scription of the anomaly detectors used in this study. These
detectors employ entropy, or its variations, for the detection of
intrusions. In the second section, we describe the datasets used
in evaluation.

3.1 Entropy Based Anomaly Detectors

Ayesha et al. show that network anomaly detectors are affected
by the choice of entropy measure they employ [16]. We extend
work on this finding and investigate whether there is a difference
in the performance of other categories of anomaly detectors or
not. To this end, we evaluate entropy based anomaly detectors
from all the three categories i.e. host based, network based and
joint host network based ADSs.

3.1.1 Entropy Based Network Anomaly Detection Sys-
tems

While many papers discuss the use of entropy for network anomaly
detection, we limit the detailed discussion and evaluation to only
those general purpose ADSs which are capable of detecting a
wide range of anomalies. The specialized ADSs not discussed

13



CHAPTER 3. EVALUATION FRAMEWORK 14

here, perform the detection of only specific types of anomalies.
For example, [6] discusses the use of entropy for DDoS attack
detection, [7] suggests the use of entropy for the detection of
Blaster and Witty worm by specifically analyzing the source
and destination IP addresses and source ports entropies.

Maximum Entropy Detector

The maximum entropy approach proposed in [8] first builds a
normal packet classes distribution from training data using the
maximum entropy principle. Packet classification is performed
in two dimensions: protocol and the destination port number.
The detailed packet classification of Ω = 2348 packet classes
used by this detector is shown in Figure 3.1. Baseline distribu-
tion for these packet classes is obtained by maximum entropy
estimation; the underlying principle is to choose the most uni-
form distribution under the constraints derived from training
data. The approach thus produces the least biased estimate
possible based on the partial information in the training data
by minimizing the KL divergence between the empirical distri-
bution P̃ and the estimated baseline distribution P of the packet
classes. The criteria for estimated baseline distribution is given
by,

P = arg min
P
D(P̃ ||P ) (3.1)

where D(P‖P̃ ) =
∑
ω∈Ω

P (ω) log2
P (ω)

P̃ (ω)
. (3.2)

Maximum entropy estimation consists of two steps: 1) Fea-
ture selection and 2) Parameter Estimation. In the feature se-
lection step, the best feature functions that minimize the differ-
ence between model and empirical distribution are chosen. The
set of feature functions are indicator functions which take on a
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Figure 3.1: Packet Classification in Maximum Entropy Detector.

value true if the packet belongs to the feature class and false
otherwise. The model distribution should have maximum en-
tropy and the same expected value for each feature as that in
the training data i.e. EP (fi) = EP̃ (fi) . In the parameter esti-
mation step, the weights of the feature functions are adjusted.
Weight of all the feature functions are updated whenever a new
feature is added. When the KL divergence between empirical
and model distribution reaches a self-defined limit, the process
of adding functions is terminated.

Once the model is built, this baseline distribution is compared
with the observed real-time distribution by relative entropy mea-
sure in W windows using sliding window approach. An alarm is
generated if the divergence is greater than threshold d in more
than h time windows for a specific feature class.

Principle Components Analysis(PCA) based Subspace Detector

This technique is capable of detecting anomalies which cause
perturbation in multiple features (source and destination IPs
and ports) as well as anomalies spanning multiple flows. Indi-
vidual feature entropy matrices comprising of values of entropy
of that feature in a particular timebin for a particular flow are
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first constructed. Then a three dimensional matrix t x p x k
which indicates entropy value at time t for flow p of the traffic
feature k is constructed. This matrix is illustrated pictorially in
Figure 3.2. PCA is used to reduce the high dimensional data by
selecting an m <= p dimensional subspace.

The detection of anomalies is achieved via the standard sub-
space method. Each row at time t can be represented by the
sum of normal and residual subspaces. Anomalies are then de-
tected by examining the size of the residual subspace vector;
large values of this vector indicate anomalous conditions. Us-
ing this method, the timebin in which the anomaly occurred is
detected. Next, the participating flows and the features which
were perturbed due to the anomaly are identified. For a flow k,
the feature state vector can be written as

h = h∗ + Θkfk (3.3)

where h∗ denotes the typical entropy vector, Θk specifies the
components of h belonging to the flow k and fk is the amount
of change in entropy due to flow k. The following equation is
employed to identify the anomalous flow l:

l = arg minkminfk‖h−Θkfk‖.(3.4)

This method is continued recursively, until all the flows associ-
ated with the anomaly have been identified.

KL Divergence based worm detector

This technique, proposed in [11], analyzes the relative entropy
(KL divergence) of benign and observed source, destination port
distributions at an endpoint to detect anomalies at the partic-
ular endpoint. Empirical distributions of the training data are
used as benign distributions. Observed distributions are com-
puted on a 20 sec window basis by counting the number of times
a particular port is used during the window.
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Figure 3.2: Multi-variate, multi-way data to analyze [9].

Let the source and destination port sets be denoted by S
and D respectively. The benign source and destination port
distributions are then represented by X = {pi, i ∈ S} and
Y = {qj, j ∈ D}. The KL divergence between the benign and
currently observed port distributions is given as,

D(Xn‖X) =
∑
i∈Sn

pni
pn

log2

pni /pn
pi/p

, (3.5)

D(Yn‖Y ) =
∑
j∈Dn

qnj
qn

log2

qnj /qn

qi/q
, (3.6)

where p =
∑
i∈S

pi and q =
∑
j∈D

qj respectively represent the

aggregate source and destination port frequencies observed in
the benign profile.

3.1.2 Entropy based Host Anomaly Detection Systems

Embedded Malware Detector

A malware hidden in the content of benign files is known as em-
bedded malware. To detect such malware, authors in [13] lever-
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age the fact that benign files exhibit regularity in byte sequences.
This regularity is modeled by conditional byte distributions.

Conditional byte distributions are more capable of detecting
the malware than the n-gram distributions; an n-gram is the
sequence of n symbols. The n-gram distribution is thus a joint
distribution of the individual 1-grams. The redundant infor-
mation contained in the n-gram distribution is removed by the
conditional n-gram distribution by reducing the underlying sam-
ple space and thus depicts a more precise picture of the benign
file.

First, the probability transition matrix containing the values
of probability of the next byte given the first byte is computed
as,

P =


p0,0 p0,1 . . . p0,255

p1,0 p1,1 . . . p1,255
...

... . . . . . .

p255,0 p255,1 . . . p255,255

 .
Next, a first order 256 state Markov chain is built using the
probability transition matrix as shown in Figure 3.3. In order
to detect the variations in the conditional byte distributions, [13]
does not use relative entropy to perform a blockwise comparison
because computing the relative entropy of a large number of
conditional distributions results in high complexity. The authors
instead make use of the information theoretic measure, entropy
rate which gives the expected entropy of the 256 state Markov
chain to perform a blockwise comparison. Since the entropy
rate, Hx, given by equation 2.6 in Section 2 does not exist in
general, modified entropy rate of the 256 state Markov chain is
given as,

R =
255∑
i=0

πiH(Xi), (3.7)
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Figure 3.3: 256 state Markov chain in the Embedded Malware
detector.

where πi represents the probability of random variable Xi and
H(Xi) is the entropy of the random variable Xi.

Entropy rate of the infected file is perturbed at the malware
embedded locations and thus results in the detection of malware.

3.1.3 Entropy based Joint Host-Network Anomaly De-
tection Systems

Keystroke Session Mutual Information Based Detector

Joint distributions of multiple features can be helpful in reveal-
ing subtle anomalies. An anomaly detector which makes use
of such a technique was proposed in [14]. The authors note
that marginal distributions of the keystrokes or network ses-
sions are incapable of detecting malicious sessions. Instead, the
histogram of the keystrokes which are used to initiate network
sessions is skewed; perturbation in this distribution can easily
reveal the malicious sessions. The benign profile is thus modeled
by the joint distribution of the keystrokes and network sessions.
Anomalies are detected by the change in entropy of the observed
distribution.
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Table 3.1: Ports used by malware in Endpoint Dataset
Worm Ports Used
Zotob.G 445, 6667, 1171

Dloader-NY 135,139
Forbot-FU 445

My-Doom.A@mm 3127-3198
Rbot-AQJ 139,769

Witty 4000
CodeRedv2 80

Sim Src Port 2200

3.2 Datasets

In this section, we provide details regarding datasets used for
performance evaluation. Two publicly available datasets were
used in this study: (i) endpoint dataset [15], and (ii) embedded
malware dataset [13]. The first dataset was used to evaluate
network based ADSes whereas the other two were used for host
based ADSes performance evaluation.

3.2.1 Endpoint Dataset

This dataset was collected at the WiSNet lab and comprises 12
months session-level traffic collected at 13 network endpoints
comprising home, university and office machines [15]. A ses-
sion corresponds to bidirectional communication between two
IP addresses. Communication between the same IP address on
different ports is considered part of the same network session.
For this study, we use six weeks subset of the original dataset.

Attack Traffic

Attack traffic was generated by infecting virtual machines with
the following set of diverse malware: Zotob.G, Forbot-FU, Sdbot-
AFR, Dloader-NY, SoBig.E@mm, My-Doom.A@mm, Blaster,
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Rbot-AQJ, RBOT.CCC, Witty, CodeRedv2 and Sim Src Port.
These malware have varying attack ports, scan rates and trans-
port protocols as listed in Table 3.1. The attack traffic mainly
comprises of outgoing portscans with the scan rate ranging from
0.68 scans per second (sps) to 46.84 scans per second.

Background Traffic

Background traffic in this dataset comprises of traffic from ma-
chines operated by home users, researchers and administrative
staff running a variety of applications. Mean session rate recorded
on the lowest and highest rate endpoint were 0.21 and 1.92 ses-
sions/sec respectively.

Merged Traffic

For each malware, attack traffic of fifteen minutes duration was
inserted in the background traffic of each endpoint at a random
time instance. This operation was repeated to insert 100 non-
overlapping attacks of each worm inside each endpoints back-
ground traffic.

3.2.2 Embedded Malware Dataset

The embedded malware dataset was generated by nexginrc by
inserting malware in 1800 benign files [13]. Files in this dataset
are of six common types: DOC, EXE, MP3, PDF, ZIP and
JPG. The choice of these six file types provides a diverse testing
platform consisting of compressed, uncompressed, executables
and document files. 300 files of each of the six types were used
thus making a total of 1800 benign files. The benign files were
collected from the web as well as from the local network of the
nexginrc lab. The file sizes range from 3KB to 20MB with an
average size of 2MB.
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Table 3.2: Malware statistics in Embedded Malware Dataset
Major
Category

Minor
Category

Quantity Average
Size
(kilobytes)

Minimum
Size
(bytes)

Maximum
Size
(kilobytes)

Backdoor Win32 3,444 285.6 56 9, 502
Constructor DOS 178 104.2 62 7, 241
Constructor Win32 172 398.5 371 5,971
Email
Flooder

- 148 343.5 1, 430 4,262

Email
Worm

Win32 935 73.5 14 8,762

Exploit - 242 101.1 370 1, 912
Flooder - 154 168.1 486 981
IRC Worm - 485 34.4 56 1, 072
Nuker - 140 188.1 4, 000 680
Trojan BAT 649 20.2 12 708
Trojan DOS 971 27.0 4 1, 818
Trojan Win32 983 125.4 12 2, 998
Virus Boot 1,514 32.5 108 1, 490
Virus DOS 16,236 18.7 5 1, 860
Virus MS Office 2,596 53.5 118 4, 980
Virus Win32 991 44.3 175 1, 018
Worm Win32 153 110.5 97 2, 733

37,420 malware samples of different types including viruses,
worms, trojans, spyware and exploit codes were used from VX

Heavens virus database [3]. The details of the malware used
are presented in table 3.2. The malware size ranges from 4 bytes
to 14 MB.

Two datasets were generated by nexginrc - first by inserting
the malware in the benign files and second by encrypting the
malware using ROT-13 cipher and then inserting in the benign
files. The malware in each dataset were inserted after the file
header to ensure the proper opening of file. We report the results
on the dataset in which malware was encrypted before infecting
the benign files.



Chapter 4

Accuracy Evaluation and
Improvement

In this chapter, we discuss the performance evaluation results
and propose accuracy improving guidelines.

4.1 Evaluation Results Discussion

Figures 4.1(a) and 4.1(b) show the accuracy evaluation of the
four entropy based network anomaly detectors, Maximum en-
tropy, KL divergence, Keystroke session, and PCA on the end-
point dataset. Recall that the endpoint dataset contains traf-
fic from thirteen machines and each machine was infected with
twelve malware. The graphs present results for the average de-
tection rate across twelve malware for the thirteen individual
endpoints in order to give an insight into the performance con-
sistency.

We observe that there is quite a lot of variation in the perfor-
mance of the four detectors. Keystroke session detector achieves
the highest accuracy of 100% detection rate and 0% false alarm
rate. The high accuracy of keystroke session detector illustrates
the power of using multiple feature conditional distributions and
mutual information for the detection of anomalies. Keystroke

23
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session detector is followed by the KL divergence detector which
uses the KL divergence of source and destination ports for de-
tection of anomalies. Note that, maximum entropy detector
performs poor as compared to KL divergence detector. This is
due to two factors: (i) Maximum entropy detector works only
on destination port packet classes whereas KL divergence detec-
tor looks at two features: source and destination ports, and (ii)
The entropy measure used by KL divergence detector is more
powerful than that used by Maximum entropy detector. PCA
detector fails to offer acceptable accuracy and only achieves a
maximum detection rate of 22% with a 12% false alarm rate (the
number of principal components used in the evaluation is two).
This performance is explained by the fact that PCA uses entropy
value comparison which is a weak comparison tool because it is
incapable of differentiating between distributions with the same
amount of uncertainty. Relative entropy on the other hand takes
individual symbol values into account and is therefore capable
of achieving greater accuracy.

Figure 4.2 shows the evaluation results of embedded malware
detector on the nexginrc embedded malware dataset. Embed-
ded malware detector is capable of achieving 70-100% detection
rate with a maximum false alarm rate of 32%. This is due to
the fact that this detector does not use simple conditional en-
tropy value comparison. It instead uses the entropy rate measure
which gives an appropriate weight to each state; each state (con-
ditional entropy value) is weighted by the probability of being
in that state.

4.2 Accuracy Improving Guidelines

The previous section shows that entropy serves as a promising
tool for anomaly detection. However, the detectors which fail
to use it efficiently offer poor performance. In this section we
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Figure 4.1: Evaluation results of the Maximum Entropy,
Keystroke Session and KL divergence detectors on Endpoint
dataset.
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Figure 4.2: Accuracy evaluation of the embedded malware de-
tector.

provide promising guidelines for the future use of entropy for
anomaly detection based on the learnings from the performance
evaluation of the existing entropy based detectors.

4.2.1 Feature correlation should be retained

Significant correlation exists across traffic and/or host features.
However, this correlation is missed out in the marginal fea-
ture distributions. Consequently, detectors which perform iso-
lated feature analysis are unable to detect anomalies which per-
turb this correlation. This correlation can be modeled using
joint/conditional multiple feature distributions and then per-
forming entropy analysis to detect the anomalies. The increased
performance resulting from the use of feature correlation is tes-
tified by the keystroke session detector which performs the best
among all the entropy based detectors. This is due to the rea-
son that the histogram of keystrokes which are used to initi-
ate network sessions is skewed [see Fig. 4.3(a)] and perturba-
tion in this metric can easily reveal the presence of an anomaly.
While analyzing the entropies of the marginal keystroke distri-
bution and/or the marginal session distribution is clearly not
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Figure 4.3: Examples to support the limitations of the current
use of entropy.

useful, Fig. 4.3(b) shows that quantifying these features using
joint (session-keystroke) entropy easily detects anomalous activ-
ity (Rbot-AQJ worm in this case).

4.2.2 Temporal/Spatial correlation should be retained

Benign behavior generally exhibits significant temporal and spa-
tial patterns. Thus, temporal/spatial correlation analysis proves
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useful in the detection of subtle anomalies. Entropy fails to
take into account this correlation. To leverage this correlation,
conditional feature distributions must be used in addition to
the marginal feature distributions. Embedded malware detec-
tor provides a proof of concept example of this guideline. Fig.
4.3(c) shows the block-wise (block size = 1KB) entropy of a PDF

file which is infected by an embedded executable malware. It
is evident that entropy is unable to provide clear perturbations
required for detection. On the other hand, entropy rate [Fig.
4.3(d)], which models and accounts for the spatial/temporal
correlation, provides very clear perturbations at the infected file
blocks; entropy rate quantifies the average entropy of conditional
distributions.

4.2.3 Randomness quantification is not enough

Entropy cannot distinguish between differing distributions with
the same amount of uncertainty; e.g., entropy of the normalized
distribution of a source producing 90 packets on port 80 and 10
packets on port 21 is the same as a source producing 900 pack-
ets on port 6666 and 100 packets on port 6667. Thus anomalies
which do not perturb randomness go undetected. This limita-
tion arises due to the fact that entropy does not take the indi-
vidual symbol values into account. It is therefore important to
perform a symbol-by-symbol comparison between benign and
observed distributions. This can be achieved by 1) comput-
ing the relative entropy of the distributions or 2) incorporating
some notion of weight by using entropy rate. Fig. 4.3(e) shows
a case where the Blaster worm cannot be detected in the des-
tination port entropy time-series; endpoint traffic dataset from
[16] is used for this experiment. This limitation arises due to
the fact that entropy does not take the individual port numbers
into account.Fig. 4.3(f) shows that K-L divergence time series
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of destination port is perturbed due to the presence of Blaster
worm. Chapter 4 also shows that detectors which use KL diver-
gence and entropy rate measures are capable of achieving greater
accuracy.



Chapter 5

Conclusion and Future Work

We surveyed the usage of entropy for anomaly detection and
developed a taxonomy of the surveyed detectors. We then eval-
uated the detectors on publicly available datasets and studied
the results to understand the variations in the performance of
the evaluated detectors. Our study has found that the detectors
which perform poorly often use the entropy measure inefficiently.
Based on this observation, we highlight three important short-
comings of existing entropy-based ADSes and propose guidelines
for efficient entropy usage.

One avenue for future work is to carry out a detailed com-
parative design evaluation by modifying the detectors to miti-
gate the shortcomings. Evaluating the modified detectors will
illustrate the performance improvements achieved by the use of
powerful entropy measures.
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Part II

Botnet Detection
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Chapter 6

Introduction

The magnitude of malware threats has risen considerably in the
past few years due to the emergence of botnets - networks of
zombie computers which can be commanded to carry out coor-
dinated large scale malicious activities. Contemporary botnets
contain millions of bots [38] which provide extensive bandwidth
and processing power to carry out malicious activities, such
as distributed denial of service attacks, information harvesting,
click fraud, spamming and cyber warfare. Recent examples in-
clude the botnet-based Web War I attack on Estonia’s Internet
infrastructure [45], Blue Security being thrown out of business
[45], and Google paying 90 million dollars to settle a click fraud
lawsuit [46]. Moreover, Symantec reported that more than 90%
of email spam is generated through botnets [38]. Despite a se-
rious commercial and research interest in bot detection, botnet
sizes are increasing rapidly with alarming estimates of 10-15%
worldwide infected hosts reported by recent studies [41, 42].

6.1 Motivation and Problem Statement

Botnet detection has emerged as a vibrant area of research and
a number of bot detectors have been proposed recently [47, 48,
49, 50, 51, 52, 53, 54, 55, 56]. These techniques rely on different
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traffic and host features to detect bots, including network flow
data, DNS traffic, system calls, etc. However, no effort has
been expended in comparing the performance of these detectors,
mainly because of an unavailability of detector implementations
and bot datasets. Consequently, there is a gap in our current
understanding of which bot detection approaches are better than
others and why.

In this thesis, we take a first step towards filling the above
gap in the botnet research literature. We perform compara-
tive evaluation of prominent network based detectors and release
the open source implementations and dataset publicly. A com-
parative evaluation on a public dataset will help the research
community: 1) understand strengths and weaknesses of existing
techniques; 2) identify promising features and guidelines for bot
detection; and, most importantly, 3) open doors for future re-
search which can use the publicly available datasets, implemen-
tations and features/guidelines for performance benchmarking.

We therefore formulate the problem statement of part II of
thesis as,

To carry out a judicious comparative evaluation of ex-
isting network based bot detectors on a comprehensive
dataset, and to identify promising guidelines for future
bot detectors.

6.2 Contribution

To unveil the weaknesses of bot detectors, in this study, we test
how well the detectors perform under the simplest bot detection
problem. Centralized botnets which use a single command and
control server pose the easiest detection problem because group
activity is observed in network traffic as a result of bot commu-
nication. Despite their ease of detection, Internet Relay Chat
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(IRC) based botnets, the most primitive type of centralized bot-
nets, are estimated to be currently 47% of the total share due
to their ease of use and efficiency [38]. Therefore, in this study,
we choose IRC based botnet detection as the performance eval-
uation platform.

We compare the accuracies of three network-based [47, 48, 49]
on a dataset comprising of four prominent IRC botnets, Sdbot,
GTbot, Rxbot and Spybot. Attack traffic is generated by mod-
ifying the binaries and issuing a mix of all the available com-
mands from an IRC Command and Control server under our
control. The attack traffic is then merged with real-time back-
ground traffic at two varying data rates. In addition to evalu-
ating how well a detector performs, we also test if it is resilient
to variation in background traffic rate and encryption of botnet
traffic. Our evaluation shows that a detector’s accuracy may
vary under one or both of the above mentioned scenarios. We
therefore, propose guidelines to mitigate the accuracy degrada-
tion due to the two factors.

Salient contributions of this study are thus:

1. Collection of a comprehensive IRC botnet traffic dataset.

2. Development of an open-source library of botnet detectors
which can be used for repeatable performance benchmark-
ing by future detectors.1

3. Quantification and comparison of the accuracies of existing
bot detection techniques under a variety of botnet attacks.

4. Identification of promising guidelines that can be used by
future bot detectors.

1Background and attack datasets are available at http://www.wisnet.seecs.nust.

edu.pk/downloads/datasets/IRCbots. Botnet detector implementations are also avail-
able at http://www.wisnet.seecs.nust.edu.pk/downloads/botdetectors
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6.3 Organization of Part II

Part II of the thesis is organized as follows,
Chapter 7 provides essential background information on bot-

nets.
Chapter 8 describes in detail our dataset collection setup and

the bot detectors used in this study.
Chapter 9 discusses our performance evaluation results and

proposes accuracy improving guidelines.
Chapter 10 concludes this part of the thesis and frames future

work.



Chapter 7

Background

Bots are programs that are covertly installed on a victim’s com-
puter and allow an attacker to remotely control the targeted
computer through a communication channel, such as Internet
relay chat (IRC), peer-to-peer (P2P), or HTTP. Computers in-
fected with bot malware are known as zombie computers. A
botnet is a network of such zombie computers. The attacker
controlling the botnet is known as botmaster. Botnets allow
botmasters to carry out large scale coordinated malicious activ-
ities by issuing commands through the command and control (C
& C) channel.

7.1 Botnet Lifecycle

First a machine is infected with bot malware. The bot infection
phase is similar to other malware infections and results from
an exploit, visting a malicious URL, opening a malicious email
attachment etc.

After a bot binary has downloaded, it sits until it’s execution.
Once executed, the bot process tries to connect to the command
and control server. The location of C & C server is embedded
in the bot binary either statically by storing an IP address(es)
or dynamically by storing a DNS name. The bot masters today

36



CHAPTER 7. BACKGROUND 37

mainly use the latter technique in order to provide resiliency
against disruption.

Once the bot infected machine is connected to the C & C
server, the botmaster can issue commands to the newly turned
bot to participate in malicious activities such as DDoS, spam-
ming, email harvesting etc. The botmaster can also instruct the
bot to recruit more bots.

7.2 Types of Botnets

Botnets are categorized on the basis of the type of C & C channel
they use.

Centralized Botnets use a single C & C channel to commu-
nicate with all the bots. Internet Relay Chat based botnets are
an example of the centralized botnets.

Decentralized Botnets use a peer-to-peer architecture for their
C & C communication. P2P based botnets are examples of
decentralized botnets.

Centralized architecture is more efficient for the botmaster.
However, it suffers the drawback of easy detection and disrup-
tion due to the single point of failure.

7.3 History of Botnets

Bots came into being as useful tools for carrying out automated
tasks. The first bot was an IRC based virtual user that could
play games on an IRC channel on a user’s behalf. With the
passage of time, however, the malicious minds discovered the
potential of botnets to earn profit by engaging in malicious ac-
tivities.

Table 7.1 shows the timeline of emergence of various botnets.
IRC botnets are the most primitive kind of botnets which ap-
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Figure 7.1: An analysis of recent botnet activity [40].

Table 7.1: Timeline of Botnets
Year Botnet Type
1998 GTbot IRC
2002 SDbot IRC
2002 Agobot IRC
2003 Spybot IRC
2003 Sinit P2P
2004 Phatbot P2P
2004 Rxbot IRC
2004 Bobax HTTP
2006 SpamThru P2P
2006 Nugache P2P
2007 Peacomm / Storm P2P
2008 Kraken P2P

peared around 1998. Due to the ease of detection of centralized
botnets, bot masters started shifting towards decentralized bot-
nets, such as P2P around 2003. According to Symantec’s report,
in 2008 the percentage of IRC botnets is estimated to be 47%
[38]. Team Cymru’s analysis of the recent botnet activity shows
that although web based HTTP botnets are on the rise, the
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number of IRC botnets tracked has not declined over the year
2009 [40]. Figure 7.1 shows this trend. According to a more
recent report by Trendmicro, IRC based botnets are now being
used as propagation tools for other types of botnets [35]. For ex-
ample, Sdbot is being used by botmasters to spread spamming
botnet Cutwail and social networking site Facebook based bot-
net, Koobface. Therefore, in this study we focus on the detection
of primitive IRC based botnets.



Chapter 8

Evaluation Framework

In this chapter, we describe our evaluation framework — dataset
collection setup and the detectors used in evaluation.

8.1 Bot Detectors

In this section, we provide a description of bot detectors used in
the study. We evaluate network based bot detectors in this study
in order to understand how well pure network based detection
fares.

Network based bot detectors are categorized as either vertical
correlation based or horizontal correlation based. Vertical cor-
relation based detectors use individual behaviour to detect bots
by correlating multiple stages of infection of a single machine.
Horizontal correlation based detectors, on the other hand, detect
botnets by correlating activities across multiple hosts.

In this study, we evaluate one vertical correlation based bot
detector, BotHunter and two horizontal correlation based detec-
tors, BotSniffer and BotMiner. We use the implementation of
Bot Hunter provided by SRI International, and implement the
other two detectors ourselves. We publicly release our imple-
mentations for future evaluation.
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8.1.1 BotMiner

BotMiner monitors each host in two planes: 1) Communication
(C plane), and 2) Activity (A plane) [47]. The C plane monitor
simply logs the network flows and the A plane monitor detects
hosts performing four malicious activities: scanning, spamming,
binary downloading, exploit attempts. Next, clustering is per-
formed in the two planes. The C plane clusterer first forms C-
flows by aggregating the flows having the same protocol, source
IP, destination IP and port during a fixed time period. X-means
clustering algorithm is then applied to form the clusters based on
four features: number of flows per hour (fph), number of packets
per flow (ppf), average number of bytes per packet (bpp), av-
erage number of bytes per second (bps). The A plane clusterer
groups hosts performing the same type of malicious activity to-
gether. In the last step, botnet score for each host is calculated
by performing cross-cluster correlation and the hosts below the
threshold are dropped.

8.1.2 BotSniffer

BotSniffer is a network packet based approach designed for the
detection of bots which use chat based protocols such as IRC
and HTTP [48]. Port independent protocol matchers based on
keyword analysis of payload are first used to extract IRC and
HTTP traffic. From this filtered traffic, response crowds are
formed by grouping the traffic towards a particular destination
IP and port. Response crowds are then analyzed for message and
activity correlation. IRCPRIVMSG’s within a response crowd
are analyzed for correlation using the Response Crowd Homo-
geneity Check Algorithm which uses DICE algorithm to perform
a bi-gram overlap analysis of the payload. Response Crowd Den-
sity Check algorithm which uses threshold random walk (TRW)
to establish confidence is used to detect activity correlation and
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thus detect the likelihood of the response crowd being a botnet.

8.1.3 BotHunter

Bothunter[49] analyzes the sequence of communication exchanges
between a host and the internet. It models the infection as a
loosely coupled sequence of five stages: inbound scanning, ex-
ploit usage, egg downloading, outbound bot coordination dialog
and outbound attack propagation. These five stages will be re-
ferred to as E1, E2, E3, E4 and E5 respectively in the rest of
this thesis. Suspicious outbound activity coupled with intrusion
detection activity indicates a successful bot infection. BotH-
unter’s detection architecture consists of three components, SCADE
(Statistical Scan Anomaly Detection Engine), SLADE (Statis-
tical Payload Anomaly detection engine) and Snort rule based
detection engine. SCADE detects incoming and outgoing scans
and SLADE performs a lossy n-gram payload analysis to look for
divergences from benign byte distributions of certain protocols.
Alerts from these three components are input to the bothunter
correlation engine which uses a weighted equation to determine
bot score of a host.

8.2 Dataset Collection

In this section, we describe the experimental setup used for the
collection of the botnet and background network traffic.

8.2.1 Botnet Traffic

Four IRC based botnets namely GTbot, SDbot, Spybot, and
Rxbot were used in this study. The source code of these bots
is available on the web, and thus we were able to modify the
location of C & C servers to point to servers under our control.
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Figure 8.1: Botnet Dataset Collection Setup

Table 8.1: Commands in the dataset
GT SD Rx Spy
login login login login
info status id start keylogger
scan (port 6667) sysinfo keylog on list processes
scan (port 80) netinfo clone opencmd
scan (port 8080) download URL driveinfo cmd command
portredirect sysinfo capture screen (15 times) keyboardlights
nick newnick spy get (15 times) cd-rom 1
fileserver.access udp delete (15 times) scan
update stopspy Dcc send syn
cstats ping execute info
scan (port 113) httpserver sendkeys
pac httpstop stopkeylogger
show.access reboot
voiceall
cstats
icqpagebomb
pac
exit
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Table 8.2: IRC C & C traffic characteristics
GT SD Rx Spy

Number of infected machines 5 5 4 4
Number of Packets (IRC) 687 1657 386 2292
Time between first and last
packet (secs)

2758.7 2121.5 1117.5 2101.04

Avg. packets per second 0.25 0.78 0.35 1.09
Avg. packet size (bytes) 185.41 130.82 186.81 165.95
Avg. bytes per second 46.17 102.16 64.25 181.03

Figure 8.1 shows our experimental setup. Four to five ma-
chines were infected for each bot malware in a controlled virtual
network via two channels: (i) IRC DCC send file, and (ii) net-
work share copying. The command and control server was set up
at a home computer on a network different from those of bots.
Botnet traffic was generated and captured for durations ranging
20 - 45 mins by issuing commands from our C & C server to the
infected machines.

Table 8.1 lists the commands that were issued for each bot
malware. As can be seen from the table, the traffic captured
contains malicious commands such as flood attacks, information
harvesting, scanning as well as seemingly benign commands such
as getting the system information, restarting the computer, vis-
iting a URL. Moreover, the GT and SD commands result mainly
in network activity whereas Rx and Spybot commands initiate
host activity. Table 8.2 lists the characteristics of IRC command
and control traffic for the four bots. The botnet command and
control traffic rate is quite low, ranging from 0.25 - 1.09 pack-
ets/sec.

8.2.2 Background Traffic

We captured background traffic at our research lab router. This
provides a realistic evaluation scenario, since the network bot
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Table 8.3: Benign traffic characteristics
Benign trace 1 Benign trace 2

Number of Packets (IRC) 2521897 2970928
Time between first and last
packet (secs)

4377.67 2924.27

Avg. packets per second 576.08 1015.95
Avg. packet size (bytes) 482.95 760.47
Avg. bytes per second 278216.89 2970928

detectors are correlation based enterprise solutions to be de-
ployed at router. The lab router handles traffic from a total of
28 computers running different operating systems, applications
and services. Inbound, outbound and internally routed traffic
was captured at the lab router using port mirroring. The traces
included traffic from activities such as peer-to-peer file sharing,
software downloading from remote servers, web browsing, and
real-time video streaming.

The background traffic was captured at two different times
of the day - 11:00am and 4:15pm to obtain varying data rates
and to test if the detectors’ accuracy was affected by an in-
crease in the background data rate. Note that 11:00am is the
peak Internet activity time and at 4:00pm the traffic rate lowers
down. From now on, we refer to the low rate traffic as benign
trace 1 and the other one as benign trace 2. The detailed traffic
characteristics for the two benign traces are listed in Table 8.3.

For benign trace 1, the average traffic rates on the five end-
points whose traffic was merged with bot traffic varied between
1.8 to 202.31 packets/second with a standard deviation of ap-
proximately 89.25 packets/second. For benign trace 2, average
traffic rates range between 0 (no network activity) and 21.66
packets/ second with a standard deviation of 10.11 packets/second.
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8.2.3 Merged traffic

Merged traffic was obtained by merging the botnet traffic with
the background traffic and consists of eight traces - each of the
four bot traffic traces merged first with benign trace 1 and sec-
ondly with benign trace 2. From now on, we refer to these traces
as: GT b1, GT b2, SD b1, SD b2, Rx b1, Rx b2, Spy b1, and
Spy b2.



Chapter 9

Accuracy Evaluation and
Improvement

In this chapter, we describe the evaluation results of the three
detectors: BotHunter, BotSniffer and BotMiner on the eight
traces discussed in the previous chapters. In addition to evalu-
ating which detector offers better accuracy, we analyze the de-
tectors for the following two characteristics: 1) Is the detector’s
accuracy affected by background traffic rate?, and 2) Is the de-
tector’s accuracy affected by encryption?

9.1 Evaluation Results Discussion

Table 9.1 shows the detection results of BotHunter. An average
detection rate of 38% was observed with zero false alarms. We
investigated the missed detections and found that in some cases
although Snort was generating alerts, but when input into the
bothunter correlator failed to be detected. For example, in the
case of GT bot, E4 alerts indicating potential bot commands
were generated, but BotHunter failed to flag the infected ma-
chines as bots. This is due to the reason that the Bothunter
correlation engine operates on time window basis, and if enough
evidence is not collected in the specified window, then at the end

47



CHAPTER 9. ACCURACY EVALUATION AND IMPROVEMENT 48

Table 9.1: BotHunter Detection Results
Trace Events detected by Snort Detection Rate False Alarm
GT-b1 E3,E4 0% (0/5) 0%
GT-b2 E3,E4 0% (0/5) 0%
SD-b1 E2,E3,E4,E5,E6 100% (5/5) 0%
SD-b2 E2,E3,E4,E5,E6 100% (5/5) 0%
Rx-b1 E2,E3,E4 50% (2/4) 0%
Rx-b2 E2,E3,E4 50% (2/4) 0%
Spy-b1 E3 0% 0%
Spy-b2 E3 0% 0%

Table 9.2: BotSniffer Detection Results at threshold 0.5
Trace Detection Rate False Alarm
GT-b1 100% (5/5) 0%
GT-b2 100% (5/5) 0%
SD-b1 100% (5/5) 0%
SD-b2 100% (5/5) 0%
Rx-b1 100% (4/4) 0%
Rx-b2 100% (4/4) 0%
Spy-b1 100% (4/4) 0%
Spy-b2 100% (4/4) 0%

of time window, that evidence was discarded. Since the imple-
mentation of BotHunter provided by SRI International does not
have any tunable parameter, we could not experiment with de-
tection rates under different time windows. Table 9.1 also shows
that Bothunter is unaffected by variation in background traffic
rate. However, encryption of botnet traffic will affect Both-
unters’ accuracy due to it’s reliance on a signature base to catch
malicious activities. The SLADE component of BotHunter also
analyzes the content of payloads.

Table 9.2 shows that BotSniffer achieves 100% detection rate
on all the traces without generating any false alarms. The ac-
curate detection of BotSniffer results from the Response Crowd
Homogenity Check module which first separates out the IRC
traffic and then performs similarity analysis on the payloads.
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Figure 9.1: BotMiner Detection Results

BotSniffer’s performance although unaffected by variation in
data rate, will severely degrade if the IRC traffic is encrypted.
Further, this technque’s power lies in similarilty correlation across
different machines and fails to detect individual bots.

Figure 9.1 shows the detection results of BotMiner. For the
traces GT b1 and SD b1, 100 % detection rate is observed. How-
ever, for Rx b1 and Spy b1, the detection rate falls as the over-
lap threshold is increased. This is because the GT and SD bot
commands lead to network activity which results in well formed
A-plane clusters. However for Rx and Spy, the commands pri-
marily result in host based activity. Consequently, enough A
plane activity is not observed in the network traffic. Moreover,
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Table 9.3: Evaluation Summary
Detector Average De-

tection Rate
Affected by
Encryption?

Affected by Back-
ground Traffic
Rate?

BotHunter 100% Yes No
BotSniffer 100% Yes No
BotMiner 83% No Yes

for the high data rate traces, an average detection rate of 68.75%
at an overlap threshold of 0.5 which falls further as the thresh-
old is increased. This reduced reduction on the high data rate
trace is due to the fact that C plane clustering is not performed
effectively.

Table 9.3 shows a summary of the bot detectors’ performance.
The detection rate shown is averaged over the eight traces. We
conclude that the detectors fail to achieve good detection even
on the most simple centralized botnet detection problem. Those
achieving good detection rates are affected by encryption and
high background traffic. In the next section, we propose guide-
lines to mitigate the effects of the above factors.

9.2 Accuracy Improving Guidelines

The evaluation results show that the following are the accuracy
degrading factors in the bot detectors: 1) Payload encryption,
2) High background traffic rate leading to ineffective C plane
clustering, and 3) Lack of sufficient activity evidence. Consider-
ing the first factor, since payloads can be easily encrypted, any
payload analysis based bot detection scheme will fail. Therefore,
for bot detection in the communication plane, flow information
should be used. To mitigate the other two factors mentioned
above, in this section, we propose accuracy improving guide-
lines for the detectors.
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Figure 9.2: BotMiner Detection Results

9.2.1 Introducing a traffic splitter

Based on the evaluation results, we note that the high accuracy
of BotSniffer results from the fact that it first separates the IRC
traffic for further analysis. This traffic splitting reduces noise
and consequently, improves detection. Thus, traffic splitting
is a promising generic module that can be introduced in any
bot detector. Figure 9.2 shows the preliminary evaluation of
BotMiner after this module was incorporated. It can be seen
that the addition of this module results in improved detection
rate. This is due to the reason that the separation of IRC traffic
resulted in improved C plane clustering and consequently, bots
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Figure 9.3: Host Activity Module

were detected at higher overlap thresholds.

9.2.2 Extracting activity evidence by analyzing host
behaviour

A bot detectors’ accuracy can be improved if it also takes into
account bot infection indicating host activity in addition to net-
work activity. Rxbot and Spybot are examples of bots whose
malicious activity is observed on the infected bot machine rather
than in the network traffic. To this end, we propose a frame-
work through which machines in a network can communicate a
summary of their host activity to a central machine running the
bot detector.

Our proposal is based on the observation that the sequence
of communication API functions called by a bot process on all
the machines is the same. Therefore, our API monitor mod-
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ule on a host machine monitors the following five API calls:
socket, send, sendto, recv, recvfrom for every process running
on the machine who has opened a socket for communication.
In addition to being sufficient for similar host activity analysis,
monitoring only the above mentioned API calls results in lit-
tle complexity. Moreover, only those processes are monitored
which are involved in network activity. The sequence of each
monitored process is then encoded in the form of a number and
communicated to the network component of the bot detector.
The bot detector maintains a table containing entries for process
scores of every host machine. The A planeclusterer in the bot
detector can then analyze this table for similar sequence scores
across the list of network hosts. The proposed architecture is
shown in Figure 9.3. Preliminary evaluation of this module in-
corporated in BotMiner shows the successful detection of Rxbot
and Spybot without raising any false alarms.



Chapter 10

Conclusion and Future Work

We carried out the first comparative performance evaluation of
three prominent network based bot detectors. For this pur-
pose, we collected a dataset containing four easiest to detect
IRC bots. Our evaluation shows that pure network based bot
detection from the vantage point of network router suffers two
problems even on the easiest detection problem: (i) encrypted
traffic, and (ii) high background traffic rates. We thus argue
that pure network based bot detection is an incomplete solution
and propose a low cost joint host-network bot detection solu-
tion. The host component monitors the communication API
and periodically sends encoded API call sequences per process
to the network component. The network component correlates
and compelements this information with the network detection
results to build confidence regarding bot infections. We incorpo-
rate the host activity module in the evaluated network detectors
and show increased detection rate without any false alarms. We
also propose traffic splitting to mitigate the performance degra-
dation due to high background traffic rate.

In our work we evaluated the detectors only on the most
primitive kind of bots i.e. IRC bots. One avenue for future work
is evaluation of the modified detectors on other types of bots i.e.
P2P and HTTP. Such an extensive evaluation will highlight any

54
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shortcomings in detecting different kinds of botnets and will help
develop techniques to detect the new kinds of bots.
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