PROCESS OPTIMIZATION FOR OLEUM PRODUCTION

By

Noor Ilahi Minahil Muhyouddin Kharal

Anam Gulraiz

School of Chemical and Materials Engineering

National University of Sciences and Technology

2020

PROCESS OPTIMIZATION FOR

OLEUM PRODUCTION

By

Leader – 00000178733– Noor Ilahi Member 1 – 00000188288– Minahil Muhyouddin Kharal Member 2 – 00000184493– Anam Gulraiz

A THESIS

Submitted to National University of Sciences and Technology in partial fulfilment of the requirements for the degree of

B.E. CHEMICAL ENGINEERING

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology

(NUST)

July, 2020

CERTIFICATE

This is to certify that work in this thesis has been completed by Ms. Noor Ilahi, Ms. Minahil Muhyouddin Kharal and Ms. Anam Gulraiz under the supervision of Dr. Abdul Qadeer Malik and Dr. Erum Pervaiz at the school of Chemical and Materials Engineering (SCME), National University of Science and Technology, H-12, Islamabad, Pakistan.

Advisor:	Co-Advisor

Dr. Abdul Qadeer Malik

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology (NUST)

Dr. Erum Pervaiz

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology (NUST)

Submitted Through:

HOD-----

Dr. Muhammad Bilal Khan Niazi

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology (NUST)

Principal/Dean -----

Dr. Arshad Hussain

School of Chemical and Materials Engineering National University of Sciences and Technology (NUST)

DEDICATION

This dissertation is dedicated to Allah Almighty for the guidance, strength and intellect, to our parents for their continuous support and encouragement and our friends without whose moral support, this could not have been possible.

ACKNOWLEDGEMENT

We would like to express our gratitude to the Project Supervisor- Dr Abdul Qadeer Malik and the Co Supervisor- Dr Erum Pervaiz for their continuous guidance, support and efficient supervision. Their timely feedback and coordination enabled us to put forward a project that is elaborate and accurate as per the required standards.

Sincere Thanks to the Industry Project Coordinator Mr. Naveed for providing all the details on time and ensuring the completion of the project by being at the forefront when it came to providing assistance. We would also like to extend our appreciation to the Dean and Principal SCME- Dr Arshad Hussain, the Head of Department Chemical Engineering- Dr. Bilal Khan Niazi and all the other faculty members who with their perfection in teaching and effective inculcation of all concepts throughout the degree made it possible for the students to be capable enough to work on a project as strenuous as this.

ABSTRACT

Sulphuric Acid production and its optimization analysis construct an element of strength for global usage and facilities. It contributes to the provision of a number of different products and worldwide utility sectors. Its significance in flourishing a country's economy cannot be ignored. A close look into the insights of the subject chemical's production as well as imports/exports also explicitly depicts its immense importance and the role its plant may play for the betterment of industrial sector in a developing country like ours. Molten sulphur is the main constituent in the process and its adequate supply remains a vital factor here. The process route opted for is the Double Contact Double Absorption Process with Adiabatic Catalytic Converter for SO₂ to SO₃ conversion.

Optimization Studies have been elaborately incorporated to make the plant fully practical, cost effective, efficient and Green working facility. Maximum energy requirements of the industry are met by the plant's own expanse through Coolers. Complete and detailed design is annexed alongside a thoroughly integrated economic analysis and Simulation model to ensure that no aspect of the plant interposes any prospective ceasure or hazard.

The total capacity promised by the forwarded model is 4410 kg/hr of concentrated Sulphuric Acid. This model serves a dual functional purpose i.e. formation of both Oleum and Sulphuric Acid as per the requirement.

TABLE OF CONTENTS

List of Tablesxi
List of Figuresxvi
CHAPTER 1
1.1 Background1
1.1.1 Global Market Demand1
1.1.2 Sulfuric Acid Production in Pakistan
1.1.3 Problem Statement
1.1.4 Purpose of the study
1.1.5 Organization of the study
1.1.6 Physical properties of sulfuric acid
1.1.7 Applications of sulphuric acid
1.1.8 Physical properties of oleum
1.1.9 Applications of oleum
CHAPTER 2
2.1 Plant Site Selection and Layout:
2.2 Existing Routes for Sulfuric Acid Production
2.2.1 General Overview
2.2.1.1 Lead Chamber Process
2.2.1.2 Contact Process
2.3 Comparison between Lead Chamber and Contact Process 2.3.1 Economic Parameters
2.3.1.1 Product concentration and Quality10
2.3.1.2 Operating Cost
2.3.1.3 Energy Consumption10

2.3.2 Safety Aspects	11
2.4 Process Selection	
2.5 Process Description	13
2.5.1 Sulphur Burner	13
2.5.2 Air Dryer	14
2.5.3 Gas (SO ₂) dryer	14
2.5.4 Catalyst Aided Converter	15
2.5.4.1 Choice of catalyst	15
2.5.5 Intermediate Absorption tower (IAT)	16
2.5.6 Main Absorption Tower (MAT)	17
2.5.7 Scrubber (Flue gas treatment)	17
2.5.8 Oleum Tank	17
2.5.9 Dilution Tank	
2.6 Process Flow Sheet	19
2.6 Process Flow Sheet CHAPTER 3	
2.6 Process Flow SheetCHAPTER 33.1 Physical Properties	
 2.6 Process Flow Sheet CHAPTER 3 3.1 Physical Properties 3.2 Equipment wise Material Balance 	
 2.6 Process Flow Sheet CHAPTER 3 3.1 Physical Properties 3.2 Equipment wise Material Balance 3.2.1 Air dryer 	
 2.6 Process Flow Sheet CHAPTER 3 3.1 Physical Properties 3.2 Equipment wise Material Balance 3.2.1 Air dryer 3.2.2 Sulphur Burner 	
 2.6 Process Flow Sheet CHAPTER 3	
 2.6 Process Flow Sheet CHAPTER 3	
 2.6 Process Flow Sheet CHAPTER 3	
 2.6 Process Flow Sheet CHAPTER 3	
 2.6 Process Flow Sheet CHAPTER 3	
 2.6 Process Flow Sheet CHAPTER 3	

3.2.6 Main Absorption Tower (MAT)	
3.2.7 Oleum Header	
3.2.8 Dilution Tank	40
3.2.9 H ₂ SO ₄ Storage Tank	42
CHAPTER 4	45
4.1 Sulfur melter	45
4.2 Pump (Sulfur)	45
4.2.1 Specifications and equations required for pump calculations	46
4.3 Air Dryer	46
4.4 Sulfur Burner	47
4.5 SO ₂ Dryer	48
4.6 Reactor Bed 1	48
4.7 Reactor Bed 2	49
4.8 Heat Exchanger 2	50
4.9 Reactor Bed 3	50
4.10 IAT (Intermediate Absorption Tower)	51
4.11 Reactor Bed 4	51
4.12 MAT (Main Absorption Tower)	52
4.13 Dilution Tank	
CHAPTER 5	53
5.1 Air Dryer	53
5.1.1 Calculation of Cross-sectional Area of Column	53
5.1.1.1 Calculation of mass flow rate per unit area (G [*])	
5.1.2 Calculation of diameter of column	56
5.1.3 Calculation of wetted area of packing (a _w)	
5.1.4 Calculation of liquid film mass transfer coefficient K _L	57

5.1.5 Calculation of gas film mass transfer coefficient K_g	
5.1.6 Calculation of Rate of Reaction	59
5.1.7 Calculation of height of column	60
5.1.8 Calculation of Volume of Packing	61
5.3 Intermediate Absorption Tower (IAT)	62
5.4 Main Absorption Tower (MAT)	63
5.5 Heat Exchanger - 2	64
5.5.1 Tube side data	65
5.5.2 Shell side data	65
5.5.3 LMTD	65
5.5.4 Corrected LMTD	66
5.5.5 Required UA	67
5.5.6 Tube Dimensions	68
5.5.7 Shell Dimensions	70
5.5.8 Tube Side Coefficients	73
5.5.10 Shell Side Coefficients	75
5.5.11 Overall Coefficient	76
5.5.12 Tube Side Pressure Drop	78
5.5.13 Shell Side Pressure Drop	79
Summary: The Proposed Design	80
5.7 Packed Bed Catalytic Reactor	82
5.7.1 Calculation of equilibrium constant K _P	82
5.7.2 Calculation of rate constant k	83
5.7.3 Calculation of rate of reaction	83
5.7.4 Calculation of total weight of catalyst	84
5.7.5 Calculation of Volume of Catalyst and Volume of Bed	

5.7.6 Calculation of Reactor Specifications	84
5.7.7 Calculation of catalyst and bed specifications	85
5.7.7.1 1 st Bed	85
5.7.7.2 2 nd Bed	86
5.7.7.3 3 rd bed	87
5.7.7.4 4 th bed	88
5.8 Sulphuric Acid Storage Tank	89
5.8.1 Calculation of volume of tank	89
5.8.2 Calculation of the Diameter of tank	90
5.8.3 Calculation of the Height of tank	90
5.9 Oleum Header	92
5.10 Scrubber	92
5.10.1 Calculation of diameter	92
5.10.2 Calculation of Specifications of Spray section	93
5.10.3 Mechanical Properties of Spray Tower	94
5.11 Dilution Tank	94
5.11.1 Calculation of Volume of the Dilution Tank	94
5.11.2 Calculation of diameter of tank	96
5.11.3 Height of the column	96
CHAPTER 6	
6.1 General Process Description	97
6.2 Process Simulation	99
6.2.1 Components	99
6.2.2 Fluid Package	99
Reactions	100
6.2.4 Process Equipment	104

J	
6.2.4.2 Sulphur Burner	
6.2.4.3 SO ₂ Dryer	
6.2.4.4 Reactor Bed 1	
6.2.4.5 Reactor Bed 2	
6.2.4.6 Reactor Bed 3	
6.2.4.7 Reactor Bed 4	
6.2.4.8 Intermediate Absorption Tower (IAT)	
6.2.4.9 Main Absorber Tower (MAT)	
6.2.4.10 Oleum Header	
6.2.4.11 Dilution Tank	
6.2.4.12 Storage Tank	
CHAPTER 7	
7.1 Cost Estimates for the Design	
7.2 Coloulation of DOE (Demonstration () E	
7.2 Calculation of PCE (Personal Consumption Expendence)	nditure)114
7.2 Calculation of PCE (Personal Consumption Exper 7.2.1 Blower	nditure)114
7.2 Calculation of PCE (Personal Consumption Experimental Consu	nditure)114 116 116
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116 116
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116 116 117
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116 116
 7.2 Calculation of PCE (Personal Consumption Expering 7.2.1 Blower	nditure)114 116 116 116 116 116
7.2 Calculation of PCE (Personal Consumption Exper7.2.1 Blower7.2.2 Pump7.2.3 Furnace (Cylindrical)7.2.4 Reactor7.2.5 Oleum Header (Vertical tank)7.2.6 Dilution tank (Jacketed)7.2.7 H_2SO_4 tank (Vertical tank)7.2.8 Sulfur Melter7.2.9 Coolers	nditure)114 116 116 116 116 116 118 118 118 119 120
7.2 Calculation of PCE (Personal Consumption Exper7.2.1 Blower7.2.2 Pump7.2.3 Furnace (Cylindrical)7.2.4 Reactor7.2.5 Oleum Header (Vertical tank)7.2.6 Dilution tank (Jacketed)7.2.7 H_2SO_4 tank (Vertical tank)7.2.8 Sulfur Melter7.2.9 Coolers7.2.10 Reactor pre-heater	nditure)114 116 116 116 116 116 116 117 117 118 118 118 119 120

7.2.12 Heat Exchanger 3	
7.2.13 Intermediate cooler between 1 st and 2 nd bed	
7.2.14 Intermediate cooler between 4 th bed and MAT	
7.2.15 Air Dryer	
7.2.16 SO ₂ Dryer	
7.2.17 IAT	
7.2.18 MAT	
7.3 Calculation of Physical Plant Cost (PPC)	
7.7 Calculation of Annual production Cost	
7.8 Calculation of Production Cost per kg	
7.9 Calculation of payback period	
CHAPTER 8	
8.1 Overview of the Controllers	
8.1.1 Temperature Controller	
8.1.2 Pressure Controller	
8.1.3 Flow Controller	
8.1.4 Level Controller	
8.1.5 Analyzer Controller	
8.1.6 Differential Pressure Controller	
8.2 Process Control on Equipment	
8.2.1 Controls in pump	
8.2.2 Controls in Heat Exchanger	
8.2.4 Controls in Reactor	
8.2.5 Controls in Absorption Column	
8.2.6 Controls in Dilution Tank	

CHAPTER 9	
9.1 Design strategies and continuous inspection	140
9.2 Health and safety communication	140
9.3 Safety practices and personal protective equipment (PPE)	141
9.4 Emergency Planning	142
9.5 Detailed HAZOP Analysis	143
9.5.1 Sulfur Melter HAZOP Worksheet	144
9.5.2 Furnace HAZOP Worksheet	147
9.5.3 Reactor HAZOP Worksheet	149
9.5.4 Absorber HAZOP Worksheet	151
9.5.5 Heat Exchanger HAZOP Worksheet	153
CHAPTER 10	
10.1 Dual functionality	157
10.2 Reactor efficiency	157
10.3 Yield maximization	
10.4 Energy recovery and its cost effectiveness	
CONCLUSION	
BIBLIOGRAPHY	

List of Tables

Table 1-Physical property data for sulfuric acid
Table 2-Physical properties of oleum
Table 3-Comparison between Lead Chamber and Contact Process11
Table 4-Comparison between types of contact process
Table 5-Molecular weights of components 20
Table 6-Air Inlet flow sheet 22
Table 7-Dehydrating agent inlet flow sheet
Table 8-Dried Air Outlet flow sheet
Table 9-H ₂ SO ₄ Outlet flow sheet23
Table 10-Molten sulphur inlet flow sheet24
Table 11-Dried Air inlet flow sheet
Table 12-SO ₂ Outlet flow sheet24
Table 13-SO ₂ inlet flow sheet25
Table 14-Drying Agent Inlet flow sheet
Table 15-Dried SO ₂ gas Outlet flow sheet26
Table 16-H ₂ SO ₄ Outlet flow sheet26
Table 17-Air inlet flow sheet
Table 18-Dried SO2 inlet flow sheet
Table 19-SO ₂ /SO ₃ gas Outlet flow sheet29
Table 20-SO ₂ /SO ₃ inlet flow sheet

Table 21-SO ₂ /SO ₃ Outlet flow sheet	31
Table 22-SO ₂ /SO ₃ Outlet flow sheet	31
Table 23-SO ₂ /SO ₃ Outlet flow sheet	32
Table 24-Unconverted SO ₂ /SO ₃ Outlet flow sheet	32
Table 25-SO ₂ /SO ₃ Outlet flow sheet	33
Table 26-SO ₂ /SO ₃ Inlet flow sheet	34
Table 27-H ₂ SO ₄ inlet flow sheet	34
Table 28-SO ₂ /SO ₃ Outlet flow sheet	34
Table 29-Oleum Outlet flow sheet	35
Table 30-SO ₂ /SO ₃ Inlet flow sheet	36
Table 31-H ₂ SO ₄ Inlet flow sheet	36
Table 32-To Scrubber Outlet flow sheet	37
Table 33-Oleum Outlet flow sheet	37
Table 34-Oleum from IAT Inlet flow sheet	38
Table 35-Oleum from MAT Inlet flow sheet	38
Table 36-Oleum from Air Dryer Inlet flow sheet	39
Table 37-Oleum from SO ₂ Dryer Inlet flow sheet	39
Table 38-Oleum to Air Dryer Outlet flow sheet	39
Table 39-Oleum to SO ₂ Dryer Outlet flow sheet	40
Table 40-Oleum to Dilution Tank Outlet flow sheet	40
Table 41-Oleum from Oleum header Inlet flow sheet	41
Table 42-Water Inlet flow sheet	41

Table $43-H_2$ SO ₄ Outlet flow sheet
Table 44-H ₂ SO ₄ Inlet flow sheet
Table 45-H ₂ SO ₄ Outlet flow sheet42
Table 46-H ₂ SO ₄ to MAT Outlet flow sheet42
Table 47-H ₂ SO ₄ Extracted flow sheet43
Table 48-Overall Material Balance44
Table 49-Energy calculation for sulfur melter45
Table 50-Energy calculation for pump46
Table 51-Energy calculation for Air Dryer 46
Table 52-Energy calculation for sulfur burner 47
Table 53-Energy calculation for SO ₂ dryer48
Table 54-Energy calculation for Reactor Bed 149
Table 55-Energy calculation for Reactor Bed 249
Table 56-Energy calculation for Heat Exchanger 2
Table 57-Energy calculation for Reactor Bed 3
Table 58-Energy calculation for IAT
Table 59-Energy calculation for Reactor Bed 451
Table 60-Energy calculation for MAT 52
Table 61-Energy calculation for Dilution Tank
Table 62-Specification Summary of Air Dryer
Table 63-Specification Summary of SO ₂ Dryer62
Table 64-Specification Summary of Intermediate Absorption Tower (IAT)

Table 65-Specification Summary of Main Absorption Tower (MAT)	63
Table 66-Temperature Correction Factor: One Shell Pass; Two Or More Tube Passes	Even 67
Table 67-Heat Exchanger -2 Specification Summary	80
Table 68-Heat Exchanger -3 Specification Summary	81
Table 69-Specification sheet for 1st bed	86
Table 70-Specification sheet for 2nd Bed	87
Table 71-Specification sheet for 3rd bed	87
Table 72-Specification sheet for 4th bed	88
Table 73-Specification sheet for the combined dimensions of all beds	88
Table 74-Specification Summary of Storage Tank	91
Table 75-Specification Summary of Oleum Header	92
Table 76-Mechanical properties of Spray Tower	94
Table 77-Specification Summary of Dilution Tank	96
Table 78-Calculation of Annual Production Cost	.130
Table 79-Calculation of Payback Period	.131
Table 80-Proposed Plant Control System	.138
Table 81-HAZOP Analysis on Sulfur Melter	.144
Table 82-HAZOP Analysis on Furnace	.147
Table 83-HAZOP Analysis on Reactor	.149
Table 84-HAZOP Analysis of Absorber	.152
Table 85-HAZOP Analysis of Heat Exchanger	.154

Table 86-Proposed Capacity	
Table 87-Optimization of yield based on split ratios	
Table 88-Energy recovery	
Table 89-Energy contribution of equipment	
Table 90-Steam energy consumption	
Table 91-Cooling Water consumption	

List of Figures

Figure 1-World consumption of sulfuric acid	1
Figure 2-Sulfuric acid production in Pakistan	2
Figure 3-Sulfuric acid annual production in Pakistan	2
Figure 4-Lead Chamber Process-Process Flow Diagram	8
Figure 5-Process Flow sheet1	9
Figure 6-Generalized pressure drop correlation for calculation of area5	4
Figure 7-Characteristics of tower packing5	5
Figure 8-Critical surface tension data for different packing material5	7
Figure 9-Recommended packing size for a particular range of diameter5	8
Figure 10-Concentration profile by two film theory	0
Figure 11-Heat Exchanger Tube Data6	8
Figure 12-Bundle Diameter Data7	'1
Figure 13-Shell Bundle Clearance7	'1
Figure 14-Tube Side Heat Transfer Factor jH7	4
Figure 15-Shell-Side Heat-Transfer Factors, Segmental Baffles7	6
Figure 16-Fouling Factor (Coefficients)7	7
Figure 17-Tube Side Friction Factors7	8
Figure 18-Shell-Side Friction Factors, Segmented Baffles7	'9
Figure 19-Simulation Model9	8
Figure 20-Component list for simulation model	9

Figure 21-Fluid Package	
Figure 22-Reaction Set for the Dryers	
Figure 23-Reaction Set for Sulfur Burner	
Figure 24-Reaction Set for Packed Bed Reactor Bed 1	
Figure 25-Reaction Set for Packed Bed Reactor Bed 2	
Figure 26-Reaction Set for Packed Bed Reactor Bed 3	
Figure 27-Reaction Set for Packed Bed Reactor Bed 4	
Figure 28-Reaction Set for IAT	
Figure 29-Reaction Set for MAT	
Figure 30-Reaction Set for Dilution Tank	
Figure 31-Air Dryer Conditions Worksheet	
Figure 32-Air Dryer Streams Compositions	
Figure 33-Sulphur burner Conditions Worksheet	
Figure 34-Sulfur Burner Streams Compositions	
Figure 35-SO ₂ Dryer Conditions Worksheet	
Figure 36-SO ₂ Dryer Streams Compositions	
Figure 37-Reactor Bed1 Conditions Worksheet	
Figure 38-Reactor Bed 2 Conditions Worksheet	
Figure 39-Reactor Bed 3 Conditions Worksheet	
Figure 40-Reactor Bed 4 Conditions Worksheet	
Figure 41-IAT Conditions Worksheet	
Figure 42-MAT Conditions Worksheet	

Figure 43-MAT Streams Compositions	111
Figure 44-Oleum Header Streams Splits and Flows	112
Figure 45-Dilution Tank Conditions Worksheet	113
Figure 46-Storage Tank Streams Compositions	113
Figure 47-Data for purchase cost equation	115
Figure 48-Purchase Cost for Shell and Tube Heat Exchangers	119
Figure 49-Purchase cost of Vertical Pressure Vessels	122
Figure 50-Purchase cost of column packing	122
Figure 51-Data for calculation of PPC	125
Figure 52-Data for calculation of Operating Cost	127
Figure 53-Data for calculation of Utility cost	127
Figure 54-Controls on Pump	134
Figure 55-Controls on Heat Exchangers	134
Figure 56-Controls on Reactor	135
Figure 57-Controls on Absorbers	136
Figure 58-Controls on Dilution Tank	137
Figure 59-Energy Recovery Process Flow Diagram	161

CHAPTER 1

Introduction

1.1 Background

1.1.1 Global Market Demand

Sulfuric acid is one of the world's highest-production chemical produced. It is one of the parameters that denote economic stability of a country. The worldwide demand for sulfuric acid had been predicted to rise at a rate of 2% annually for 5 years since 2017, with China being its largest consumer (37%) as shown in Figure 1.1.

Figure 1-World consumption of sulfuric acid

1.1.2 Sulfuric Acid Production in Pakistan

The monthly produce of sulfuric acid in Pakistan was estimated to be around 4000 tons in August 2018 which was an increase from the production capacity in July 2018. Figure 1.2 shows the monthly production of sulphuric acid in thousand tons in Pakistan as reported by Pakistan Bureau of Statistics.

Figure 2-Sulfuric acid production in Pakistan

The change in annual production of sulfuric acid in Pakistan is given below.

Figure 3-Sulfuric acid annual production in Pakistan

The production capacity of Pakistan has seen fluctuations which can be owed to its economic instability over the years. However, Pakistan is considered to be self-sufficient in production of sulfuric acid, with excess acid exported as well.

1.1.3 Problem Statement

The project put forward was a complex insightful design demanding detailed literature review and analytic investigation of all processes for Sulphuric Acid Production to come up with a fully workable design. Variant process routes had to be compared and looked into comprehensively to decide one that best suited the provided requirements and objectives. The plant had to be a dual functional facility for both Sulphuric Acid and Oleum Production as per requirements. Moreover, it had to be green, optimized and efficient as a process. Additionally, a complete economic analysis of the plant had to be performed thus proving it to be cost effective and profitable on the whole.

1.1.4 Purpose of the study

The purpose of this study is to Design and Optimize an operational industrial facility for Oleum Production with efficient workability and maximum chemical purity as well as conversion efficiency.

1.1.5 Organization of the study

For the efficient conversion of SO_2 to SO_3 , the suggested method involves installation and design of an adiabatic catalytic packed bed reactor with interstage cooling to keep the temperature uniform throughout the reaction vessel. Moreover, as a consequence of presence of coolers in between beds, catalyst deactivation is avoided, thus saving running cost of the plant and making the process economically feasible. The chosen catalyst is Vanadium Pentaoxide (V_2O_5) which is not only low on the plant investment but also allows the equilibrium reaction to proceed more smoothly and in a better fashion. The subject reaction is an exothermic one and requires a pressure of around 1-2 atm. The final outlet of reactor i.e. that of bed 4 and that of bed 3 go to the Main Absorption Tower and Intermediate Absorption Tower respectively where absorption of SO₃ into Sulphuric Acid takes place to form Oleum. These absorbers are also packed bed reactors governing an exothermic reaction. The reactor itself and the absorbers along with all other equipment before and after the reactor-absorber assembly were elaborately designed and checked for their economic and environmental feasibility. This was completed by analytical calculations and verified by simulation done in Aspen HYSYS.

1.1.6 Physical properties of sulfuric acid

Attribute	
Alternate names	Oil Of Vitriol, Hydrogen Sulfate
General appearance/qualities	dense, clear (colourless), oily, corrosive liquid
Specific gravity (25° C)	1.83 (Pure Sulfuric acid)
Freezing point	10.37° C (Pure Sulfuric acid)
Boiling point	338° C (98.3% conc. acid at 1 atm)
Commonly supplied concentrations	78%, 93%,98%
Related solutions	Oleum (Fuming Sulfuric acid)

Table 1-Physical property data for sulfuric acid

1.1.7 Applications of sulphuric acid

It finds its major use in the production of fertilizers especially phosphate fertilizers accounting for over 60% consumption of sulfuric acid produced worldwide. According to a 2017 report, 17% of sulfuric acid is used in approximately 20 chemical processes such as processing and metallurgical applications worldwide.

Other uses include manufacturing of pigments, fertilizers, dyes, explosives, drugs, inorganic salts, acids and detergents as well as petroleum products. It is also employed as the major electrolyte in Lead Storage Batteries and as a strong dehydrating agent.

• Production of Phosphoric acid:

This acid is produced using the wet process (major source of consumption of our subject acid) and is subsequently used in producing phosphate fertilizers

• Iron and steel manufacturing:

Sulfuric acid is used to remove iron oxide flakes, scaling or any other layers formed due to oxidation from rolled sheets. To avoid costly purchase of fresh acid, most steel manufacturing units have a regeneration unit for spent sulfuric acid. • Manufacture of Aluminum compounds:

Sulfuric acid produces gelatinous aluminum compounds which are beneficial in setting of the pulp fibers to produce hard paper surface. Sulfuric acid is also used in manufacturing other coagulants such as aluminum hydroxide.

• Manufacture of Ammonium Sulfate:

It is a vital fertilizer used in agriculture industry and its mass production is through a reaction of ammonia with sulfuric acid.

$$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$

1.1.8 Physical properties of oleum

Attribute		
Alternate names	Vitriol brown oil, fuming sulfuric acid	
General appearance/qualities	Colorless to brown fuming viscous oil,	
	hygroscopic liquid with corrosive	
	properties and characteristic odor	
Specific gravity (30°C)	1.96	
Freezing point	10°C	
Boiling point	290°C	
Commonly supplied concentrations	23% and 67%	

Table 2-Physical properties of oleum

1.1.9 Applications of oleum

Oleum is considered a vital intermediate in Sulphuric Acid manufacture process owing to its high value of enthalpy of hydration.

It has several uses such as:

• Transportation Intermediate:

It is commonly employed for use as a form of transporting Sulphuric Acid products via freight cars etc. due to the fact that a few of its compositions are solid at room temperature and hence propose a convenient and safer way to transport. • Research in Organic Chemistry

Being a conclusively hard reagent, it is excessively used for research purposes in organic chemistry sector.

• Manufacture of Explosives:

Oleum is frequently used in the manufacture of variant explosives.

• Strong Dehydrating Agent

On being poured onto powdered glucose, it draws all water inherent constituents from within via an exothermic reaction just leaving carbon black behind as a pure solid.

CHAPTER 2

Literature Review and Process Description

2.1 Plant Site Selection and Layout:

Plants for Acid production are located well across the industrial world majorly close to the products' usage points such as in near vicinity of copper ore leach plants, fertilizer plants and refineries for petroleum. A vital reason for this is the lower transportation cost of elemental Sulphur as compared to Sulfuric Acid.

The selection of the plant plays a very significant role in many aspects of the plant processing as well as the business and the safety concerns handling. It makes sure of the safety of both the environment and humans. Location should be chosen in a way that the delivery of materials and product distribution can be accomplished with ease.

Produced acid from the plant can exceed consumption in local market and thus majority is to be exported. Plant location should be close to harbors for reduction in transportation cost of the product acid. For this case, Karachi, Gwadar and Bin Qasim areas are well-suited candidate areas if proximity to a harbor is the concern.

However, a clear priority must be delivered to the fact of raw material supply refinery and the location for plant being close to it. This hence reduces the cost for raw material, predominantly Sulphur here, which is in molten state. Long Distances can excessively complicate the matter else wise.

The plant layout diagram after the selection of the site can then be drawn on rough basis to get an idea. (Kumareswarn, 2013)

2.2 Existing Routes for Sulfuric Acid Production

After a detailed literature review and keen consideration of all options available as well as occurrences expected, two main processes are observed to be present for Sulphuric Acid and Oleum Production across the globe.

- 1. Lead Chamber Process
- 2. Contact Process

Certain variations are introduced in both these processes depending on the requirements and capacity of the plant.

2.2.1 General Overview

For an apt comparison between the two processes, a general overview of the two is given below to get a better understanding and which eventually leads to the selection of a process that meets the requirements and needs of SRC in terms of feasibility, economics and all other aspects.

2.2.1.1 Lead Chamber Process

This is a rather obsolete process, used for the production of sulphuric acid in chambers that are lined with Lead, mainly because of its corrosion resistant properties. This lead lining does not only contain the sulphuric acid being produced but it is also responsible for making the Wooden chambers waterproof.

Figure 4-Lead Chamber Process-Process Flow Diagram

Steps involved:

- Burning of elemental sulphur or sulphur ore to produce SO_2 $S + O_2 \rightarrow SO_2$
- KNO₃ is burnt in the KNO₃ burner to produce nitrogen oxides.

- The products from both burners are filtered and sent to the three main towers one by one firstly in the glower tower followed by the Lead chamber and finally entering the Gay-Lussac Tower.
- In glower tower, Nitrogen oxides and Sulphur dioxide flow counter currently where NO₂ is absorbed in SO₂.

 $NO_2 + SO_2 + H_2O \rightarrow HOSO_2NO(OH)$

• The gas from the glower tower is sent to the Lead chambers where the reaction mixture will go through a series of reactions. Due to the complexity of this process, chambers can range from three to twelve. Condensation of the acid produced occurs on the walls as well as the floors of this particular chamber. The final step taking place is as follows:

$$2HOSO_2ONO + H_2O \rightarrow HNO_2 + H_2SO_4$$

• The gases are then moved onto the tower called Gay-Lussac. This reactor removes any traces of acid gases. These waste gases must be treated before being purged to the atmosphere.

Some improvements have been introduced in the lead chamber from time to time, which included the introduction of packed towers, but the major process remained the same.

2.2.1.2 Contact Process

The main steps taking place in this process are as follows with optimization within each step to bring about better results.

• Sulphur Burning in the Presence of Oxygen present in Air.

$$S + O_2 \rightarrow SO_2$$

• Production of Sulphur Trioxide by reacting Sulphur Dioxide with oxygen in the presence of a catalyst and optimum operating conditions.

$$2SO_2 + O_2 \rightarrow 2SO_3$$

• The next step is the absorption of Sulphur Trioxide in the solvent, which is Sulphuric Acid to produce Oleum.

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

• Water is then added to Oleum to produce Conc. Sulphuric Acid.

 $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

2.3 Comparison between Lead Chamber and Contact Process

2.3.1 Economic Parameters

2.3.1.1 Product concentration and Quality

Final product obtained from lead chamber process has a final concentration of 65 – 78% whereas that in contact process has a minimum concentration of 98% due to the catalytic activity of the catalyst present in the reactor. Other disadvantages of the Lead Chamber process include a smaller throughput as well as lowered quality of the Sulphuric Acid produced due to the presence of impurities. Contact process, is thus a better option in terms of both quality and concentration of the product.

2.3.1.2 Operating Cost

A lower pressure (1-2 atm) is required in the contact process, at these pressures which are only marginally greater than the atmospheric conditions, a sufficient target yield is obtained and the equipment cost is lower than the expected cost.

2.3.1.3 Energy Consumption

In terms of this parameter, both processes need the same amount of energy for the same amount of Sulphur burnt for the production of Sulphur Dioxide for further usage. However, in the lead chamber process additional burners are required to burn KNO₃ so it can be said that the Lead chamber process has a greater energy requirement. Additionally, those 3-12 chambers would also need a greater amount of energy as compared to a smaller amount of converters and absorbers in the Contact process

2.3.1.4 Power Consumption

Contact process is much more compact and requires less power requirement in comparison to the Lead Chamber process that has large gas and liquid conveying systems requiring a huge amount of air blowers and pumps owing to larger power consumption.

2.3.2 Safety Aspects

Emission of oxides of Sulphur is common in both processes due to the burning of Sulphur. However, in the chamber process additional nitrogen oxides are also emitted due to burning of KNO₃. It can be concluded that the contact process has a lesser impact on the physical environment as compared to the obsolete lead chamber process.

Aspect	Contact Process	Lead Chamber Process
Product Quality	Better Quality of Sulphuric Acid with lesser impurities	Lower Quality of Sulphuric Acid with many impurities.
Product Concentration	Min 98% conc. H ₂ SO ₄	Max 78% conc. H_2SO_4
Pressures	Low Pressures	Comparatively higher Pressures
Energy consumption	Low energy consumption	Higher energy consumption due to additional chambers and burners
Power Consumption	Lower consumption of power	High consumption of power due to more air blowers and pumps
Operating Cost	Lower cost of operation	Higher Cost of operation
Environmental impact	Lower impact on environment	Higher impact on environment

Table 3-Comparison between Lead Chamber and Contact Process

On the basis of the aforementioned parameters, contact process is considered as the more efficient and economically feasible process.

2.4 Process Selection

An elaborate process selection, therefore, requires identification of the minute variation within the existing contact process. Based on these variations, the contact process can be further categorized into the following three types:

- Wet Contact Process
- Single Contact Single Absorption
- Double Contact Double Absorption

Process Type	Advantages	Disadvantages
Single Contact Single Absorption (SCSA)	• There are less heat losses due to absence of second absorption column	 High amount of SO₂ is discharged in flue gas due to absence of one absorption column Impure SO₂ can poison the catalyst It can only be used if the SO₂ content is less (3-10%) The conversion of SO₂ is only 98%
Double Contact Double Absorption (DCDA)	 Higher conc. of sulphuric acid Higher yield of sulphuric acid can be obtained Most of SO₂ and SO₃ is converted (99.8%) due to second absorption column. Hence waste gases are less toxic. 	• Any impurities in SO ₂ can poison the catalyst

Table 4-Comparison between types of contact process

Wet Contact Process (WCP)	• Due to high sulfur recovery, heat recovery and low cooling water consumption, it is a more cost-efficient process	 The concentration of sulphuric acid produced is low Sulfuric acid mist generation renders it as less suitable process
------------------------------	---	--

2.5 Process Description

2.5.1 Sulphur Burner

Assuming that maximum purity of sulphur is obtained from the sulphur burner; two different methods for the production of Sulphur Dioxide from Sulphur can be employed. Similarity between the two is the requirement of very large heat content for sulphur melting.

Figure 2.2 Burner Block Flow Diagram-1st method

First Method: Melting of Sulphur can be done directly in the sulphur burner along with air and with the application of heat. In this particular method melting of Sulphur and its reaction with air to produce Sulphur Dioxide will be taking place in the same space. However, this method has certain disadvantages including reduced efficiency along with hindrance in the operation leading to a temperature drop, and it may also lead to other hazards and finally cease in operation functionality.

Figure 2.3 Burner Block Flow Diagram-2nd method

Second method: The performance of Sulphur melting occurs separately while excluding any contact of air, which causes oxidation of Sulphur Dioxide. Any forsake of required value of efficiency is very unlikely in the setup proposed hereby.

2.5.2 Air Dryer

One unit supplies the needed route wherever it may be needed. Drying and filtering of the air is a must as any contamination in the air supply due to the presence of moisture of any sort or dust particles may lead to a noticeable lowering of efficiency of conversion and later on a very huge operation cost for utilities in addition to any excessive price paid for replacing the catalyst.

Dehydrating agent used:

Concentrated sulphuric acid may be used for the drying of air in theory. However, oleum as a dehydrating agent is preferred in our proposed process. Firstly, because of its better ability to absorb moisture. And, secondly because using the final product i.e. concentrated Sulphuric Acid is not appropriate for parts where direct contact in the upstream processes is required. So, the dehydrating agent chosen is oleum which is recycled from within the plant via the oleum header.

2.5.3 Gas (SO₂) dryer

At this stage, existing routes deviate from one another. Air oxidation of molten Sulphur produces Sulphur Dioxide, which may be inherent of ash particles and
some water content. The removal of which is important, this helps to assure that the operation proceeds without any hindrance, and the reactor operation is improved due to absence of water vapor. A close to perfect value for efficiency is desirable and needed. For gas cleaning an electrostatic precipitator maybe used to due to its higher efficiency and because it can operate at high temperatures. The dehydrating agent chosen in this part is also oleum because of the same reasons that have been mentioned in the air dryer.

2.5.4 Catalyst Aided Converter

This is a catalytic reactor, more generally, a packed bed reactor with four beds of catalyst. Since an exothermic reaction is taking place in the reactor, the temperature of products is assumed to increase as the exit each bed. Intermittent cooling arrangement is made between the beds for this purpose and this task is fulfilled by coolers in between. A temperature of 450 Degrees Celsius is ensured for each bed with an overall pressure of about 1 to 2 atm.

Figure 2.4 Reactor Block Flow Diagram

2.5.4.1 Choice of catalyst

The catalyst plays a very important role in converting Sulphur Dioxide to Sulphur Trioxide taking place in the catalytic reactor. The two catalysts considered are platinum and Vanadium pentaoxide.

Platinum has two main disadvantages, firstly the cost of acquisition is very high and thus it increases the capital and operating cost by a huge extent. The increase in operating cost is due to the regular maintenance needed. On the other hand, vanadium pentaoxide is a better candidate for the catalytic activity-taking place in the reactor beds. Vanadium pentaoxide has many advantages including its lower tendency of being poisoned due to contamination Secondly; it has a lower cost of acquisition due to a lower capital and operating cost (This is because it does not need very frequent replacements due to reduced tendency of poisoning).

Hence, the catalyst chosen for our process is vanadium pentaoxide because of its economic feasibility. It is also important to state that while conducting the literature review, this catalyst has always been preferred as a better option which also clearly shows the merits of vanadium pentaoxide over all other catalysts that are used for this conversion in the reactor.

2.5.5 Intermediate Absorption tower (IAT)

Figure 2.5 IAT Block Flow Diagram

Right after the catalytic reactor, the intermediate absorption tower has been inserted in our proposed process flow. The main reaction-taking place in this intermediate absorption tower is the chemical absorption of Sulphur Trioxide gas in the solvent which is concentrated sulphuric Acid to form oleum which is then sent to the oleum header. The sulphuric acid for this absorption is being recycled from the storage tank.

2.5.6 Main Absorption Tower (MAT)

Figure 2.6 MAT Block Flow Diagram

The remaining absorption of Sulphur Trioxide gases in our solvent occurs in the main absorption tank. The exothermic absorption-taking place in this tower might need a heat exchanger for maintenance of the temperature at an optimum value for considerable absorption to take place. This is also done for the prevention of excessive sulphuric mist formation which will be sent to the scrubber for removal.

2.5.7 Scrubber (Flue gas treatment)

Gas coming from the main absorption tower contains Sulphur oxides as well as the sulphuric mists formed, this scrubber is required to remove these oxides that are harmful for the environment in order to make sure that the process that we are proposing is clean and green.

2.5.8 Oleum Tank

Oleum produced in both intermediate and absorption tower needs a tank to hold it. This storage/holding tank can also be the starting point for the recycle of Oleum back to the air dryer and Sulphur Dioxide dryer where is being used as a dehydrating agent as mentioned earlier. It is also a point for the distribution of Oleum to the dilution tank and for the extraction of oleum if needed. Since, the plant that is being proposed is dual functional, it means that sometimes oleum will have to be extracted as a product. This extraction of oleum as a product for further use will be done from this oleum tank.

2.5.9 Dilution Tank

The oleum coming from the oleum tank is converted to Sulphuric Acid which is also one of our final products, in this Dilution tank. Mass flow rate of processed water entering the dilution tank depends on the amount of oleum that needs to be converted. These dilution tanks must have agitators or mixers to facilitate and ensure homogenization as well as proper mixing of both oleum and processed water to form our product, Sulphuric Acid which is sent to the storage tank where part of it is extracted as a final product while the remaining Sulphuric Acid is recycled back to the absorption towers.

2.6 Process Flow Sheet

Figure 5-Process Flow sheet

CHAPTER 3

Material Balance

The material balance of this plant was organized and prepared for the operation under steady state conditions (Accumulation was assumed to be zero) with a basis of 1 hour.

The basic material balance equation is as follows:

Mass in + Mass generated = Mass out + Mass consumed + Accumulation

For the preparation of this balance, a set of variables or parameters were recognized. Allocation of provisions was done based on their necessity in equipment. These provisions along with the overall provisions helped us in coming up with realistic figures for the overall balance of our Sulphuric Acid and Oleum plant. (Watson, 1954)

3.1 Physical Properties

The only physical property that was required for preparing the material balance of our plant were the molecular weights of the materials being used and produced during plant operation. These molecular weights are important for the conversion of mass flows to molar flows or vice versa. The molecular weights have been mentioned below in Table 3.1

Species	Molecular weights
Sulphur	32.0
Sulphur Dioxide	64.1
Sulphur Trioxide	80.1
Oleum	178
Sulphuric Acid	98.0
Water	18.0

Table 5-Molecular weights of components

Hydrogen Sulphide	34.1
Oxygen	31.9
Nitrogen	28.0
Carbon Dioxide	44.0

3.2 Equipment wise Material Balance

3.2.1 Air dryer

The air entering the plant needs to be dried because if H_2O is a part of the combustion gas, there is a very high likelihood of its combination with SO_3 to form H_2SO_4 mist, which will obviously hinder the downstream process. This drying will be done in a packed tower with oleum as the dehydrating agent.

The following reaction will take place in the tower for the removal of H₂O:

 $H_2O(l) + H_2S_2O_7(aq) \rightarrow 2H_2SO_4(aq)$

Assumptions

- Humidity considered in order to estimate the content of water vapor in the inlet stream is 0.027125 kg (H₂O/dry air)
- The air is properly filtered before entering the air dryer or blower for efficient operation.

Air inlet	Component	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Compositio n (mol/mol %)
	N_2	10297	367.75	0.72	0.74
	O ₂	2915	91.09	0.20	0.18
	CO ₂	667	15.16	0.05	0.03
	H_2O	376.6	20.92	0.03	0.04
Total		14255.6	494.93	1.00	1.00

Table 6-Air Inlet flow sheet

Table 7-Dehydrating agent inlet flow sheet

Dehydrating Agent Inlet	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Compositio n (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	3282.9	18.4	0.93	0.89
	H_2SO_4	228.5	2.33	0.07	0.11
Total		3511.4	20.8	1.00	1.00

According to the balanced chemical equation mentioned above, the following material balance is obtained:

Table 8-Dried Air Outlet flow sheet

Drie d Air	Compo nents	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	10297	367.8	0.74	0.78
	02	2914	91.1	0.21	0.19
	CO ₂	667	15.2	0.05	0.03
Total		13878	473.9	1.00	1.00

H ₂ SO ₄ Outlet	Component	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Compositio n (wt/wt %)	Compositio n (mol/mol %)
	$H_2S_2O_7$	0.00	0.00	0.00	0.00
	H_2SO_4	3843.5	39.2	1.00	1.00
Total		3843.5	39.2	1.00	1.00

Table 9-H₂SO₄ Outlet flow sheet

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out	
17767.1	17721.5	

3.2.2 Sulphur Burner

Moving onto the next equipment, which is the sulphur burner. Combustion of molten sulphur to SO₂ takes place in the sulphur furnace according to the following reaction:

$$S(l) + O_2(g) \rightarrow SO_2(g)$$

Assumptions

- Conversion in the sulphur burner is assumed to be 100 %.
- The N_2 gas in the inlet air stream is not making any reactions in the furnace.

Molten Sulfur	Comp onent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	S	1443	45.1	0.99	0.99
	H ₂ S	14.60	0.43	0.01	0.01
Total		1457.6	45.5	1.00	1.00

Table 10-Molten sulphur inlet flow sheet

Table 11-Dried Air inlet flow sheet

Drie d Air	Comp onent	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	7568	270.3	0.74	0.78
	02	2142	66.9	0.21	0.19
	CO ₂	489	11.1	0.05	0.03
Total		10199	348.3	1.00	1.00

According to the balanced chemical equation shown above, the material balance on the outlet streams is as follows:

SO ₂ gas	Compo nent	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	7568	270.3	0.65	0.77
	CO ₂	489	11.1	0.04	0.03
	02	700.1	21.9	0.06	0.06
	SO ₂	2884	45.1	0.25	0.13
	H ₂ O	17.7	0.98	0.00	0.00
	H ₂ S	14.6	0.43	0.00	0.00
Total		11673.4	349.7	1.00	1.00

Table 12-SO₂ Outlet flow sheet

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out
11656.6	11673

$3.2.3 \ SO_2 \ Dryer$

This is an absorption tower, which helps in the removal of water content in the SO_2 stream coming from the Sulphur burner. This is necessary, because if this stream enters the reactor, it may eventually lead to process failure due to the poisoning of the catalyst by

H2O. Just like the air dryer, the dehydrating agent in this case is also Oleum that is being recycled from the plant. The following reaction will be taking place.

$$H_2O(l) + H_2S_2O_7(aq) \rightarrow 2H_2SO_4(aq)$$

Assumptions

• The conversion in SO2 dryer is assumed 100 %.

SO ₂ gas	Compo nents	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	7568	270.3	0.65	0.77
	CO ₂	489	11.1	0.04	0.03
	02	700.1	21.9	0.06	0.06
	SO ₂	2884	45.1	0.25	0.13
	H ₂ O	6.91	0.98	0.00	0.00
	H ₂ S	14.6	0.43	0.00	0.00
Total		11662.6	349.8	1.00	1.00

Table 13-SO₂ inlet flow sheet

Drying Agent	Compo nents	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	321.9	1.81	0.82	0.72
	H_2SO_4	69.1	0.71	0.18	0.28
Total		391.1	2.51	1.00	1.00

Table 14-Drying Agent Inlet flow sheet

According to the balanced chemical equation shown above, the material balance on the outlet streams is as follows:

Dried SO ₂ gas	Comp onent	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	7568	270.3	0.65	0.77
	CO ₂	489.9	11.1	0.04	0.03
	02	701.8	21.9	0.06	0.06
	SO ₂	2884	45.1	0.25	0.13
	H ₂ O	0.00	0.00	0.00	0.00
	H ₂ S	14.6	0.43	0.00	0.00
Total		11658.4	348.8	1.00	1.00

Table 15-Dried SO_2 gas Outlet flow sheet

*Table 16-H₂SO*₄ *Outlet flow sheet*

H ₂ SO ₄ outlet	Compo nents	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	195.5	1.99	0.58	0.71
	$H_2S_2O_7$	144.3	0.81	0.42	0.29
Total		339.8	2.81	1.00	1.00

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out
12054	11998

3.2.4 Reactor

In the design of the reactor, we have four packed beds; the catalyst being used is V₂O₅. The air that was previously filtered

and cleaned enters the reactor where it reacts with the SO_2 gas mixture to produce SO_3 . The first three beds will be considered in series whereas the fourth bed is required to convert the SO_2 that is being recovered from IAT. Intermediate heat exchangers are present between the beds to maintain an optimum temperature for an efficient conversion of reactants to products. We will be dealing with all these reactor beds one by one. The chemical reaction-taking place on all four beds is as follows:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

Assumptions:

- It is assumed that only conversion of SO₂ is taking place in these reactor beds since all other gases available in the reactor are thermally stable in these operating conditions.
- Overall conversion on each bed is as follows:

 $1^{st} bed = 63\%$ $2^{nd} bed = 84\%$ $3^{rd} bed = 93\%$ $4^{th} bed = 99.7\%$ However, conversion on each bed except the first bed is different from the overall conversion and is calculated as follows:

For 2nd bed

Overall conversion = 0.84 Overall Moles of SO₂ entering the reactor = 45.06 Moles of SO₂ Entering 2^{nd} bed = 16.67 mol Moles of SO₂ Leaving = 45.06 - (45.06 x 0.84) = 7.22 mol Individual conversion on 2^{nd} bed = (16.67 - 7.22 / 16.67) x 100 = 56.7 %

For 3rd bed

Overall conversion = 0.93 Overall Moles of SO₂ entering the reactor = 45.06 Moles of SO₂ Entering 3^{rd} bed = 7.22 mol Moles of SO₂ Leaving = 45.06 - (45.06 x 0.93) = 3.16 mol Individual conversion on 3^{rd} bed = (7.22 - 3.16 / 7.22) x 100 = 56.3 %

For 4th bed

Overall conversion = 0.997Overall Moles of SO₂ entering the reactor = 45.06Moles of SO₂ Entering 4th bed = 3.16 mol Moles of SO₂ Leaving = $45.06 - (45.06 \times 0.997) = 0.14$ mol Individual conversion on 3rd bed = $(3.16 - 0.14 / 3.16) \times 100 = 95.5 \%$

We will now be looking at the material balance of each reactor bed one by one in the following tables:

3.2.4.1 Reactor bed 1

Air Inlet	Compo nent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	2728	97.4	0.74	0.78
	02	772.5	24.1	0.21	0.19
	CO ₂	176.0	4.00	0.05	0.03
Total		3676.5	125.6	1.00	1.00

Table 17-Air inlet flow sheet

Dried SO ₂ gas inlet	Comp onent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	7568	270.3	0.65	0.77
	CO ₂	489.9	11.1	0.04	0.03
	02	701.8	21.9	0.06	0.06
	SO ₂	2884	45.1	0.25	0.13
	H ₂ O	0.00	0.00	0.00	0.00
	H ₂ S	14.6	0.43	0.00	0.00
Total		11658.4	348.8	1.00	1.00

Table 19-SO₂/SO₃ gas Outlet flow sheet

Partially converted SO ₂ /SO ₃	Comp onen t	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Compositio n (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.8	0.67	0.80
	02	1020.5	31.9	0.07	0.07
	SO ₂	1067.1	16.7	0.07	0.04
	CO ₂	666.0	15.1	0.04	0.03

	SO ₃	2273.5	28.4	0.15	0.06
	H_2S	14.59	0.43	0.00	0.00
Total		15339	460.30	1.00	1.00

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this bed remained conserved.

In	Out	
15334.86	15338.68	

3.2.4.2 Reactor bed 2

SO ₂ /SO ₃ from 1st bed	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	10297	367.8	0.67	0.81
	02	1020.5	31.9	0.07	0.07
	SO ₂	1067.1	16.7	0.07	0.04
	CO ₂	665.9	15.1	0.04	0.03
	SO ₃	2273.5	23.2	0.15	0.05
	H ₂ S	14.6	0.43	0.00	0.00
Total		15339	455.1	1.00	1.00

Table 20-SO₂/SO₃ inlet flow sheet

SO ₂ /SO ₃ Outlet	Comp onent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.8	0.67	0.81
	02	869.4	27.2	0.06	0.06
	SO ₂	462.1	7.22	0.03	0.02
	CO ₂	666	15.14	0.04	0.03
	SO ₃	3029	37.87	0.20	0.08
	H ₂ S	14.6	0.43	0.00	0.00
Total		15339	455.6	1.00	1.00

Table 21-SO₂/SO₃ Outlet flow sheet

In	Out
15339	15339

3.2.4.3 Reactor bed 3

SO ₂ /SO ₃ from 2nd bed	Comp onent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.8	0.67	0.81
	02	869.4	27.2	0.06	0.06
	SO ₂	462.1	7.22	0.03	0.02
	CO ₂	665.9	15.1	0.04	0.03
	SO ₃	3029.6	37.9	0.20	0.08
	H ₂ S	14.6	0.43	0.00	0.00
Total		15339	455.6	1.00	1.00

Table 22-SO₂/SO₃ Outlet flow sheet

SO ₂ / SO ₃	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.7	0.67	0.81
	02	804.5	25.1	0.05	0.06
	SO ₂	201.9	3.16	0.01	0.01
	CO ₂	666	15.1	0.04	0.03
	SO ₃	3355	41.9	0.22	0.09
	H ₂ S	14.6	0.43	0.00	0.00
Total		15338	453.5	1.00	1.00

Table 23-SO₂/SO₃ Outlet flow sheet

In	Out
15338	15338

3.2.4.4 Reactor bed 4

From IAT	Compo nents	Mass flows (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	10297	367.8	0.84	0.88
	02	804.8	25.2	0.07	0.06
	SO ₂	201.9	3.15	0.02	0.01
	CO ₂	666.2	15.1	0.05	0.04
	SO ₃	315	3.94	0.03	0.01
	H ₂ S	14.6	0.43	0.00	0.00
Total		12299	415.6	1.00	1.00

Table 24-Unconverted SO₂/SO₃ Outlet flow sheet

То МАТ	Compo nents	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.8	0.84	0.89
	02	756.9	23.6	0.06	0.06
	SO ₂	8.68	0.14	0.00	0.00
	CO ₂	666.2	15.1	0.05	0.04
	SO ₃	556.7	6.96	0.05	0.02
	H ₂ S	14.6	0.43	0.00	0.00
Total		12300	414.1	1.00	1.00

Table 25-SO₂/SO₃ Outlet flow sheet

In	Out
12299	12300

3.2.5 Intermediate Absorption Tower (IAT)

The main purpose of IAT is the removal of SO_3 that is present in the stream coming from the first three reactor beds. The solvent used for this purpose is concentrated sulphuric acid that this being recycled. The chemical reaction taking place is as follows:

$$H_2SO_4(aq) + SO_3(g) \rightarrow H_2S_2O_7(aq)$$

Assumptions

- Considered ideal with 100 % efficiency
- No excess sulphuric acid provided

3rd bed outlet	Comp onent	Mass flows (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	10297	367.75	0.67	0.81
	02	804.5	25.14	0.05	0.06
	SO ₂	201.9	3.16	0.01	0.01
	CO ₂	666	15.1	0.04	0.03
	SO ₃	3355	41.9	0.22	0.09
	H ₂ S	14.6	0.43	0.00	0.00
Total		15338	453.5	1.00	1.00

Table 26-SO₂/SO₃ Inlet flow sheet

Table 27-H₂ SO₄ inlet flow sheet

H ₂ SO ₄ Inlet	Compo nents	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	3650	37.2	1.00	0.99
	H ₂ O	4.93	0.27	0.00	0.01
Total		3654.9	37.5	1.00	1.00

According to the balanced chemical equation shown above, the material balance on the outlet streams is as follows:

Table 28-SO₂/SO₃ Outlet flow sheet

To 4th bed	Compo nents	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N_2	10297	367.8	0.84	0.88
	02	804.8	25.2	0.07	0.06
	SO ₂	201.9	3.15	0.02	0.01
	CO ₂	666.2	15.1	0.05	0.04

	SO ₃	315	3.94	0.03	0.01
	H_2S	14.6	0.43	0.00	0.00
Total		12299	415.6	1.00	1.00

Table 29-Oleum Outlet flow sheet

Oleum	Compo nents	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	6756	37.9	1.00	1.00
Total		6756	37.9	1.00	1.00

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out	
18993.6	19055.5	

3.2.6 Main Absorption Tower (MAT)

MAT is needed to remove the remaining SO_3 that was not absorbed in IAT and additional SO_3 that was produced in the fourth bed of the reactor. It is also attached to a scrubber that is responsible for the prevention of oxides of sulphur into the

atmosphere. The solvent used for absorption is again concentrated Sulphuric Acid and the chemical reaction is as follows:

$$H_2SO_4(aq) + SO_3(g) \rightarrow H_2S_2O_7(aq)$$

Assumptions:

- Conversion efficiency is assumed to be 100%
- All the gases (inert and harmful) get removed in the MAT
- No excess Concentrated Sulphuric Acid is introduced

SO ₂ /SO ₃ from 4th bed	Compon ent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.8	0.84	0.89
	02	756.9	23.7	0.06	0.06
	SO ₂	8.68	0.14	0.00	0.00
	CO ₂	666.2	15.1	0.05	0.04
	SO ₃	556.7	6.96	0.05	0.02
	H ₂ S	14.6	0.43	0.00	0.00
Total		12300	414.1	1.00	1.00

Table 30-SO₂/SO₃ Inlet flow sheet

Table 31-H₂SO₄ Inlet flow sheet

H ₂ SO ₄ Inlet	Compo nents	Mass flows (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	894.7	9.13	1.00	0.99
	H ₂ O	1.21	0.07	0.00	0.01
Total		895.9	9.20	1.00	1.00

The material balance on the outlet streams is as follows:

To Scrubber	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	N ₂	10297	367.75	0.88	0.90
	02	756.7	23.65	0.06	0.06
	SO ₂	8.73	0.14	0.00	0.00
	CO ₂	666.1	15.14	0.06	0.04
	H ₂ O	11.9	0.67	0.00	0.00
	H ₂ S	14.6	0.43	0.00	0.00
Total		11755	407.8	1.00	1.00

Table 32-To Scrubber Outlet flow sheet

Table 33-Oleum Outlet flow sheet

Oleum	Compo nent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	1238.7	6.96	0.85	0.76
	H_2SO_4	212.6	2.17	0.15	0.24
Total		1451.3	9.13	1.00	1.00

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out
13196	13206.4

3.2.7 Oleum Header

Oleum Header is merely a distributor that distributes oleum to the necessary locations (Air dryer, SO₂ dryer, dilution tank) and receives oleum from different location, where it is being produced i.e. from IAT and MAT. There are no reactions taking place in the oleum header.

Oleum (IAT)	Comp onent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	6756	37.9	1.00	1.00
Total		6756	37.9	1.00	1.00

Table 34-Oleum from IAT Inlet flow sheet

Table 35-Oleum from MAT Inlet flow sheet

Oleum (MAT)	Comp onent	Mass flow(kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	1238.7	6.96	0.85	0.76
	H_2SO_4	212.6	2.17	0.15	0.24
Total		1451.3	9.13	1.00	1.00

Oleum (Air Drier)	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	0.00	0.00	0.00	0.00
	H_2SO_4	3843.5	39.2	1.00	1.00
Total		3843.5	39.2	1.00	1.00

Table 36-Oleum from Air Dryer Inlet flow sheet

Table 37-Oleum from SO₂ Dryer Inlet flow sheet

Oleum from SO ₂ Dryer	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	195.5	1.99	0.58	0.71
	$H_2S_2O_7$	144.3	0.81	0.42	0.29
Total		339.8	2.81	1.00	1.00

Table 38-Oleum to Air Dryer Outlet flow sheet

Oleum to Air Dryer	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	3282.9	18.4	0.93	0.89
	H_2SO_4	228.5	2.33	0.07	0.11
Total		3511.5	20.8	1.00	1.00

Oleum to SO ₂ Dryer	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	321.9	1.81	0.82	0.72
	H_2SO_4	69.1	0.71	0.18	0.28
Total		391.1	2.51	1.00	1.00

Table 39-Oleum to SO₂ Dryer Outlet flow sheet

Table 40-Oleum to Dilution Tank Outlet flow sheet

Oleum to dilution Tank	Compo nents	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	4534	25.5	0.53	0.38
	H_2SO_4	3953	40.3	0.46	0.60
	H ₂ O	20.6	1.14	0.00	0.02
Total		8508	66.95	1.00	1.00

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out
12390.5	12410.1

3.2.8 Dilution Tank

In the dilution tank, water is added to oleum to produce concentrated sulphuric acid. The chemical reaction for this equipment is as follows:

 $H_2O(l) + H_2S_2O_7(aq) \rightarrow 2H_2SO_4(aq)$

Assumption:

• Conversion is assumed 100%.

Oleum from Oleum Header	Compo nent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	$H_2S_2O_7$	4534	25.5	0.53	0.38
	H_2SO_4	3953	40.3	0.46	0.60
	H ₂ O	20.6	1.14	0.00	0.02
Total		8507.6	66.95	1.00	1.00

Table 41-Oleum from Oleum header Inlet flow sheet

Table 42-Water Inlet flow sheet

Water inlet	Compo nents	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H ₂ O	450	25.0	1.00	1.00
Total		450	25.0	1.00	1.00

According to the balanced chemical equation shown above, the material balance on the outlet streams is as follows:

H ₂ SO ₄ outlet	Comp onent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H ₂ SO ₄	8946	91.3	1.00	0.99
	H ₂ O	12.07	0.67	0.00	0.01
Total		8958	91.9	1.00	1.00

Table 43-H₂ SO₄ Outlet flow sheet

Adding both the inlet and outlet streams gives us the following result, proving that the materials in this equipment remained conserved.

In	Out
8957.6	8958.1

3.2.9 H₂SO₄ Storage Tank

 H_2SO_4 storage tank is only used to keep the sulphuric acid produced to be extracted as a final product or recycled to various locations in the plant where it is needed.

H ₂ SO ₄ Inlet	Compo nents	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	8946	91.3	1.00	0.99
	H ₂ O	12.1	0.67	0.00	0.01
Total		8958.07	91.96	1.00	1.00

Table 44-H₂SO₄ Inlet flow sheet

Table 45-H₂SO₄ Outlet flow sheet

H ₂ SO ₄ to IAT	Comp onent	Mass flow (kg/hr)	Molar flow (kgmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	3650	37.24	0.998	0.99
	H ₂ O	4.93	0.27	0.002	0.01
Total		3654.93	37.52	1.00	1.00

Table 46-H₂SO₄ to MAT Outlet flow sheet

H ₂ SO ₄ to MAT	Comp onent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H_2SO_4	894.7	9.13	0.998	0.99
	H ₂ O	1.21	0.07	0.002	0.01
Total		895.91	9.20	1.00	1.00

H ₂ SO ₄ extracted	Comp onent	Mass flow (kg/hr)	Molar flow (kmol/hr)	Composition (wt/wt %)	Composition (mol/mol %)
	H ₂ SO ₄	4401.8	44.9	0.998	0.99
	H ₂ O	5.95	0.33	0.002	0.01
Total		4407	45.3	1.00	1.00

Table 47-H₂SO₄ Extracted flow sheet

Adding both the inlet and outlet streams proves mass conservation.

In	Out
8958.1	8958.5

		Air dr	rer		Su	lfur Burne	~	Cat	alytic Reactor			IAT				MAT				bilution Ta	nk
ti i	Moist air	Oleum inlet	H ₅ SO ₆ outlet	Dried	Molten sulfur	Dried Air	လို ဆို	Dried Air	SO ₂ /SO ₅ from IAT	SO; SO; to MAT	SO ₂ /SO ₅ from 3rd bed	H _s SO ₄ inlet	Oleum	SO ₂ /SO; gas to 4th bed	SO ₂ /SO, from 4th bed	H ₂ SO ₆ inlet	Oleum	To scrubber	Oleum from Absorbers	Water	H,SO _t
	2915	0	0	2915	0	2142	700.1	772.5	804.8	756.9	804.5	0	•	804.8	756.9	•	•	756.7	0	•	•
	10297	•	0	10297	•	7568	7568	2728	10297	10297	10297	•	•	10297	10297	•	0	10297	0	•	0
	667	•	•	667		489	489	176	666.2	666.23	666			666.2	666.2	•	•	666.1	0	•	•
	376.6	•	•	•	0	0	17.66	0	•	0	0	0	•	0	0	1.21	0	11.98	20.6	450	12.07
	•	•	•	•	14.6	0	14.6	0	14.59	14.59	14.59	•		14.59	14.59	•	0	14.59	0	•	0
	•	•	•	•	1443	•	•	•	•	0	•	0	•	•	•	•	•	•	•	•	•
	•	•	•	•	0	0	2884	0	201.8	8.68	201.9	0		201.8	8.68	•	•	8.73	•	•	0
	•	•	•	•	0	0	0	0	315	556.7	3354.7	0	0	315	556.8	•	0	0	0	•	0
	•	228.5	3843.5	•	0	0	0	0	•	0	0	3650		0	0	894.7	212.6	0	3953	•	8946
	•	3282	•	•	•		•	•	0	•	0	4.93	6756	0	0	•	1238.7	•	4534	•	0
g/hr)	14255	3510	3843.5	13879	1457.6	10199	11673	3676.5	12299.39	12300.1	15338.69	3654.9	6756	12299.39	12300.17	895.91	1451.3	11755.1	8507.6	450	8958.07
	177	96	17722.5		11656	9	11673	2764	9.25	27638.79		18993.6	19055	39	13196	5.08	1320	6.4	895	9.1	8958.07

Table 48-Overall Material Balance

CHAPTER 4

Energy Balance

Basis = 1hr

Pressure = 101.3 kPa (unless changed)

The energies are calculated using the formula:

$$Q = mCp\Delta T$$

Where Q is the energy required in MJ,

m is the mass flow in kg,

Cp is specific heat capacity in kJ/kg.°C, and

 ΔT is temperature difference between the stream temperature and reference temperature (25°C) (Cengel, 2014)

4.1 Sulfur melter

The solid sulfur is sent to a melter to be converted into its molten form for safer and efficient conversion to SO_2 gas in sulfur burner.

Parameter	Solid sulfur	Molten sulfur
Pressure (kPa)	110	101.3
Temperature (⁰ C)	25	150
Cp (kJ/kg.ºC)	1.59	1.33
Mass (kg/hr)	1458	1458
Q (MJ)	0	242.5

Table 49-Energy calculation for sulfur melter

4.2 Pump (Sulfur)

The power-driven pump provides a head for the feed to flow. Isentropic compression increases the pressure of the incoming stream of sulfur from 101.3 kPa to 110 kPa. The efficiency of the pump is taken to be 75%.

4.2.1 Specifications and equations required for pump calculations

Volume expansivity β (°C ⁻¹) = $\Delta P (kPa) = 8.67$ 0.00075Isentropic Work (Ws) = $V * \Delta P (1 - \beta T)$ $Power(P) = \frac{Wa}{t}$ Actual Work (Wa) = $m * (\frac{Ws}{\eta})$

Table 50-Energy calculation for pump

Parameter	Value
Feed mass flow rate (kg/hr)	1457.6
Feed volume flow rate (m ³ /hr)	0.693
Specific Volume (m ³ /kg)	0.000475
Isentropic Work/Ws (kJ/kg)	0.0037
Actual Work/Wa (kJ)	0.0020
Power (kW)	0.002

4.3 Air Dryer

The air dryer is used to remove moisture content from the air using dehydrating agent oleum. Since it is an exothermic process, the dried air is at a higher temperature than inlet air.

Reaction:

$$H_2O + H_2S_2O_7 \rightarrow 2H_2SO_4$$

Parameter	Air	Oleum from Oleum Header	Dried Air	H ₂ SO ₄ to Oleum Header
Temperature (⁰ C)	30	172.7	45	45
Mass flow rate (kg/hr)	14256	3511.5	13880	3843.5

Cp (kJ/kg.ºC)	1.05	0.73	1.01	1.44
dH (MJ)	74.9	378.5	280.3	110.8
Total (MJ)	453.4		391.1	
Energy released (MJ)	62.3			

4.4 Sulfur Burner

The dried air and molten sulfur react in the sulfur burner to produce SO_2 . Since the reaction is highly exothermic, the product is at a very high temperature. The energy difference between the inlet and outlet is the energy provided by the fuel to carry out the reaction.

Reaction:

$$S + O_2 \rightarrow SO_2$$

Parameter	Air	Molten Sulfur	SO ₂ gas
Temperature (⁰ C)	45	150	2014
Mass Flow rates (kg/hr)	10199	1458	11673
Cp (kJ/kg.ºC)	1.01	1.33	1.2
dH (MJ)	206	242.4	27861
Total	448.4 27861		
Energy required (MJ)	27412		

Table 52-Energy calculation for sulfur burner

4.5 SO₂ Dryer

The SO_2 product gas from sulfur burner is sent to the SO_2 dryer so that water content is completely removed from the stream before it enters the reactor. Due to the exothermic reaction, products are at a higher temperature.

Parameter	SO ₂ from furnace	Oleum from Oleum Header	Dried SO ₂ to Reactor	H ₂ SO ₄ to Oleum Header
Temperature (°C)	70	143	184.6	184.6
Mass flow rate (kg/hr)	11663	391.1	11658.4	339.8
Cp (kJ/kg.ºC)	0.934	0.712	0.959	1.29
dH (MJ)	990	532.9	1483	69.9
Total (MJ)		1522.9	15	552.8
Energy released (MJ)			0.1	

Table 53-Energy calculation for SO₂ dryer

4.6 Reactor Bed 1

The dried SO_2 gas enters the packed bed catalytic reactor at Bed 1. V_2O_5 catalyst increases the rate of reaction between SO_2 and dried air and the optimum temperature of 450°C allows for efficient conversion of SO_2 to SO_3 . 63% conversion of SO_2 to SO_3 is achieved.

Reaction:

\

$$2SO_2+O_2 \rightarrow 2SO_3$$

Parameter	Dried Air	SO ₂ from SO ₂ Dryer	SO ₂ /SO ₃ gas
Temperature (^o C)	45	450	525.8
Mass flow rates (kg/hr)	3677	11658	15338
Cp (kJ/kg.ºC)	1.01	1.03	1.07
dH (MJ)	74.2	7188.6	7253.9
Total (MJ)	7262.8 7253.9		
Energy released (MJ)	8.90		

Table 54-Energy calculation for Reactor Bed 1

4.7 Reactor Bed 2

The same reaction occurs here as Bed 2. Since the temperature of the product increases to 525°C, it is cooled back to the optimum temperature for reaction in Bed 2. 84% conversion is achieved here.

Table 55-Energy calculation for Reactor Bed 2

Parameter	SO ₃ from 1 st bed	SO ₃ from 2 nd bed	
Temperature (⁰ C)	450	507.1	
Mass flow rates (kg/hr)	15338.68	15338.7	
Cp (KJ/kg.ºC)	1.05	1.07	
dH (MJ)	6838.4	6835	
Total (MJ)	6838.4	6835	
Energy released (MJ)	3.7		

4.8 Heat Exchanger 2

The Bed 2 outlet is cooled in Heat Exchanger 2 to further convert in Bed 3.

Parameter	Tube Side In (SO ₂ /SO ₃ from Bed 2)	Shell Side In (From IAT)	Tube Side Out (SO ₂ /SO ₃ to Bed 3)	Shell Side Out (SO ₂ /SO ₃ to Bed 4)
Temperature (^o C)	507.1	444.5	460	501.4
Mass flow rate (kg/hr)	15338	12299	15338	12299
Cp (kJ/kg.ºC)	1.065	1.09	1.053	1.104
dH (MJ)	7875	5624	7026	6469
Total (MJ)	1349	9.45	134	94.9
Energy required (MJ)			4.55	

Table 56-Energy calculation for Heat Exchanger 2

4.9 Reactor Bed 3

The cooled stream from Heat Exchanger 2 reacts with air and achieves a conversion of 93%. The temperature rise is less compared to the first two beds because of decreasing SO_2 concentration in each bed.

Parameter	Reactant (From IAT)	Product (To IAT)	
Temperature (⁰ C)	460	490	
Mass flow rates (kg/hr)	15338	15338	
Cp (KJ/kg.ºC)	1.053	1.062	
dH (MJ)	7526	7524.7	
Total (MJ)	7526	7524.7	
Energy released (MJ)	1.30		

Table 57-Energy calculation for Reactor Bed 3
4.10 IAT (Intermediate Absorption Tower)

The SO_2/SO_3 product stream from Bed 3 is sent to IAT where it reacts with concentrated sulphuric acid to form oleum. Most of the SO_3 is utilized in this absorber. The unconverted gases are sent to Bed 4 to achieve further conversion.

Parameter	SO ₃ from 3 rd bed)	H ₂ SO ₄ from Storage Tank	Unconverted SO ₂ to bed 4	Oleum to Oleum Header		
Temperature (⁰ C)	290	45	200	200		
Mass flow rates (kg/hr)	15338	3655	12299	6756		
Cp (KJ/kg.ºC)	1.006	1.006 1.43		1.43 1.032		0.968
dH (MJ)	4089	105	2221	1145		
Total (MJ)	4194 3366		6			
Energy released (MJ)	828					

Table 58-Energy calculation for IAT

4.11 Reactor Bed 4

The unconverted SO₂ from IAT achieves a maximum conversion of (99.7%).

Table 59-Energy calculd	ation for Reactor Bed 4
-------------------------	-------------------------

Parameter	SO ₂ /SO ₃ From IAT	SO ₂ /SO ₃ To MAT
Temperature (⁰ C)	501.4	523.2
Mass flow rates (kg/hr)	12299	12299
Cp (KJ/kg.ºC)	1.104	1.11
dH (MJ)	6469	6469
Total (MJ)	6468.8	6469
Energy released (MJ)	0.2	

4.12 MAT (Main Absorption Tower)

The remaining SO_3 from IAT is consumed here so that minimum amount of contaminants enters the scrubber.

Parameter	SO ₂ /SO ₃ from 4 th bed	H ₂ SO ₄ from To Storage Tank Scrubber		Oleum to Oleum Header
Temperature (^o C)	200	45	87	87
Mass flow rate (kg/hr)	12299	896	11755	1451
Cp (KJ/kg.ºC)	1.032	1.43	1.03	0.543
dH (MJ)	1821	821 25.6 949.9		649
Total (MJ)	1847 1599			1599
Energy released (MJ)	248			

Table 60-Energy calculation for MAT

4.13 Dilution Tank

A major fraction of oleum from IAT and MAT reacts with water to form concentrated sulphuric acid.

Parameter	Oleum from Oleum Header	Process Water	H ₂ SO ₄ to Storage Tank
Temperature (⁰ C)	92.4	70	45
Mass flow rate (kg/hr)	8508	450	8958
Cp (KJ/kg.ºC)	0.920	4.18	1.43
dH (MJ)	528	84.7	256
Total (MJ)	612 256		256
Energy released (MJ)	356		

Table 61-Energy calculation for Dilution Tank

CHAPTER 5

Equipment Design

The equipment design for all our components in the process flow diagram is described in detail below. (Coulson, 2005)

5.1 Air Dryer

_

In the air dryer, the water content in the incoming air is removed via an absorption reaction with the dehydrating agent, oleum. For this reason, the design of the air dryer is similar to that of an absorption column.

For our case, the calculations for chemical absorption have been carried out. Onda's method is used to calculate the gas and liquid film mass-transfer coefficients which are subsequently used in combination with reaction kinetics to determine the vessel height. (Zein, 2014)

The first step of the design is to determine the specifications of the column.

5.1.1 Calculation of Cross-sectional Area of Column

The physical property data required for the calculation of area are given below.

	-	-
Flow rate of gas inlet / G (kg/sec)	3.96	

Table 5.1 Physical property data for calculating cross sectional area of column

Flow rate of gas inlet / G (kg/sec)	3.96
Flow rate of solvent inlet /L (kg/sec)	0.975
Temperature of gas inlet (°C)	30
Temperature of solvent inlet (°C)	173.3
Pressure (bar)	1.013
Average Molecular Weight of gases	28.8
Density of gas mixture (kg/m3)	1.62
Density of solvent at 45°C (kg/m3)	1042
Viscosity of solvent (Cp)	0.0279

Viscosity of solvent (kg/m.sec)	0.0000279
Viscosity of gaseous mixture (Cp)	0.0183
Viscosity of gaseous mixture (kg/m.sec)	0.0000183

Using Figure 11.44 from Coulson Richardson Volume 6, we calculate the value of K₄ which is the gas mass flow rate per unit cross sectional area. The figure used generalized pressure drop correlation for calculation of area and diameter.

Figure 6-Generalized pressure drop correlation for calculation of area

We have assumed the pressure drop to be 21 mm of water/meter of packed height as per the recommended design values for absorbers and strippers (15 to 50 mm of water/meter of packed height).

$$F_{LV} = \frac{L_w^*}{V_w^*} \sqrt{\frac{\rho_v}{\rho_l}}$$

K4=1.98

5.1.1.1 Calculation of mass flow rate per unit area (G*).

The packing material chosen for air dryer is Intalox Saddle Ceramic. Due to presence of corrosive materials like oleum, ceramic is the most suitable choice. Most of the moisture from the air is removed in the air dryer. An efficient liquid distribution is required for maximum removal of moisture. Hence the most effective packing that can be used is Intalox Saddles.

Using Table 22.1 from the book Unit Operations of Chemical Engineering, we calculate the packing factor F_{P} . (McCabe, 1993)

				_		Pa fac	cking tors‡
Туре	Material	Nominal size, in.	Bulk density,† lb/ft ³	Total area,† ft²/ft³	Porosity, E	F _p	f _p
Raschig rings	Ceramic	12	55	112	0.64	580	1.52§
		1	42	58	0.74	155	1.36§
		1 ¹ / ₂	43	37	0.73	95	1.0
		2	41	28	0.74	65	0.92§
Pall rings	Metal	1	30	63	0.94	56	1.54
		15	24	39	0.95	40	1.36
		2	22	31	0.96	27	1.09
	Plastic	1	5.5	63	0.90	55	1.36
		11/2	4.8	39	0.91	40	1.18
Berl saddles	Ceramic	1/2	54	142	0.62	240	1.58§
		ĩ	45	76	0.68	110	1.36§
		13	40	46	0.71	65	1.07§
Intalox saddles	Ceramic	Į.	46	190	0.71	200	2.27
		1 [°]	42	78	0.73	92	1.54
		14	39	59	0.76	52	1.18
		2	38	36	0.76	40	1.0
		3	36	28	0.79	22	0.64
Super Intalox	Ceramic	L	_	_	_	60	1.54
saddles		2				30	1.0
IMTP^H	Metal	1	-		0.97	41	1.74
		14			0.98	24	1.37
		2			0.98	18	1.19
Hy-Pak	Metal	1	19	54	0.96	45	1.54
-		11			_	29	1.36
		2	14	29	0.97	26	1.09

We assumed the nominal size for the packing to be 1.5 in.

Figure 7-Characteristics of tower packing

The packing factor F_P corresponding to our chosen packing specifications is 52.

$$G^* = \sqrt{\frac{K_4 * \rho_v * (\rho_l - \rho_v)}{13.1 * F_P * (\frac{\mu_L}{\rho_L})^{0.1}}}$$
$$G^* = \sqrt{\frac{1.98 * 1.62 * (1042 - 1.62)}{13.1 * 52 * (\frac{0.00002794}{1024})^{0.1}}}$$

$$G^*\left(\frac{\mathrm{kg}}{\mathrm{m2}}.\,\mathrm{sec}\right) = 5.29$$

The formula used for calculation of area is

$$Area(m^2) = \frac{G}{G^*}$$

Area = 0.748 m^2

5.1.2 Calculation of diameter of column

The formula used to calculate the diameter of the column is

Diameter of the column (m) =
$$\sqrt{\frac{4 * Area}{3.142}}$$

Diameter = 0.976 m

5.1.3 Calculation of wetted area of packing (a_w)

The data required for the calculation of a_w is given below.

Table 5.2 Physical property data for calculation of wetted area of packing

L _w * (kg/m ² .sec)	1.30
a (ft²/ft³)	59
a (m²/m³)	193.6
Critical surface tension- σ_c (N/m)	0.061
Liquid surface tension- σ_l (N/m)	0.00876
Viscosity of solvent (kg/m.sec)	0.00002794
Density of solvent (kg/m ³)	1042

$$a_{w} = 1 - exp\left(-1.45 * \left(\frac{\sigma_{c}}{\sigma_{l}}\right)^{0.75} * \left(\frac{L_{w}^{*}}{a * \mu_{l}}\right)^{0.1} * \left(\frac{L_{w}^{2} * a}{\rho_{l}^{2} * g}\right)^{-0.05} * \left(\frac{L_{w}^{2}}{\rho_{l} * \sigma_{l} * a}\right)^{0.2}\right)$$

 σ_c is taken from Coulson Richardson Volume 6.

Material	σ_c mN/m	
Ceramic	61	
Metal (steel)	75	
Plastic (polyethylene)	33	
Carbon	56	

Figure 8-Critical surface tension data for different packing material

 σ_l , density of solvent and viscosity of solvent are taken from our HYSYS model. Effective interfacial area for mass transfer (a) is taken from Table 22.1 of Unit Operations of Chemical Engineering.

$$a_w = 1 - exp\left(-1.45 * \left(\frac{0.061}{0.00876}\right)^{0.75} * \left(\frac{1.3}{193.6 * 0.00002794}\right)^{0.1} \\ * \left(\frac{1.3^2 * 193.6}{1042^2 * 9.81}\right)^{-0.05} * \left(\frac{1.3^2}{1042 * 0.00876 * 193.6}\right)^{0.2}\right)$$

 $a_w(m^2/m^3) = 191.4$

5.1.4 Calculation of liquid film mass transfer coefficient $K_{L} \label{eq:kl}$

The data required for the calculation of K_L is given below.

$\rho_l (\text{kg/m}^3)$	1042
μ_l (kg/m.sec)	0.0000279
Lw* (kg/m ² .sec)	1.30
aw (m²/m³)	191.4
Diffusivity/ DL	0.00000109
Packing size /d _p (m)	0.075
a (m²/m³)	193.6

Table 5.3 Physica	property data j	for calculation of	$f K_L$
-------------------	-----------------	--------------------	---------

The packing size is taken from the recommended size ranges corresponding to the diameter of the column in Coulson Richardson Volume 6.

Figure 9-Recommended packing size for a particular range of diameter

The value of D_L is taken from literature. The formula to calculate K_L is:

$$K_{L} = 0.0051 * \left(\frac{L_{W}^{*}}{a_{W} * \mu_{l}}\right)^{\frac{2}{3}} * \left(\frac{\mu_{l}}{\rho_{l} * D_{L}}\right)^{\frac{-1}{2}} * \left(a * d_{p}\right)^{0.4} * \left(\frac{\mu_{l} * g}{\rho_{l}}\right)^{\frac{1}{3}}$$
$$K_{L}\left(\frac{m}{s}\right) = 0.0051 * \left(\frac{1.30}{191.44 * 0.0000279}\right)^{\frac{2}{3}} * \left(\frac{0.0000279}{1042 * 0.000000109}\right)^{\frac{-1}{2}}$$
$$* (193.58 * 0.075)^{0.4} * \left(\frac{0.0000279 * 9.81}{1042}\right)^{\frac{1}{3}}$$

 $K_L = 0.0079 \text{ m/s}$

5.1.5 Calculation of gas film mass transfer coefficient $K_{\rm g}$

The physical property data needed for its calculation is given below.

R (J/mol.K)	0.0802
Temperature of gas inlet (⁰ C)	30
a (m²/m³)	193.6
Diffusivity of gas (m ² /sec)	0.0000012
K ₅	5.23
V _w (kg/m ² .sec)	5.29
Viscosity of gas (kg/m.sec)	0.000018
Density of gas (kg/m³)	1.62
d _p	0.075

Table 5.4 Physical	property data	for calculation	of Ka

 K_5 is a constant that has a value of 5.23 for packing sizes above 15mm as per the standard range given in Coulson Richardson Volume 6.

The physical properties of the gas are taken from our HYSYS model.

Diffusivity of gas is taken from literature.

The formula used to calculate $K_{\rm g}$ is

$$K_{g} = \left(\frac{a * D_{g}}{R * T_{g}}\right) * K_{5} * \left(\frac{V_{w}^{*}}{a * \mu_{g}}\right)^{0.7} * \left(\frac{\mu_{g}}{\rho_{g} * D_{g}}\right)^{\frac{1}{3}} * \left(a * d_{p}\right)^{-2}$$

$$K_{g} = \left(\frac{193.58 * 0.00000012}{0.0802 * 30}\right) * 5.23 * \left(\frac{5.29}{193.58 * 0.000018}\right)^{0.7}$$

$$* \left(\frac{0.000018}{1.62 * 0.00000012}\right)^{\frac{1}{3}} * (193.58 * 0.075)^{-2}$$

$$K_{g} = 0.00018 \left(\frac{kmol}{m2} \cdot sec \cdot bar\right)$$

5.1.6 Calculation of Rate of Reaction

The data required for the calculation of reaction rate is given below.

Molar flow rate of oleum (kgmol/hr)	20.8	Molar flow rate of air (kgmol/hr)	494
Vol. flow rate of oleum (m³/hr)	1042	Vol. flow rate of air (m³/hr)	8803
C _{ao} (mol/m ³)	19.9	C _{bo} (mol/m ³)	56.2
K _L (m/s)	0.0079	K _g (kmol/m².sec.bar)	0.00018
$D_L(m^2/s)$	0.000000109	D _g (m ² /s)	0.00000012

Table 5.5 Physical property data for calculation of rate of reaction

 $P_a = P * mol. frac. of water in gas$

P=100000 atm

 $P_a = 4220$

The formula used to calculate the rate of reaction is

$$-r_a'' = K_g * P_a$$

 $-r_a'' = 0.0075 \frac{mol}{s.m^2}$

To decide the regime where the reaction will take, the value of $K_L C_{\rm b}$ is calculated.

 $K_L C_b = 0.443$

Since $K_L C_b$ is greater than $K_g P_a$, an instantaneous reaction occurs in the first regime.

Figure 10-Concentration profile by two film theory

5.1.7 Calculation of height of column

The data required for the calculation is given below.

G' (molar flow of inert)/kgmol/hr	115
L' (molar flow of inert in liquid)/kgmol/hr	2332
Mol. Frac. of water in gas inlet	0.0422
Mol. Frac. of water in gas outlet	0.0028
Cross sectional area (m ²)	0.748
a (m²/m³)	193.6
1/-r _a "	132.5

Height of packing =
$$\left(\frac{G'}{a * a_c}\right) * (x_{g1} - x_{g2}) * \frac{1}{-r_a''}$$

Height of packing =
$$\left(\frac{115}{193.58 * 0.748}\right) * (0.0422 - 0.0028) * 132.49$$

Height of packing = 4.14 m

25% provision is given for the spaces above and below the packed region of the column. Hence the total height of the column is:

Height of column = Height of packing + 0.25 * Height of packing

Height of column = 5.18 m

5.1.8 Calculation of Volume of Packing

$$Volume = \frac{\pi * d^2 * h}{4}$$

D = 0.976m

H = 4.14m

Volume = 3.1 m^3

Air Dryer Specification Sheet		
Cross-sectional area of column (m ²)	0.748	
Diameter of column (m)	0.976	
$a_w (m^2/m^3)$	191.4	
D _P (m)	0.075	
Pressure Drop (mm of H_2O/m of packed height)	21	
K _L (m/s)	0.0079	
K _g (kmol/m ² .sec.bar)	0.00018	
-ra" (mol/m².sec)	0.0075	
Height of packing (m)	4.14	
Height of column (m)	5.18	
Volume of packing (m ³)	3.1	

5.2 SO₂ Dryer

SO ₂ Dryer Specification Sheet		
Cross-sectional area of column (m ²)	0.898	
Diameter of column (m)	1.07	
$a_w (m^2/m^3)$	73.6	
Packing material	Raschig Rings	
Pressure Drop (mm of H_2O/m of packed height)	42	
$K_L(m/s)$	0.000959	
K _g (kmol/m ² .sec.bar)	0.000319	
-ra" (mol/m².sec)	0.000904	
Height of packing (m)	3.13	
Height of column (m)	3.91	
Volume of packing (m ³)	2.81	

Table 63-Specification Summary of SO₂ Dryer

5.3 Intermediate Absorption Tower (IAT)

Maximum absorption of SO_3 takes place in this absorption tower via chemical reaction with sulphuric acid. Hence the dimensions of this column are significantly larger than MAT for complete absorption. (Henley, 2005)

IAT Specification Sheet		
Cross-sectional area of column (m ²)	1.09	
Diameter of column (m)	1.18	
$a_w (m^2/m^3)$	43.0	
Packing Material	2 in. Intalox Saddle Ceramic	

Table 64-Specification Summary of Intermediate Absorption Tower (IAT)

Pressure Drop (mm of H ₂ O/m of packed height)	42
$K_L(m/s)$	0.0025
K _g (kmol/m².sec.bar)	0.000138
-ra" (mol/m ² .sec)	0.0129
Height of packing (m)	6.27
Height of column (m)	7.84
Volume of packing (m ³)	6.84

5.4 Main Absorption Tower (MAT)

In this column, the remaining SO_3 is absorbed in sulphuric acid to form oleum. The main purpose of this absorption tower is to reduce the amount of toxic gases in the flue gases before they are discharged into the atmosphere.

MAT Specification Sheet		
Cross-sectional area of column (m ²)	0.54	
Diameter of column (m)	0.84	
$a_w (m^2/m^3)$	40.23	
$D_P(m)$	0.025	
Packing material	1.5 in. Berl Saddle Ceramic	
Pressure Drop (mm of H_2O/m of packed height)	42	
$K_L(m/s)$	0.000369	
K _g (kmol/m².sec.bar)	0.00000317	
-r _a " (mol/m ² .sec)	0.00539	
Height of packing (m)	4.25	
Height of column (m)	5.31	

Table 65-Specification Summary of Main Absorption Tower (MAT)

Volume of packing (m ³)	2.33
-------------------------------------	------

5.5 Heat Exchanger - 2

For the design of this heat exchanger that is being used to cool the stream coming out of the second bed of the reactor, we will be starting the calculation with some basic assumptions in order to have a basis for our elaborate design process. The assumptions taken are based on actual data that we have been able to obtain with the help of both our material and energy balance as well as from literature. The type of Heat exchanger being chosen is depending on heat transfer and temperature difference that needs to be attained for our operation and process. (Perry, 2007)

Heat exchanger type: Shell and tube heat exchanger

Tube bundle and shell arrangement pattern: Pull through floating head type Tube side inlet stream is basically a gas mixture that is coming from the reactor at a relatively high temperature and needs to be cooled down in order to reach the optimum temperature required in the reactor. This will be done with the help of two heat exchangers; this one is thus the first of those two heat exchangers. The reason why this gas mixture is being sent through the tubes is to prevent heat loss to the environment. The second reason being the concern for the pressure drop - streams are to be chosen as such, that the mass velocities result in a value for a lower and acceptable pressure drop on both, the shell and the tube side.

The cold gas mixture coming from the absorber through the second heat exchanger is entering the Shell side. Again, the reason for sending the cold fluid through the shell side is firstly because there are greater chances of heat loss in the shell side and secondly because we had to ensure that the pressure loss stays at a minimum.

Design Parameters

- 1. The value of UA achieved in our heat exchanger should be greater than or equal to the value of UA required.
- 2. The pressure-drop in both, the shell and tube side, should not exceed 10 psi.

5.5.1 Tube side data

Subject stream: Gas mixture from reactor (SO₂/SO₃)

Inlet temperature (t ₁) / °C	507.10
Outlet temperature (t ₂) / °C	460.00
Mass flow rate (kg/hr)	15338.70
Mass flow rate (kg/s)	4.26

Table 5.10 Physical property data for Tube Side

5.5.2 Shell side data

Subject stream: Gas mixture from Absorber (SO₂/SO₃)

Table 5.11 Physical property data for Shell Side

Inlet temperature (T ₁) / °C	444.5
Outlet temperature (T ₂) / °C	501.4
Mass flow rate (kg/hr)	12299
Mass flow rate (kg/s)	3.42

5.5.3 LMTD

Following the basic LMTD formula,

$$LMTD = \frac{\Delta t_1 - \Delta t_2}{\ln(\Delta t_1/\Delta t_2)}$$

To be able to calculate the final value of LMTD, it is first necessary to find the terminal differences between the temperatures

Cold terminal difference (Δt_1) = $t_2 - T_1$ = 460 – 444.5 = 15.5 °C Hot terminal difference (Δt_2) = t_1 - T_2 = 507.1 – 501.4 = 5.7 °C And hence,

$$LMTD = \frac{15.5 - 5.7}{\ln(15.5/_{5.7})} = 9.80 \,^{\circ}C$$

5.5.4 Corrected LMTD

Now, if we talk about the LMTD correction factor (F_T), this factor is used to bring into account the actual or true temperature difference. This is basically needed because a heat exchanger is never completely counter current or cocurrent. Sometimes, it is a combination of both. And now we introduce the LMTD correction factor to account for the true temperature difference. This is done because the heat exchanger is not truly and solely either counter-current or co-current. It is a combination of both. The correction factor (F_T) depends on the geometry of the heat exchanger as well as the temperature of the inlets and outlets. Hence, we find the factors R & S, which will help define the correction factor (F_T) and the true LMTD.

$$R = \frac{T_1 - T_2}{t_2 - t_1} \qquad S = \frac{t_2 - t_1}{T_1 - t_1}$$
$$R = \frac{15 - 53.2}{65 - 78} = 1.21 \qquad S = \frac{460 - 507.1}{444.5 - 507.1} = 0.23$$

Using these values of R & S, we find the value of the $F_{\rm T}$ from the graph correlation

Table 66-Temperature Correction Factor: One Shell Pass; Two Or More Even Tube

Using the values of R & S, we will be finding out a value for the correction factor, which will eventually help in finding the true value of the mean temperature difference.

$$F_T = 0.98$$

 $\Delta T_m = F_T \times LMTD = 0.98 \times 9.80 = 9.60 \,^{\circ}\text{C}$

5.5.5 Required UA

The value for the duty of the heat exchanger was already calculated and quoted in the energy balance chapter, and it was as follows.

Table 5.12 Data for UA calculation

Duty (Q) / (kJ / hr)	787543
$\Delta T_m / °C$	9.60

And now, using the equation for basic heat transfer, we will be finding out the UA required in order for to design the heat exchanger.

$$Q = UA\Delta T_m$$

$$UA = \frac{Q}{T} = \frac{787543.8}{9.6} = 22786.8 = 2.3 \times 10^4 \ W/_{\circ C}$$

This is the value of the required UA, one of our design parameters is attaining a value of UA that is greater than or equal to this specific value.

5.5.6 Tube Dimensions

Assumptions:

Number of tube passes (N)	2
Length of tube / m	6
Outer Diameter (OD) / m	0.032
BWG	10

Table 5.13 Specification Sheet for Heat Exchanger Tubes

Using this data as our basis, we perform further calculations in order to find out the other specifications. For the tube ID and the flow area the following data table is referred to:

Tube Wall OD BWG Thickness (inch) (inch)	Wall	Wall ID Flow nickness, (inch) per (inch) (in	Flow area	Flow area Surface p		Weight	
	(inch)		(inch ²)	Outside	Inside	lb steel	
1	8	0.165	0.670	0.355	N	0.1754	1.61
	9	0.148	0.704	0.389		0.1843	1.47
	10	0.134	0.732	0.421		0.1916	1.36
	11	0.120	0.760	0.455		0.1990	1.23
	12	0.109	0.782	0.479		0.2048	1.14
	13	0.095	0.810	0.515	0.2618	0.2121	1.00
	14	0.083	0.834	0.546		0.2183	0.890
	15	0.072	0.856	0.576		0.2241	0.781
	16	0.065	0.870	0.594		0.2277	0.710
	17	0.058	0.884	0.613		0.2314	0.639
	18	0.049	0,902	0.639		0.2361	0.545
1.25	8	0.165	0,920	0.665		0.2409	2.09
	9	0.148	0.954	0.714		0.2495	1.91
	10	0.134	0.982	0.757		0.2572	1.75
	11	0.120	1.01	0.800		0.2644	1.58
	12	0.109	1.03	0.836		0.2701	1.45
	13	0.095	1.06	0.884	0.3271	0.2775	1.28
	14	0.083	1.08	0.923		0.2839	1.13
	15	0.072	1.11	0.960		0.2896	0.991
	16	0.065	1.12	0.985		0.2932	0.900
	17	0.058	1.13	1.01		0.2969	0.805
	18	0.049	1.15	1.04		0.3015	0.688

Figure 11-Heat Exchanger Tube Data

From this table the following data is found using the outer diameter and BWG assumed in the table above:

Table 5.14 Data from the Standard Ranges for Tube Specifications

Internal diameter (ID) / m	0.025
Flow area per tube / m ²	0.000488

For the number of tubes, we have to initially assume a value for U (the overall heat transfer coefficient), which can be found out from literature. The range of U found from literature allowed a range from $30 - 120 \text{ W/m}^{2\circ}\text{C}$ when dealing with gases on both inlet and outlet streams. Hence, with the help of hit and trial, we were able to assume a value, which was most suitable for our design.

Table 5.15 Estimated Ranges for Value of Overall Heat Transfer Coefficient U

Allowable range of U (W/m ² °C)	30 - 120
Assumed value of U (W/m ² °C)	110

Using the value of UA as 22,786 as mentioned above, the required area is calculated as follows:

$$A = \frac{UA}{U} = \frac{22786}{110} = 207.15 \ m^2$$

For the tube dimensions mentioned above, the area is calculated using the following formula:

Area per tube =
$$\pi DL$$
 = $\pi \times 0.032 \times 6 = 0.599 m^2$

The number of tubes required for this particular area would then be,

Number of tubes =
$$\frac{Total \ area \ required}{Area \ of \ one \ tube} = \frac{207.15}{0.599} = 346.10 \approx 347 \ tubes$$

The pitch chosen for this type of heat exchanger is triangular because of the higher rates of heat transfer provided by a triangular pitch along with the ease with which it can be cleaned. The tube pitch would be in accordance with the KERN method would be,

$$p_t = 1.25d_o = 1.25 \times 0.032 = 0.0397 m$$

In addition, the tube clearance would then be calculated using the following formula,

Clearance =
$$p_t - d_o = 0.0397 - 0.032 = 0.0079 m$$

The tube dimensions so far are summarized in the table below.

Tube Specification Summary			
Specification Title	Specification Value		
Number of passes (N _p)	2		
Tube length (L)	6 m		
Outer Diameter (d _o)	0.032 m		
Inner Diameter (d _i)	0.025 m		
BWG	10		
Number of tubes (N _t)	347		
Flow area per tube	0.000488 m^2		
Surface area per tube	0.599 m ²		
Tube pitch (p _t)	Triangular & 0.0397 m		
Tube clearance	0.0079 m		

Table 5.16 Tube Specification Summary (Heat Exchanger)

5.5.7 Shell Dimensions

The following assumptions have been made for the calculation of shell dimensions:

Table 5.17 Shell Specifications

Number of shell passes	1
Baffle cut percentage (%)	25

In order to calculate the shell inside diameter (D_i) , there are some parameters that need to be calculated namely the shell clearance and the bundle diameter.

For the bundle diameter (D_b) the following table is used to obtain the data required:

No. passes	1	2	4	6	8
K_1 n_1	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365 2.675
Square pitch, p	$t = 1.25d_o$				
No. passes	1	2	4	6	8
K_1 n_1	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643

Figure 12-Bundle Diameter Data

By looking at the table and the assumptions taken above i.e. triangular pitch and 2 tube passes, the values derived from the above figure are 0.249 for K and 2.207 for N. Using these values the bundle diameter (D_b) is found out using the following formula:

$$D_b = d_o \left(\frac{N_t}{K_I}\right)^{1/n_1} = 0.032 \times \left(\frac{269}{0.249}\right)^{1/2.207} = 0.843 m$$

For the shell bundle clearance, we refer to the following graph.

Figure 13-Shell Bundle Clearance

As mentioned at the start of our design, the arrangement used was pull through floating head, which when used along with the bundle diameter, gives the value for the clearance from the graph as follow

Now, the shell inside diameter will be calculated using the following formula and values calculated above:

 $D_s = shell bundle clearance + bundle diameter = 0.095 + 0.843 = 0.938 m$

For the baffle spacing, by rule

$$\left(\frac{1}{5}\right)D_s < Baffle spacing(L_s) < D_s$$

So, we chose an intermediate baffle spacing factor i.e. 0.5.

Baffle spacing, $L_s = 0.92 \times D_s = 0.92 \times 0.938 = 0.863 m$

And then,

Number of baffles =
$$\frac{L}{L_s} - 1 = \frac{6}{0.863} - 1 = 6$$

A summary of the shell specifications has been mentioned in the table below:

Shell Specification Summary			
Specification Title	Specification Value		
Number of passes	1		
Bundle diameter (D _b)	0.843 m		
Shell bundle clearance	0.095 m		
Shell inside diameter (D _s)	0.938 m		
Baffle spacing (L _s)	0.863 m		
Number of baffles	6		
Baffle Cut	25 % cut baffles		

Table 5.18 Shell Specification Summary (Heat Exchanger 2)

5.5.8 Tube Side Coefficients

The stream flowing through the tube side is a mixture of gases, and the calculation being done is based on the physical properties of this particular gas mixture at an average value of temperature between the inlets and outlets. The tube wall temperature variation is taken to be negligible in this case as neither the temperature difference is high enough and nor the viscosity plays that important a role.

For the mean temperature,

Mean temperature (*tube side*) =
$$\frac{t_1 + t_2}{2} = \frac{507.1 + 460}{2} = 483.55 \text{ °C}$$

Physical property data for the gas mixture at 483.55 °C is as follows.

Property Tag	Property Value
Density of gas from reactor (P) / (Kg/m ³)	0.5272
Viscosity of Solution (μ) / (kg/m.sec)	0.00003529
Heat Capacity (C _p) / (J/kg.°C)	1013
Thermal Conductivity (K _f) / (W/m.°C)	0.2245

Table 5.19 Tube side physical property data (Heat Exchanger 2)

For the value for h_i (the inside heat transfer coefficient), the following steps are to be followed.

$$Tubes \ per \ pass = \frac{Total \ tubes}{Number \ of \ passes} = \frac{347}{2} = 173 \ tubes \ per \ pass$$

Total flow area = Tubes per pass × Flow area per tube = 173×0.000488 = $0.0845 m^2$

$$Mass \ velocity = \frac{Mass \ flow \ rate \ (per \ second)}{Total \ flow \ area} = \frac{4.26}{0.0845} = 50.42 \ \frac{kg}{s. m^2}$$

 $\begin{aligned} Reynold's \ number \ (Re) &= \frac{Mass \ velocity \ \times \ tube \ inner \ diameter}{Viscosity \ of \ solution} \\ &= \frac{50.42 \times 0.025}{0.00003529} = 35633.6 \end{aligned}$

The value for the Heat transfer factor (j_h) can be found from the figure below.

Figure 14-Tube Side Heat Transfer Factor jH

From the figure, for Re = 35,634

$$j_h = 0.0035$$

Now,

$$h_{i} = \left(\frac{k_{f}}{d_{i}}\right) j_{h} Re \left(\frac{C_{p}\mu}{k_{f}}\right)^{1/3} \left(\frac{\mu}{\mu_{w}}\right)^{0.14}$$
$$h_{i} = \left(\frac{0.2245}{0.025}\right) \times 0.0035 \times 33634 \times \left(\frac{1013 \times 0.00003529}{0.2245}\right)^{1/3} (1)^{0.14}$$
$$h_{i} = 608.81 W/m^{2} \circ C$$

And now to refer the value of the coefficient to the outer surface of the tubes,

$$h_{io} = h_i \times \frac{d_i}{d_o} = 608.81 \times \frac{0.025}{0.032} = 478.3 W/m^{2}$$
°C

5.5.10 Shell Side Coefficients

The stream flowing on the shell side is the gas mixture coming from the absorber and another heat exchanger, and calculation being done is based on the physical properties of this particular gas mixture at an average value of temperature between the inlets and outlets. The tube wall temperature variation is taken to be negligible in this case as neither the temperature difference is high enough and nor the viscosity plays that important a role.

For the mean temperature,

Mean temperature (shell side) =
$$\frac{T_1 + T_2}{2} = \frac{444.5 + 501.4}{2} = 472.95 \text{ °C}$$

Physical property data for cooling water at 472.95 °C is as follows.

Property Tag	Property Value
Density of Solution (P) / (kg/m ³)	0.561
Viscosity of Solution $(\mu) / (kg/m.sec)$	0.0000338
Heat Capacity (C _p) / (J/kg.°C)	1404
Thermal Conductivity (K _f) (W/m.°C)	0.0507

 Table 5.20 Shell Side Physical Property Data (Heat Exchanger 2)
 Property Data (Heat Exchanger 2)

For the value for h_0 (the outside heat transfer coefficient), the following steps are to be followed.

Shell equivalent diamater,
$$d_e = \left(\frac{1.10}{d_o}\right)(p_t^2 - 0.917d_0^2)$$

 $d_e = \left(\frac{1.10}{0.032}\right)(0.0397^2 - 0.917(0.032)^2)$
 $d_e = 0.0225 m$
Cross flow area, $A_s = \frac{D_s \times clearance \times L_s}{p_t} = \frac{0.938 \times 0.0079 \times 0.863}{0.0397}$

$$A_s = 0.162 m^2$$

Mass velocity,
$$G_s = \frac{Mass flow rate (per second)}{Cross flow area} = \frac{3.42}{0.162} = 21,10 \frac{kg}{s.m^2}$$

Reynold's number (Re) =
$$\frac{G_s \times d_e}{\mu} = \frac{21.10 \times 0.0225}{0.00003378} = 14083.33$$

The value for the Heat transfer factor (j_h) can be found from the figure below.

Figure 15-Shell-Side Heat-Transfer Factors, Segmental Baffles From the figure, for Re = 14083 and 25 baffle cut percent

 $j_h = 0.005$

Now,

$$h_o = \left(\frac{k_f}{d_e}\right) j_h Re \left(\frac{C_p \mu}{k_f}\right)^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
$$h_o = \left(\frac{0.0507}{0.0225}\right) \times 0.005 \times 14083 \times \left(\frac{1404 \times 0.00003378}{0.0507}\right)^{1/3} (1)^{0.14}$$
$$h_o = 155 W/m^{2\circ} C$$

5.5.11 Overall Coefficient

Some basic data relevant to the fouling factor coefficient for the tube and shell side streams can be found form the figure below.

Thermal conductivity of cupro-nickel alloys, $k_w = 50 \text{ W/m}^{\circ}\text{C}$

Shell side fouling coefficient (organic vapors), $h_{od} = 5000 \text{ W/m}^{2}^{\circ}\text{C}$ Tube side fouling coefficient (organic vapors), $h_{id} = 5000 \text{ W/m}^{2}^{\circ}\text{C}$

Fluid	Coefficient (W/m ² °C)	Factor (resistance) (m ^{2°} C/W)
River water	3000-12,000	0.0003-0.0001
Sea water	1000-3000	0.001-0.0003
Cooling water (towers)	3000-6000	0.0003-0.00017
Towns water (soft)	3000-5000	0.0003 - 0.0002
Towns water (hard)	1000-2000	0.001-0.0005
Steam condensate	1500-5000	0.00067 - 0.0002
Steam (oil free)	4000-10,000	0.0025-0.0001
Steam (oil traces)	2000-5000	0.0005-0.0002
Refrigerated brine	3000-5000	0.0003-0.0002
Air and industrial gases	5000-10,000	0.0002 - 0.0001
Flue gases	2000-5000	0.0005-0.0002
Organic vapours	5000	0.0002
Organic liquids	5000	0.0002
Light hydrocarbons	5000	0.0002
Heavy hydrocarbons	2000	0.0005
Boiling organics	2500	0.0004
Condensing organics	5000	0.0002
Heat transfer fluids	5000	0.0002
Aqueous salt solutions	3000-5000	0.0003-0.0002

Figure 16-Fouling Factor (Coefficients)

And now to refer the value of the coefficient to the outer surface of the tubes,

$$h_{iod} = h_{id} \times \frac{d_i}{d_o} = 5000 \times \frac{0.025}{0.032} = 3906 \frac{W}{m^2}$$
°C

And now to finally calculate the overall coefficient (U_0) based on the outside area of the tube,

$$\frac{1}{U_o} = \frac{1}{h_o} + \frac{1}{h_{od}} + \frac{d_o \ln\left(\frac{d_o}{d_i}\right)}{2k_w} + \frac{1}{h_{io}} + \frac{1}{h_{iod}}$$
$$= \frac{1}{154.8} + \frac{1}{5000} + \frac{0.032 \times \ln\left(\frac{0.032}{0.025}\right)}{2 \times 50} + \frac{1}{478.3} + \frac{1}{3906}$$
$$\frac{1}{U_o} = 0.00903$$
$$U_o = 110.8 W/m^{2\circ}C$$

This obtained value of U_o, is above the initially assumed value of the coefficient which was equal to 110 W/m^{2} °C

Additionally, in order to calculate the value for the UA delivered by the heat exchanger is as follows:

- U_o achieved = 110.8 W/m²°C
- Surface area per tube = 0.599 m²
- UA required for suitable performance (from previous calculation) = 22786 W/°C

Total heating area = area per tube \times tubes = $0.599 \times 347 = 207.2 m^2$

 $UA \ achieved = U_o \times total \ heating \ area = 110.79 \times 207.15 = 22951 \ W/^{\circ}C$

Hence as the UA achieved > UA required; we have been able to satisfy the first design parameter.

5.5.12 Tube Side Pressure Drop

For our tube side, the pressure drop calculation proceeds as follows.

For the number of tube passes, $N_p = 2$ and Re = 35,633 the friction factor j_f from the graph below is 0.0035.

Figure 17-Tube Side Friction Factors

For linear velocity,

$$u_t = \frac{mass \ velocity}{density \ of \ gas \ mixture} = \frac{50.4}{0.527} = 95.63 \ m/s$$

For the tube side pressure drop,

$$\Delta P_t = N_p \left[8j_f \left(\frac{L}{d_i} \right) \left(\frac{\mu}{\mu_w} \right)^{-m} + 2.5 \right] \left(\frac{\rho u_t^2}{2} \right)$$
$$= 2 \times \left[8 \times 0.0035 \times \left(\frac{6}{0.025} \right) + 2.5 \right] \left(\frac{0.5272 \times (95.62)^2}{2} \right)$$
$$\Delta P_t = 44525.7 \frac{N}{m^2}$$

5.5.13 Shell Side Pressure Drop

For our shell side, the pressure drop calculation proceeds as follows.

For linear velocity,

$$u_s = \frac{mass \ velocity}{density \ of \ gas \ mixture} = \frac{21.1}{0.561} = 37.6 \ m/s$$

For the shell side pressure drop,

$$\Delta P_s = 8j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{L_s}\right) \left(\frac{\rho u_s^2}{2}\right) = 8 \times 41.60 \times \left(\frac{0.809}{0.0225}\right) \left(\frac{6}{0.863}\right) \left(\frac{0.5611 \times (37.6)^2}{2}\right)$$

$$\Delta P_s = 44081.2 \ \frac{N}{m^2} = 44.081 \ kPa = 6.39 \ psi$$

So, as both the shell side and tube side have a pressure drop less than 10 psi, the heat exchanger is suitable for the operation and with that we have our second design variable satisfied as well.

Summary: The Proposed Design

Heat Exchanger – 2			
Heat exchanger type	Shell & Tube HE	TEMA designation	Pull through, floating head
Exchanger duty	787543 kJ/hr	Heat transfer area	207.2 m ²
U₀ required	110 W/m ^{2°} C	U_{0} achieved	110.8 W/m ² °C
U _o A required	22786 W/°C	U_0A achieved	22951 W/°C
Tube Sid	le	Shell Si	de
Subject stream	Gas mixture	Subject stream	Gas mixture
Construction material	Carbon steel	Construction material	Carbon steel
Flow rate	15,338 kg/hr	Flow rate	12,299 kg/hr
Inlet temperature	507.1 °C	Inlet temperature	444.5 °C
Outlet temperature	460 °C	Outlet temperature	501.4°C
Number of passes	2	Number of passes	1
Number of tubes	347	Tube bundle diameter	0.843 m
Length of tubes	6 m	Shell bundle clearance	0.095 m
Outer diameter	0.032 m	Inner diameter	0.938 m
BWG	10	Equivalent diameter	0.0225 m
Inner diameter	0.025 m	Baffle spacing	0.863 m

Table 67-Heat Exchanger -2 Specification Summary

Flow area per tube	0.000488 m^2	Number of baffles	6
Tube pitch	0.0397 m Triangular	Baffle cut	25 % cut
Tube clearance	0.0079 m	Cross flow area	0.162 m ²
(h _{io})	478 W/m ^{2°} C	(h _o)	155 W/m²°C
Fouling coefficient	5000 W/m ^{2°} C	Fouling coefficient	5000 W/m²°C
Pressure drop	6.460 psi	Pressure drop	6.39 psi

Table 68-Heat Exchanger -3 Specification Summary

Heat Exchanger – 3			
Heat exchanger type	Shell & Tube HE	TEMA designation	Split ring, floating head
Exchanger duty	3510271 kJ/hr	Heat transfer area	150.9 m ²
U_{o} required	110 W/m ^{2°} C	U_{o} achieved	110.98 W/m²°C
U₀A required	16606 W/°C	$U_{o}A$ achieved	16754 W/°C
Tube Side		Shell Side	
Subject stream	Gas mixture	Subject stream	Gas mixture
Construction material	Carbon steel	Construction material	Carbon steel
Flow rate	15,338 kg/hr	Flow rate	12,299 kg/hr
Inlet temperature	490 °C	Inlet temperature	200°C
Outlet temperature	290 °C	Outlet temperature	444.5°C
Number of passes	2	Number of passes	1
Number of tubes	189	Tube bundle diameter	0.641 m

Length of tubes	8 m	Shell bundle clearance	0.093 m
Outer diameter	0.032 m	Inner diameter	0.734 m
BWG	10	Equivalent diameter	0.0225 m
Inner diameter	0.025 m	Baffle spacing	0.697 m
Flow area per tube	0.000570 m ²	Number of baffles	10
Tube pitch	0.0397 m Triangular	Baffle cut	25 % cut
Tube clearance	0.0079 m	Cross flow area	0.102 m ²
(h _{io})	659 W/m ² °C	(h _o)	145 W/m²°C
Fouling coefficient	4500 W/m²°C	Fouling coefficient	4500 W/m ^{2°} C
Pressure drop	8.950 psi	Pressure drop	9.24 psi

5.7 Packed Bed Catalytic Reactor

The reactor chosen for our process i.e. Contact process is Packed Bed Catalytic Reactor. The successive bed arrangement allows for maximum conversion of SO_2 to SO_3 with intermediate cooling in between the beds. (Moulijin, 2013) The reaction is exothermic and hence the temperature of the gases increases on each bed. If the streams are not brought back to the optimum temperature of 450°C, the equilibrium will shift towards the reactant side which results in less conversion.

Now we will discuss the elaborate design process of our reactor. (Levenspiel, Chemical Reaction Engineering, 1999)

5.7.1 Calculation of equilibrium constant K_P

The value of equilibrium constant is calculated to aid us in finding out the rate of equilibrium reaction. (Wikipedia, 2012)

Table 5.23	Temperature	Conversion	Data
------------	-------------	------------	------

Kelvin to Rankine conversion	1 R= 1.8K
Temperature in K	723
Temperature in R	1301.4

The formula used to calculate the value of K_P is

$$K_P = \exp\left(\frac{42311}{R*T}\right) - 11.24$$

Where R= 1.986 Btu/lbmol.R

$$K_P = \exp\left(\frac{42311}{1.986 * 1301.4}\right) - 11.24$$

 $K_P = 169.1 \text{ atm}^{-0.5}$

5.7.2 Calculation of rate constant \boldsymbol{k}

The formula used is

$$k = \exp\left[\left(\frac{-176008}{T}\right) - 110.1\ln T + 912.8\right]$$

k = 6.18 e-06 lbmol/lb cat.sec.atm

5.7.3 Calculation of rate of reaction

The physical property data required is:

Table 5.24 Pressure data for rate equation

P (atm)	2
P _{S02}	0.54
P _{S03}	0.486
P ₀₂	0.974

The rate equation is:

$$r_{SO_2} = k * \left(\frac{P_{SO_2}}{P_{SO_3}}\right)^{0.5} * \left[P_{O_2} - \left(\frac{P_{SO_3}}{K_P * P_{SO_2}}\right)^2\right]$$
$$r_{SO_2} = 6.18E^{-06} * \left(\frac{0.54}{0.486}\right)^{0.5} * \left[0.974 - \left(\frac{0.486}{169.1 * 0.54}\right)^2\right]$$

 r_{SO_2} = 6.35 e-06 lbmol/lb cat.sec

5.7.4 Calculation of total weight of catalyst

Feed of SO₂ inlet = 0.129 lbmol/sec

The formula for weight of catalyst is

$$W = \left(\frac{F_{ao}}{-r_a}\right) * \int_0^x dx$$

$$W(lb) = \left(\frac{0.129}{6.35e - 06}\right) * (0.997 - 0)$$

W = 20259 lb = 9177 kg

5.7.5 Calculation of Volume of Catalyst and Volume of Bed

Density of V_2O_5 catalyst = 1281.5 kg/m³

 $Volume of \ catalyst = \frac{Mass \ of \ catalyst}{Density \ of \ catalyst}$

Volume of catalyst = 7.17 m³

Assumption:

Void fraction = 0.4

$$Volume of bed = \frac{Volume of catalyst}{1 - void fraction}$$

Volume of bed = 11.9 m^3

5.7.6 Calculation of Reactor Specifications

Diameter of bed =
$$\left(\frac{2V}{\pi}\right)^{\frac{1}{3}}$$

Diameter = 1.95 m

Height of bed =
$$\left(\frac{4V}{\pi * D^2}\right)$$

Height of bed = 3.91 m

Height of reactor = 4.49 m

Volume of reactor =
$$\left(\frac{\pi * D^2}{4}\right) * H$$

Volume of reactor = 13.5 m^3

5.7.7 Calculation of catalyst and bed specifications

As the concentration of SO_2 decreases down each bed, the weight of catalyst required on each bed will change and hence the rate of reaction will change.

The diameter will remain throughout the length of the reactor. However the height of each bed will also vary due to different weight of catalyst on each bed. (Donobam, 1984)

5.7.7.1 1st Bed

Table 5.25 Pressure Data for Rate Equation

P1 ₀₂	1.01
P1 _{S02}	0.988
P1 _{S03}	0.002

$$r_{SO_2} = k * \left(\frac{P_{SO_2}}{P_{SO_3}}\right)^{0.5} * \left[P_{O_2} - \left(\frac{P_{SO_3}}{K_P * P_{SO_2}}\right)^2\right]$$

$$r_{SO_2} = 6.18E - 06 * \left(\frac{0.988}{0.002}\right)^{0.5} * \left[1.01 - \left(\frac{0.002}{169.1 * 0.988}\right)^2\right]$$

 r_{SO_2} = 0.000139 lbmol/lb cat.sec = 0.000139 kgmol/kg cat.sec

Table 5.26 Data for use in rate equation

SO2 molar flow rate (kgmol/hr)	66.9
Air Molar Flow rate (kgmol/hr)	24.1
Fao (kgmol/hr)	91
Conversion	0.63

Table 69-Specification sheet for 1st bed

W1 (kg)	115
Volume of catalyst (m ³)	0.0895
Volume of bed (m ³)	0.149
Diameter (m)	1.95
Height of bed (m)	0.0498

5.7.7.2 2nd Bed

Table 5.28 Pressure data for Rate Equation

P2 ₀₂	0.880
P2 _{S02}	0.460
P2 _{S03}	0.646

 r_{SO_2} = 4.59 e-06 kgmol/kg cat.sec

Table 5.29 Data required for rate equation

SO ₂ molar flow rate (kgmol/hr)	71.8
SO ₂ molar flow rate (kgmol/sec)	0.0199
Conversion	0.567
W2 (kg)	2463
-------------------------	------
Volume of catalyst (m3)	1.92
Volume of bed (m3)	3.20
Diameter (m)	1.95
Height (m)	1.07

Table 70-Specification sheet for 2nd Bed

5.7.7.3 3rd bed

Table 5.31 Pressure data for Rate Equation

P3 ₀₂	0.752
P3 ₅₀₂	0.198
P3 ₅₀₃	1.05

r_{SO_2} = 2.02 e-06 kgmol/kg cat.sec

Table 5.32 Data required for rate equation

SO ₂ molar flow rate (kgmol/hr)	72.3
SO ₂ molar flow rate (kgmol/sec)	0.0201
Conversion	0.563

Table 71-Specification sheet for 3rd bed

W3 (kg)	5607
Volume of catalyst (m3)	4.38
Volume of bed (m3)	7.29
Diameter (m)	1.95
Height (m)	2.43

5.7.7.4 4th bed

P4 ₀₂	1.56
P4 _{S02}	0.196
P4 _{S03}	0.244

Table 5.34 Pressure Data for Rate Equation

 r_{SO_2} = 8.64 e-06 kgmol/kg cat.sec

Table 5.35 Data required for use in rate equation

SO ₂ molar flow rate (kgmol/hr)	32.2
SO ₂ molar flow rate (kgmol/sec)	0.00896
Conversion	0.957

Table 72-Specification sheet for 4th bed

W4 (kg)	991.6
Volume of catalyst (m3)	0.774
Volume of bed (m3)	1.29
Diameter (m)	1.95
Height (m)	0.430

Table 73-Specification sheet for the combined dimensions of all beds

Reactor bed specification sheet		
Total height of beds (m)	3.88	
Volume of bed (m ³)	11.9	
Total weight of catalyst (kg)	9177	

5.8 Sulphuric Acid Storage Tank

The sulphuric acid storage tank is required for the storage of the Sulphuric acid to be extracted as a final product or to be recycled back to the initial locations. In order to estimate the cost of the storage tank correctly and aptly, it is necessary to find out certain design specifications with the help of calculations shown below.

5.8.1 Calculation of volume of tank

In order to calculate the volume of the tank, we need to know the volumetric flow rate (V_F) of the Sulphuric Acid that is being collected in the storage tank; the following physical properties are needed for the calculation of volumetric flow rate (V_F):

Table 5.38 Physical properties of H₂SO₄ entering storage tank

Mass flow rate (kg/hr)	8958
Density of H ₂ SO ₄ (kg/m ³)	1781

$$V_F = \frac{Mass flow rate}{Density of H_2SO_4}$$
$$V_F = \frac{8958}{1781}$$

Volumetric flow rate = $5.03 \text{ m}^3/\text{hr}$

Instead of taking the volume of the tank (V_T) equal to the volumetric flow rate (V_F), a safety clearance (S_F) is included to make sure that the size of the tank is safe from overflowing or other hazards. The value of safety clearance (S_F) is taken to be 0.05 from literature.

$$V_T = V_F (1 + S_F)$$

 $V_T = 5.03 (1 + 0.05)$

Volume of tank = 5.28 m^3

5.8.2 Calculation of the Diameter of tank

The calculation of the internal diameter (ID) is done using the volume of the tank (V_T) using a simple geometric formula:

$$ID = \sqrt[3]{\frac{2 x V_T}{\pi}}$$
$$ID = \sqrt[3]{\frac{2 x 5.28}{\pi}}$$

Internal Diameter = 1.49 m

Now, for the calculation of the outer diameter (OD), wall thickness (T_M) is incorporated in the formula, which is taken to be 0.006 to account for the difference between the internal and outer diameters:

$$OD = ID + (2 x T_M)$$

 $OD = 1.49 + (2 x 0.006)$

Outer Diameter = 1.50 m

5.8.3 Calculation of the Height of tank

In order to calculate the height of the tank, volumetric flow rate is first used for the calculation of height of the liquid (H_L).

$$H_{L} = \sqrt[3]{\frac{4 \times V_{F} \times 4}{\pi}}$$
$$H_{L} = \sqrt[3]{\frac{4 \times 5.03 \times 4}{\pi}}$$

Height of the liquid $(H_L) = 2.92 \text{ m}$

The pressure head (ΔP) created due to this height can be calculated using a very simple formula mentioned below:

$$\Delta P = \frac{\rho \, x \, g \, x \, H_L}{1000}$$

$$\Delta P = \frac{1781 \, x \, 9.81 \, x \, 2.92}{1000}$$

Pressure head = 50.9 kN/m^2

For the total pressure (T_P) , atmospheric pressure needs to be added to the pressure head:

$$T_P = \Delta P + 101.3$$

 $T_P = 50.9 + 101.3$

Total pressure = 152.25 kN/m^2

Height of the tank (H_T) is again calculated, using a very simple ratio where the formula is as follows:

$$H_T = 2 \ x \ OD$$
$$H_T = 2 \ x \ 1.50$$

Height of the tank = 3.00m

Storage Tank Specification Sheet		
Volumetric flow of liquid (m ³ /hr)	5.03	
Volume of the tank (m ³)	5.28	
Internal Diameter (m)	1.49	
Out Diameter (m)	1.50	
Height of liquid (m)	2.92	
Height of Tank (m)	3.00	
Total Pressure (kN/m ²)	152	

Table 74-Sp	ecification	Summary of	of Storage	Tank
	· ·) · · · ·		J - · · · · · · · ·	

5.9 Oleum Header

This equipment is needed and designed to collect the oleum coming from different locations in the plant and is distributed to other locations as well as extracted as a product. It may also be processed further to make Sulphuric Acid in the dilution Tank. The method of calculation of its design is exactly like the storage tank.

Oleum Header Specification Sheet		
Volumetric flow of liquid (m ³ /hr)	6.75	
Volume of the tank (m ³)	7.09	
Internal Diameter (m)	1.64	
Out Diameter (m)	1.66	
Height of liquid (m)	3.21	
Height of Tank (m)	3.31	
Total Pressure (kN/m ²)	159	

Table 75-Specification Summary of Oleum Header

5.10 Scrubber

The scrubber is installed after MAT to further remove the SO_X from the flue gases before discharging them into the atmosphere. The design is based on physical absorption process.

5.10.1 Calculation of diameter

Table 5.41 Physical property Data for Diameter of Scrubber

Volumetric flow rate (m3/sec)	3.35
Gas velocity/ug (m/s)	1.50

According to literature, the value of gas velocity should ideally be between 0.3 and 2.3 m/s.

$$Diameter = \sqrt{\left(\frac{4 * V}{\pi * gas \ velocity}\right)}$$

Diameter = 1.685 m

5.10.2 Calculation of Specifications of Spray section

Table 5.42 Physical property Data for Specifications of Spray Section

Gas flow rate Gm (kgmol/sec)	0.113
Mol. frac. Of SO2/y1 (gas inlet)	0.00033
Mol. frac. Of SO2/y2 (gas outlet)	0.0001

$$N_{OG} = \frac{y1 - y2}{y2}$$

 $N_{OG} = 2.3$

K_g = 0.0409 kmol/m³.sec (from literature)

$$Volume = \frac{N_{OG} * G_M}{K_g}$$

Volume = 6.37 m^3

$$Height = \frac{4 * V}{\pi * D^2}$$

Height = 2.85 m

$$Area = \pi * r^2 + 2 * \pi * r * h$$

R=D/2=0.843 m

Area = 17.3 m^2

Vessel diameter (m)	Minimum thickness (mm)
1	5
1 to 2	7
2 to 2.5	9
2.5 to 3.0	10
3.0 to 3.5	12

5.10.3 Mechanical Properties of Spray Tower

Mechanical Properties of Spray Section				
Material of construction	Carbon Steel			
Operating pressure (N/m2)	100000			
Design pressure (N/m2)	10000			
Joint factor	1.0			
Stress factor-Carbon Steel (N/m2)	125000000			
Wall thickness-diameter (mm)	0.0793			
Corrosion allowance-Carbon Steel(mm)	2			
Total wall thickness (mm)	2.08			

Table 76-Mechanical properties of Spray Tower

5.11 Dilution Tank

The oleum produced in the absorption towers is finally sent to the dilution tank where it reacts with water to produce Sulphuric Acid. Our dilution tank is a continuously stirred tank reactor because firstly the output composition is identical to the composition of the material inside the reactor and because the temperature and pH control is relatively easy in the CSTR. Hence, the design calculations are based on the design equation of a CSTR. The reaction-taking place in the dilution tank is as follows:

 $H_2S_2O_7 + H_2O \rightarrow 2 H_2SO_4$

5.11.1 Calculation of Volume of the Dilution Tank

The physical property data required for the calculation of volume are given in the table below.

Molar flow rate of Oleum / F _{A0} (kgmol/hr)	66.9
Molar flow rate of Water / F_{B0} (kgmol/hr)	25.0
Volumetric flow rate of Oleum / V _{A0} (m ³ /hr)	4.27
Volumetric flow rate of water / V_{B0} (m ³ /hr)	0.27
Conversion / X	0.99
K / (m ³ /kgmolsec)	6 x 10 ⁻⁵

Table 5.41 Physical property data for calculating volume of the reactor

In order to move forward with our calculations, the first thing that is needed for the design calculation is the concentration of both oleum (C_{A0}) and water (C_{B0}) with a simple formula:

$$C_{A0} = \frac{F_{A0}}{V_{A0}}$$

Concentration of Oleum = 15.68 kgmol/m

$$C_{B0} = \frac{F_{B0}}{V_{B0}}$$

Concentration of water = 92.70 kgmol/m³

In order to calculate the volume of our dilution tank, we first need to find the value of r_A , for this purpose the order of the reaction is taken as 2 because the reaction between oleum and water is considered to be an elementary reaction and hence, the value of r_A is calculated using the following formula: (Levenspiel, Chemical Reaction Engineering, 1999)

$$r_A = k * C_{AO}(1 - X_A) * (C_{BO} - (C_{AO} * X_A))$$
$$r_A = 0.00006 * 15.7 * (1 - 0.99)(92.7 - (15.7 * 0.99))$$

 r_A = 7.26 x 10⁻⁴ kgmol/m³sec

Now, that we have the value of r_A the next step only involves plugging the values in the design equation to calculate the volume (V_{DT}) of the dilution tank:

$$V_{DT} = \frac{(F_{AO} + F_{BO}) * X_A}{r_A}$$
$$V_{DT} = \frac{(66.9 + 25) * 0.99}{0.000726}$$

Volume of the tank = 34.84 m^3

5.11.2 Calculation of diameter of tank

Using the volume of the tank, the diameter (D_{DT}) of the dilution tank can be found out using a simple geometric formula, which is mentioned below:

$$D_{DT} = \sqrt[3]{\frac{4 * V_{DT}}{2\pi}}$$
$$D_{DT} = \sqrt[3]{\frac{4 * 34.8}{2\pi}}$$

Diameter of the dilution tank = 2.81m

5.11.3 Height of the column

In the industrial plant, a suitable L/D ratio = 2 is considered a good design, so in order to calculate the height the following equation is used:

$$H_{Dt} = 2 * D_{DT}$$

 $H_{Dt} = 2 * 2.81$

Height of the tank = 5.61m

Tab	le 77	⁷ -Specij	fication	Summary	of	Di	lution	Tanl	k
-----	-------	----------------------	----------	---------	----	----	--------	------	---

Dilution tank Specification Sheet				
r _A (kgmol/m ³ sec)	7.26 x 10 ⁻⁴			
Volume of Dilution Tank (m)	34.8			
Diameter of Dilution Tank (m)	2.81			
Height of Dilution Tank (m)	5.61			

CHAPTER 6

Simulation

The simulation model for our plant was developed for the purpose of reaching the most optimum conditions that ensured high yield of our final products i.e. Sulphuric Acid and Oleum and enable us to design a GREEN process.

6.1 General Process Description

The moisture is removed from the air in the Air Dryer using Oleum as a dehydrating agent. A fraction of the dried air then reacts with molten sulfur in Sulfur Burner to produce SO_2 gas. This SO_2 gas mixture is sent to an SO_2 dryer to ensure maximum removal of moisture content before it enters the packed bad catalytic reactor. The high temperature gas from the burner is cooled to the optimum reactor temperature of 450°C. In our simulation model, the four beds of our reactor can be seen as four separate convertors due to limitations in Aspen HYSYS. The remaining fraction of the air from Air Dryer reacts with SO_2 gas to form SO₃. The catalyst used for this oxidation reaction is V_2O_5 (vanadium pentaoxide). Since the reaction is exothermic, it results in an increase in temperature of the outlet streams. Heat exchangers are used to cool down the temperature of the streams leaving the reactor. This is crucial as the SO₃ produced in the reactor has to react with sulphuric acid to form oleum and absorption reactions are favorable at low temperatures. After maximum conversion of SO₃ to oleum is achieved using an intermediate and a main absorption column, the oleum produced is split into fractions for use throughout the plant as a dehydrating agent. The unconverted gases in the second absorber are sent to a scrubber to bring down the amount of the toxic gases to an allowable limit before releasing them into the atmosphere. Part of the oleum extracted from oleum header is sent to the dilution tank to react with water and form concentrated sulphuric acid. (Sultana, 2011)

Figure 19-Simulation Model

6.2 Process Simulation

6.2.1 Components

The components were extracted from the Aspen properties as oleum was not included in HYSYS properties. (Magazine, 2010)

Following is the list of components that were used in our simulation model.

🚯 Component List View: Component List - 1 [Aspen Pro — 🛛 🗙							
Selected	Selected Henry Comps Component Groups Enterprise Databases						
Source I	Source Databank: Aspen Properties						
	Component		Туре		Group		
	H2S20	D7	Pure Com	ponent			
	Sulfur-Dioxi	de	Pure Com	ponent			
	Sulfur-Trioxi	de	Pure Com	ponent			
	Sulfuric-Ad	id	Pure Com	ponent			
	Hydrogen-Sulfi	de	Pure Component				
	Wat	ter	Pure Component				
	Nitrog	en	Pure Com	ponent			
	Охуд	en	Pure Component				
	Carbon-Dioxi	de	Pure Component				
	Sult	fur	Pure Com	ponent			
Status:			OK				

Figure 20-Component list for simulation model

6.2.2 Fluid Package

Fluid Package	Component List	Property Package
Basis-1	Component List - 1 [Aspen Properties Databanks]	Aspen Properties (Electrolyte NRTL)

Figure 21-Fluid Package

Reactions

6.2.3.1 Air Dryer/SO₂ Dryer

Table 6.1 Reaction equation for Dryers

Specification type	Stoichiometric equation		
Conversion	$H_2S_207 + H20 \rightarrow 2H2S04$		

toichiometry Info			Basis	
Component H25207 Water Sulfunic Acid ""Add Comp"	Mule Weight 178,139 18,015 98,079	Stoch Coeff - 1.000 - 1.000 2.000	Rose Component Rost Phase Co C1 C2 Conversion (%) = Co + C1*T + C2* (T in Kelvin)	Water Overal 100.0 «empty» «ampty»
Balance	Balance Error	0.00000 -1.2e+06 x10xengle		

Figure 22-Reaction Set for the Dryers

6.2.3.2 Sulfur Burner

Table 6.2	Reaction	equation	for	Sulfur	Burner
10.010 0.2	1.000.000.000	equineren .	<i>,</i> .	2 0.1 9 0.1	200000

Specification type	Stoichiometric equation
Conversion	$S + O_2 \rightarrow SO_2$

toxhionetry info			Inter	
Component Sulfur Oxygen Sulfur-Dioxide "'Add Comp'"	Mole Weight 32065 31,999 64,064	Stoch Coeff - 1.000 - 1.000 1.000	Base Component Ran Phase Co C1 C2 Convension (NJ = Co + C1*T + C2*T*2 (T in Kelsivi)	Suda Oxeral 100.0 ceresty ceresty ceresty
Balance	Balance Error Reaction Heat (25-C)	0.00000 -5.7e+05 kJ/kgmole		

Figure 23-Reaction Set for Sulfur Burner

6.2.3.3 Packed Bed Reactor (Bed 1)

Specification type	Stoichiometric equation
Conversion	$SO_2 + 0.5O_2 \rightarrow SO_3$

Table 6.3 Reaction equation for Packed Bed Reactor

Conversion Reaction: Ron-9				- P
toichiometry into			Banis	
Component	Mole Weight	Stoich Coeff	Base Component	Sultur-Dioxide
Softur-Dioxide	64.004	-2.000	Ran Phase	Ownais
Oxygen	11.999	-1.000	Ea	63,00
Sulfur Trioxide	80.063	2.000	0	saught
""Add Comp""			C2	 ampty>
Belarce	Balance Entor	6,00000.	(T on Kellutt)	
	Reaction Heat (25 C)	-9.9e+04 k.Vkgmale		

Figure 24-Reaction Set for Packed Bed Reactor Bed 1

6.2.3.4 Packed Bed Reactor (Bed 2)

Conversion Reaction: Ret-10	- 0)
toichiometry Info	sis.
Component Mark Weight Strich C Suither Disside 54.064 Oxygen 31.000 Suither Trickide 80.063 ***Add Comp**	Base Component Saltur-Dixaide Ron Phase Create Co 54-70 Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> Cl <empty-< td=""> In Kelvint)</empty-<></empty-<></empty-<></empty-<></empty-<></empty-<></empty-<></empty-<>
Balance Reaction Heat (25 C) 19.9e+04	

Figure 25-Reaction Set for Packed Bed Reactor Bed 2

6.2.3.5 Packed Bed Reactor (Bed 3)

Staichiometry Info			Basia	
Component Suttur-Dioxide Oxygen Suttur-Trioxide **Add Comp**	Mate Weight 64.064 31.999 80.063	Stoich Coeff -2,000 -1,000 2,000	Base Component Ran Phase Co C1 C2 Conversion (NJ = Co + C1*T + C2*T* (T in Kelvin)	Softur-Dioxid Overal S6.30 Servely Kenytyv Kenytyv
Belanca	Balance Error Reacton Heat (25 C)	8.00000 -9.9e+04 k//kgmole		

Figure 26-Reaction Set for Packed Bed Reactor Bed 3

6.2.3.6 Packed Bed Reactor (Bed 4)

to chiometry Info			Basis	
Component Sulfur-Disade Obygen Sulfur-Trisade **Add Comp**	Mole Weight 64,064 31,999 80,063	Straich Coeff -2.000 -1.000 2.000	Sour Component Son Phase Co C1 C2 Conversion (N) + Co + C1+T + C2+T (f in Keturi)	Sutter:Dioxid Oren 95.7 45.7 4empty 4empty 4empty
Balance	Balance Error	0.00000		

Figure 27-Reaction Set for Packed Bed Reactor Bed 4

6.2.3.7 IAT (Intermediate Absorption Tower)

Table 6.4 Reaction Equation for IAT

Specification type	Stoichiometric equation
Conversion	$SO_3 + H_2SO_4 \rightarrow H_2S_2O7$

cichiometry Info			Basis	
Component	Mole Weight	Stoich Coeff	Base Component	Sulfur-Trioxid
Sulfur-Trioside	80.063	-1.000	Ren Phase	Dves
Sulfuric Acid	96.079	-1.000	Co	100
H25207	178,139	1.000	CI	century
Add Comp			62	10140
			a second	

Figure 28-Reaction Set for IAT

6.2.3.8 MAT (Main Absorption Tower)

taichiometry info			Basis	
Component Sulfur Tricoide Sulfuri-Acid H25207 **Add Comp**	Mole Weight 80.063 98.079 178.139	Stoich Coeff -1,000 -1,000 1,000	Base Component Ran Phase Co C1 C2 Comension (%) = Co + C1*T + C2*T^1 (T in Kelvin)	Sulturic Act Overa 88.0 -empty -empty
Balance	Balance Error Reaction Heat (25 C)	0.00000 1.1e+06 kU/kgmple	1	

Figure 29-Reaction Set for MAT

6.2.3.9 Dilution Tank

Table 6.5 Reaction Equation for Dilution Tank

Specification type	Stoichiometric equation
Conversion	$\mathrm{H}_2\mathrm{S}_2\mathrm{O}_7 + \mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{H}_2\mathrm{SO}_4$

Centreman Mercourt, name	8			- u
olchiometry Info			Beris	14.775
Component H2520: Water Sulfuric-Actu ""Add Comp"	Mole Weight 178,199 18,015 96,079	Stoch Coeff -1.000 -1.000 2.900	Base Component Son Phase Co C1 C2 Convenion (%) = Co + C1*T + C2 (T m Kelon)	P252 Over 100 compt compt compt
Balarice	Balance Error Reaction Heat (25 C)	0.00000 +1.2#+05 kS/kgmole		

Figure 30-Reaction Set for Dilution Tank

6.2.4 Process Equipment

6.2.4.1 Air Dryer

The moisture content in the air is removed in the air dryer using oleum as a dehydrating agent. The chemical absorption reaction between water and oleum is exothermic and Recycled Dehydrating Agent forms sulphuric acid as a product. The temperature of the air dryer is kept below 70°C.

	CONCERNMENT CONCERNED			AND INC.	1 3MC000000	SILV.
Worksheet	Name	Air Inlet	Recycled Dehydra H	2504 from Air E	Dried Air	Qa
conditions	Vapour	0.9678	0.0001	0.0000	1.0000	< empty
roperties	femperature [C]	30.00	172.7	45.00	45.00	< empty
nortiposition	Pressure (kPa)	139.8	101.3	101.3	101,3	<empty< td=""></empty<>
* specs	Molar Now (kgmole/n)	494.8	20.84	40.48	4752	<empty< td=""></empty<>
	Mats Flow (kg/h)	1,4268+004	1514	3869	1.390#+004	<emply< td=""></emply<>
	Std ideal Liq Vol Flow (m3/h)	25,76	3.708	2.129	25.43	< empty
	Molar Enthalpy [kL/kgmole]	-2.266e+004	<1.083e+005	-7.999e+005	-1.263e+004	< empty
	Malar Entropy (kl/kgmole-C)	0.6857	742.1	-399.5	7.200	< empty

Figure 31-Air Dryer Conditions Worksheet

Worksheet	[Air Hiles	Recycled Dehydra	H2504 trans Air D	Dried Air	
Conditions	H25207	0.0000	0.8844	0.0000	0.0000	
Properties Composition PF Specs	Suffur-Dioxide	0.0000	0.0001	0.0000	0.0000	
	Salfur-Tripede	0.0000	0.0002	0.0000	0.0000	
	Sulhinc-Acid	0.0000	0.1118	0.9680	0.0000	
	Hydrogen-Sulfide	0.0000	0.0000	0.0000	0.0000	
	Water	0.0422	0.0025	0.0293	0.0028	
	Nitrogen	0.7430	0.0004	0.0012	0.773E	
	Ovypen	0.1842	0.0001	6.0007	0.1917	
	Carbon-Dioxide	0.0306	0.0004	0.0008	0.0318	
	Suther	0.0000	0.0000	0.0000	0.0005	

Most of the moisture content from the air is removed in the air dryer.

6.2.4.2 Sulphur Burner

The dried air from the air dryer reacts with molten sulfur in the sulfur burner to form SO_2 gas. The reaction is highly exothermic and the temperature of the burner increases to a very high value.

Worksheet	Name	Molten Sulphur D	ied Air to Sulph	Noligi	502	
onditions	Vapour	0.0000	1.0000	0.0000	1.0000	
roperties	Temperature [C]	150.0	45.00	2014	2014	
omposition	Pressure (kPa)	101.3	101.3	101.3	107.3	
F Specs	Molar Row (ligmole/h)	45.45	349.3	0.0000	549.7	
	Mass Now (kg/h)	1458	1.022e+004	0.0000	1.168e+004	
	Std Ideal Liq Vol Flow (m3/h)	0.8072	18.67	0.0000	18.39	
	Moler Enthalpy [ki/kgmole]	2.666e+005	-1.263e+004	6.080e+004	2.203e+004	
	Maler Entropy (kl/kgmole-C)	181.6	7.200	-5.978	79.71	
	Heat Row [k]/h]	1.212e+007	-4.412e+006	0.0000	7.704e+006	

Figure 33-Sulphur burner Conditions Worksheet

The composition of SO_2 in our product gas is 12.88 mol% which meets the general limit of SO_2 (11-15%) expected to form in this reaction.

Worksheet	P	and the second s	12 States and the	1001000	5335	
HOISHRES	1	Molten Sulphur	Dried Air to Sulph	Nolig1	902	
Conditions	H25207	0.0000	0.0000	0.0000	0.0000	
openies	Sulfur-Dioxide	0.0000	0.0000	0.0184	0.1288	
PF Specs	Sultur-Trioxide	0.0000	0.0000	0.0000	0.0000	
C aprox	Sulfuric-Acid	0.0000	0.0000	0.0017	0.0000	
	Hydrogen-Suffide	0.0094	0.0000	0.0004	0.0012	
	Weter	0.0000	0.0028	0.0000	0.0028	
	Nitrogen	0.0000	0.7736	0.9160	0.7727	
	Ovygen	0.0000	0.1917	0.0627	0.0627	
	Carbon-Dissiste	0.0000	\$0318	0.0008	0.0318	
	Selfur	0,9906	0.0000	0.0000	0.0000	

Figure 34-Sulfur Burner Streams Compositions

Recycled Dehydrating

Cool SO2

6.2.4.3 SO₂ Dryer

The SO_2 gas from the sulfur burner is cooled and sent to the SO_2 dryer to completely remove any moisture content left in the stream. This is to ensure that at high temperatures of the reactor, the water in the gas stream does not react with oxides of sulphur to form acid.

Name	Confied \$02	Recordent Datastra	L12504 from 502	Difect \$02	
Vanius	1.0000	0.0003	0.0000	1,0000	
Temperature (C)	20.00	143.3	184.6	164.6	
Printers [kPa]	101.3	101.3	101.5	101.8	
Mular Flow (konicia/M	349.7	2,514	2,812	340.4	
Mate Flow Sko/H	1.108x+004	291.0	340.3	1.173e+004	
Std Aleal Lig Vol Flow Sm3/M	18.39	0.1895	0,2647	18.41	
Molar Sethabry (ki/komole)	-5.006e+004	-2.422e+005	-5706e+005	-4726e+004	
Molar Extropy Bulkgroup-Cl	12.18	523.0	11.36	16.87	
Heat Flow Julibl	-1.751e+007	-6.140++003	-1.605e+006	-1.651a+007	
	Vagous Temperature (K) Prinzme (PA) Malar Flow (Egencie/M) Malar Flow (Egencie/M) Molar Flow (Egencie/M) Molar Estimative (Ki/Agencie/ Molar Estimative (Ki/Agencie/ Molar Flow 2019)	Vagous 10000 Temperature (C) 20.00 Pressure (Pel) 1013 Malar Flow (Egotole/N) 348.7 Malar Flow (Egotole/N) 1.188=-004 Pol Area Liq (WF Evoc (Pr.R./r)) 16.38 Molar Estimative (M/Agenole) -5.006=-004 Molar Flow (Ed/M) -1.751e=-007	Vapoue 1,000 0,000 Temperature (C) 70,00 148,3 Personne (Rea) 101,3 191,3 Mater Flow (signicule/N) 148,7 2,514 Mater Flow (signicule/N) 1,188,8 0,385 Molar Status (Not Symposity) 5,006=004 2,422=005 Molar Status (Linkgenetic-C) 12,18 5,205 Heat Flow (sid/h) -1,751s=007 -6,140s=003	Vagoue 1000 0.0003 0.0000 Temperature (C) 20.00 148.3 194.6 Pinnume (Red) 101.3 1961.3 101.3 Mater Flow (Spinowh) 148.7 2.514 2.612 Mater Flow (Spinowh) 148.8 0.3495 0.0461 Moler Stroky (Liv) (With your offer) 1506e+004 24.22e+005 5.706e+005 Moler Stroky (Liv) (Liv) (Mithymole) 12.13 523.0 11.8 Heat Flow (bUH) -1.751re-007 45.140e+003 -1.805e+006	Vagoue 1.000 0.0003 0.0000 1.0000 Temperature (C) 70.00 143.3 194.6 194.4 Persume (Ke) 70.00 143.3 194.6 194.4 Mater Flow (signolucity) 101.3 191.4 101.3 101.3 Mater Flow (signolucity) 1.188=-004 391.6 380.2 1.173e+004 Did Meet Lie (Wei Flow (w3/h)) 16.38 0.3895 0.2447 16.41 Molar Statisty (Liftgrandle-C) 5.006e+004 2.422e+005 5.706e+006 4.726e+004 Molar Statisty (Liftgrandle-C) 12.18 523.0 11.36 10.87 Heat Flow (sL/h) -1.751e+007 -6.140e+003 -1.605e+006 -1.651e+007

Figure 35-SO₂ Dryer Conditions Worksheet

S02 Dryer

H25207 Sultur-Dicxide Sultur-Tricxide Sulturic-Acid	0.0005	0.7131 0.0001	0.2879 0.0027	0.0000	
Sulfur-Dioxide Sulfur-Trioxide Sulfuric-Acid	0.1288 0.0000	0.0001	0.0027	0.1288	
Salfun Tricoide Salfunic-Acid	0.0000				
Sulfuric-Acid		0.0001	0.0000	0.0000	
	0.0000	0.2779	0,7087	0.0020	
Hydrogen-Sulfide	0.0012	0.0000	0.0000	0,0012	
Water	0.0028	0.0075	0.0000	0.000.0	
Nitrogen	0,7727	0.0005	0.0002	0.7733	
Oxygen	0.0627	0.0002	0.0000.	0.0628	
Carbon-Dioxida	0.0318	0.0005	0.0004	0,0318	
Sulfur	0,0000	0.0000	0.0000	0.0000	
	Nation Oxygen Cerbon-Dicode Suffur	Aktrogen 0,7127 Okygen 0,0627 Cerbon-Dicoide 0,0318 Suitur 0,0000	National Control Control Dirygen 0.7127 0.0005 Dirygen 0.0627 0.0005 Suithur 0.0018 0.0005	Name Octoar Octoar Octoar Name 0.7727 0.0005 0.0002 Oxygen 0.0627 0.0002 0.0000 Carbon-Dicoide 0.0318 0.0005 0.0000 Suitur 0.0000 0.0000 0.0000	Mater Outcas Outcas </td

Figure 36-SO₂ Dryer Streams Compositions

6.2.4.4 Reactor Bed 1

The dried SO_2 gas is heated to bring it to the reactor optimum temperature of 450°C. The V_2O_5 catalyst bed increases increase the rate of reaction. The reaction is exothermic and 63% conversion of SO_2 to SO_3 takes place.

Jesign React	Ions Rating Worksheet Dynamics			1000000		
Worksheet	Name	SO2 to Bed 1 D	ind Air to React	Noliq2	502/503	-
Conditions	Vapour	1.0000	1.0000	0.0000	1.0000	
roperties	Temperature [C]	450.0	45.00	525.B	525.8	
Composition	Pressure (kPa)	101.3	101.3	101.3	101.3	
f Speca	Molar Flow [kgmole/h]	349.4	125.9	0.0000	461.1	
	Mass Flow (log/h)	1.173e+004	3684	0.0000	1.541e+004	
	Std Ideal Liq Vol Flow (m3/h)	18.41	6.732	0.0000	34.25	
	Molar Enthalpy [kl/kgmole]	-3.842e+004	-1.263e+004	-4.807e+005	-3.256e+004	
	Molar Entropy (kl/kgmole-C)	36.07	7,200	+129.2	34,15	
	Heat Flow (kl/h)	-1.342e+007	-1.591e+006	0.0000	-1.501e+007	

Figure 37-Reactor Bed1 Conditions Worksheet

6.2.4.5 Reactor Bed 2

ED c Des We

The outlet of Bed 1 is cooled and returned to Bed 2 to achiev

Figure 38-Reactor Bed 2 Conditions Worksheet

6.2.4.6 Reactor Bed 3

The outlet of Bed 2 is sent to the tube side of Heat Exchanger 2 to be cooled back to the optimum temperature by the unconverted gases from IAT in the shell side. The cooled gas returns to Bed 3 to achieve further conversion (93%) of SO₂ to SO₃.

SO2/SO3 to Bed 3

Reactor Bed 2

Cooled SO2/SO3

Worksheet	Name	Cooled \$02/503 1	Notice	\$02/503 to HE-3	0
Conditions	Vapour	1.0000	0.0000	1,0000	sempty
Properties	Temperature ICI	460.0	490.0	490.0	<empty< td=""></empty<>
Composition	Pressure (kPa)	101.3	101.3	101.3	cempty
F Specs	Molar Flow [kpmole/h]	456.4	0.0000	454.4	<empty< td=""></empty<>
	Mass Flow [kg/h]	1.541e+004	0.0000	1.541e+004	<empty< td=""></empty<>
	Std Ideal Lig Vol Flow (m3/h)	23.95	0.0000	23.82	< empty
	Molar Enthalpy (kl/kgmole)	-3.729e+004	-4.634e+005	-3.725e+004	< empty
	Molar Entropy (kl/kgmole-C)	19.07	-129.5	29.54	< empty
	Heat Flow (k//h)	-1.702e+007	0.0000	-1.693e+007	8.897e+0

Figure 39-Reactor Bed 3 Conditions Worksheet

6.2.4.7 Reactor Bed 4

The SO_2/SO_3 gas stream from Bed 3 is sent to the Intermediate Absorption Tower (IAT). The unconverted gases from IAT return to Bed 4 after being heated by Heat Exchangers 2 and 3. In bed 4, the remaining SO_2 achieves the maximum conversion of 99.7%.

Norksheet	Name	Heated S02/503 :	Notia5	503 to MAT	
anditions	Vepour	1.0000	0.0000	1.0000	
Properties	Temperature (C)	501.4	523.2	523.2	
Composition	Pressure [kPa]	101.3	101.3	101.3	
of specs	Molar How [kgmole/h]	-416.0	0.0000	414.5	
Collection of the	Mass Flow (kg/h)	1.231e+004	0.0000	1.231e+004	
	Std Ideal Lig Vol Flow (m3/h)	22.19	0.0000	22.10	
	Molar Enthalpy [kl/kgmole]	-5914	-1.679e+005	-5936	
	Molar Entropy [kl/kgmole-C]	32.91	-50.96	33.09	
	Heat Flow (kt/h)	-2.461e+006	0.0000	-2.461e+006	

Figure 40-Reactor Bed 4 Conditions Worksheet

6.2.4.8 Intermediate Absorption Tower (IAT)

The SO_2/SO_3 gas stream from Bed 3 is cooled and enters IAT. SO_3 reacts with concentrated sulphuric acid to form oleum. The temperature of the column is not kept too high as absorption is favorable at low temperature. Most of the SO_3 is absorbed in this column.

Norkshout	[Marine	Contrat (CONTROL)	to on the distance of	Otran Law 187	The same state of Fight	-
	Name	Cooled 502/3031	ecyclea H2504 T	Oteam trans that	Unconverted SOZ	Ch.
onditions	Nepour Paratase MD	200.0	45.00	200.0	200.0	sempt)
openies	Bearing Billst	101.2	101.7	301.3	101 2	canot
Snere	Alstar Else Scenala/b)	454.4	37.55	37.07	436.0	cempty
-	Marr Else Benihl	15434-004	2050	6750	1.7710+004	campb)
	And initial Lie Mail Francisco And	1.34 (2004	2000	1.570	163167004	sempt)
	States Lig vor How prising	1 227 - 004	41784-008	1407-004	1847-1924	sempo
	Molar Enthalpy (circgmole)	10.00	-8.1230+9005	-1.0936+004	1.3406+0.04	-cempty
	wora pupply for iduose of	10.03	-440.5	000.1	17,40	<enpo)< td=""></enpo)<>

Figure 41-IAT Conditions Worksheet

6.2.4.9 Main Absorber Tower (MAT)

The gas stream from Bed 4 of the reactor is cooled and sent to MAT for maximum removal of SO_3 from flue gases before they are sent to the scrubber.

Unconverted SO2/SO3

IAT

Oleum to Oleum Header

Cooled SO2/SO3

Recycled H2SO4

Design Fead	bons Rating Worksheat Dynamics						
Worksheet	Name	Cool 503	Recycled H2504 t	Gleum from MAY	To Scrubber		mat
Conditions:	Viepour	1.0000	0.0000	0.0000	1.0000	. ver	pty
toperties	Temperature (C)	200.0	45.00	87.00	\$7.00	ser	phy.
omposition	Pressure (kPa)	101.3	101.3	101.3	101.3	140	pty
F Specs	Molar Row (kgmole/h)	414.5	9.203	9.159	407.6	101	pty
	Mass Row (kg/h)	1.231e+004	196.4	1452	1.176e+004	cer	pty
	Std Ideal Liq Vol Flow [m3/h]	22.10	0.4912	1.468	21.81	147	phy
	Molar Enthalpy [k//kgmple]	-1.621e+004	-8.125e+005	-2.142e+005	-1330e+004	<er< td=""><td>pty</td></er<>	pty
	Molar Entropy (kl/kgmole-C)	16.60	-406.3	557.2	6.987	1.07	фħ)
	Heat Row (kl/h)	-6.718e+006	-7.477e+006	-1.962e+006	-5.422w+006	6.811e	-0

Figure 42-MAT Conditions Worksheet

The composition of SO_3 in MAT is decreased to zero.

rugn Keach	one Rating Worksheet Dynamics						
Vorksheet		Cool SO3	Recycled H2SO4 t	Oleum from MAT	To Scrubber		
onditions	H25207	0.000.0	0.0000	0.7592	0.0000		
operties	Sulfur-Dioxide	0.0003	0.0001	0.0000	0.0003		
Composition PF Specs	Sulfur-Tripside	0.0168	0.0001	0.0000	6.0000		
	Suffunc-Aod	0.0000	0.9912	0.2367	0.0000		
	Hydrogen-Sulfide	0.0010	0.0000	0.000	0.0010		
	Water	0.0015	0.0073	0.0026	0.0016		
	Nitrogen	0.8868.0	0.0006	0.0007	0.9018		
	Oxygen	0.0570	0.0003	0.0001	0.0580		
	Carbon-Dioxide	0.0365	0.0004	0.0006	0.0371		
	Sutur	0.0000	0.0000	0.0000	0.0000		
	- A final final fi						
	< Mista						

Figure 43-MAT Streams Compositions

6.2.4.10 Oleum Header

The oleum produced in IAT and MAT is sent to oleum header where it is separated into fractions for use in different equipment across the plant. The ratios of oleum and sulphuric acid were adjusted according to the need of all equipment. For example, in the dryers, oleum is used as a dehydrating agent and hence the ratio of sulphuric acid in that stream can be minimized. On the other hand, the absorption columns require H_2SO_4 for the reaction. Hence oleum does not need to be sent as part of that stream.

Figure 44-Oleum Header Streams Splits and Flows

6.2.4.11 Dilution Tank

After setting the split ratios for oleum in different equipment, the major part of oleum is sent to the dilution tank for reaction with water to produce sulphuric acid. Since this reaction is highly exothermic, there is a risk of acid mist formation. To prevent this,

coolants are circulated in the jackets surrounding the reaction tank (CSTR).

Vorksheet	Name	Processed water	To Dilution Tank	H2504 to Storage	Neward	0d
anditions	Vapour	0.0000	0.0004	0.0000	1.0000	temptot
operties	Temperature (C)	70.00	92.44	45.00	45.00	<empty:< td=""></empty:<>
mposition	Pressure (kPa)	101.3	101.3	101.3	101.3	<empty< td=""></empty<>
5pecs	Molar Flow (kgmole/h)	34.98	67.03	92.03	0.0000	<empty< td=""></empty<>
	Mass Flow [kg/h]	450.0	8514	8954	0.0000	<empty.< td=""></empty.<>
	Stid Ideal Lig Vol Flow [m3/h]	0.4509	7.138	4.912	0.0000	< empty
	Molar Enthalpy (kl/kgmole)	-2.824e+005	-5.029e+005	-8.125e+005	-1.543e+004	cempty
	Molar Entropy [kt/kgmole-C]	+152.6	93.97	-406.3	6,387	<empty< td=""></empty<>
	Heat Flow (k/h)	-7.055e+006	-3.372e-007	-7.477e+007	0.0000	-3.400e+00

Figure 45-Dilution Tank Conditions Worksheet

6.2.4.12 Storage Tank H2SO4 to IAT H2SO4 to Storage H2SO4 H_2SO_4 is split here for use in absorbers and to MAT Storage Tank for extraction as final product. FINAL 🚯 Tee: Storage Tank × Design Rating Workshert Dynamics Worksheet H2SO4 to Storage H2SO4 to MAT H2SO4 to IAT FINAL PRODUCT Conditions H25207 0.0000 0.0000 0.0000 0.0000 Properties 0.0001 0.0001 0.0001 Sulfur-Dioxide 0.0001 Composition 0.0001 0.0001 0.0001 0.0001 Sulfur-Trioxide PF Specs 0.9912 0.9912 0.9912 0.9912 Sulfuric-Acid 0.0000 0:0000 0.0000 0.0000 Hydrogen-Sulfide Water 0.0073 0.0073 0.0073 0.0073 0.0006 0.0006 0.0006 0.0006 Nitrogen 0.0003 0.0003 0.0003 0.0003 Oxygen 0.0004 0.0004 0.0004 0.0004 Carbon-Dioxide 0.0000 0.0000 0.0000 0.0000 Sulfur

T ¹	1 (()	m 1	<i>C</i> ,	C	
HIAHTO	$\Delta h_{1} = 1$	Iank	Stroame	Iomn	ocitionc
IIGUIC	TO Storage	IUIIN	JUCUIIIS	COMP	
0	0				

Delete

Ingnored

CHAPTER 7

Costing and Economic Analysis

Cost estimation and economic analysis are the most important yet complicated aspects of setting up a plant. Industrial plants, like the one being discussed in our thesis are designed to produce products on a very large scale. In order to maximize the profits generated, the plant investment needs to be minimized. Hence, costing is of utmost importance especially because it is a crucial part of the feasibility analysis, which helps in the selection of the manufacturing process to be used.

The estimation of design cost is the fiscal description of the different costs related to the plant, based on total investment. Working capital and fixed capital make up the total investment. Fixed capital is the overall cost required for erection of a plant that is functional and ready to be set up. This cost is paid for the installation of equipment and will eventually wind up as the salvage value. Whereas, working capital is the additional funds that would be needed to ensure that the plant is up and running. All these values, along with the detailed economic analysis are shown in the tables given below.

7.1 Cost Estimates for the Design

Costing was done with references from Coulson Richardson's Chemical Engineering Design Volume 6. Following are the graphs and figures used in cost estimation. (Vatavuk, 2002)

7.2 Calculation of PCE (Personal Consumption Expenditure)

Equipment Cost Index	Value
2004	444.2
2019	756.9
3.5% decrease in 2020	0.035

Table 7.1 Basic d	ata for costing
-------------------	-----------------

20	730.4		
Cur	Conversion		
Conversion dollar)	(pound	to	1£ = \$1.26

The equation used to calculate the purchase cost of some equipment is:

$$Ce = CS^n$$

Where Ce is the purchased equipment cost in £,

C is a constant in £,

S is size unit, and

n is the index.

Table 6.2 refers to the equipment for which the purchase cost is calculated using this equation.

Equipment	Size unit, S	Size range	Con: C,£	stant C,\$	Index n	Comment
Agitators Propeller Turbine	driver power, kW	5-75	1200 1800	1900 3000	0.5 0.5	
Boilers Packaged up to 10 bar	kg/h steam	$(5-50) \times 10^3$	70	120	0.8	oil or gas fired
Centrifuges Horizontal basket Vertical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0	carbon steel
Compressors Centrifugal	driver power, kW	20-500	1160	1920	0.8	electric, max. press.
Reciprocating	12		1600	2700	0.8	50 bar
Conveyors Belt 0.5 m wide 1.0 m wide	length, m	2-40	1200 1800	1900 2900	0.75 0.75	
Crushers Cone Pulverisers	t/h kg/h	20-200	2300 2000	3800 3400	0.85	
Dryers Rotary Pan	area, m ²	5-30 2-10	21,000 4700	35,000 7700	0.45	direct gas fired
Evaporators Vertical tube Falling film	area, m ²	10-100	12,000	20,000 10,000	0.53 0.52	carbon steel
Filters Plate and frame Vacuum drum	area, m²	5-50 1-10	5400 21,000	8800 34,000	0.6 0.6	cast iron carbon steel
Furnaces Process Cylindrical Box	heat abs, kW	10 ³ - 10 ⁴ 10 ³ - 10 ⁵	330 340	540 560	0.77 0.77	carbon steel × 2.0 ss
Reactors Jacketed, agitated	capacity, m ³	3-30	9300 18,500	15,000 31,000	0.40 0.45	carbon steel glass lined
Tanks						-
Process vertical horizontal	capacity, m ³	1-50 10-100	1450 1750	2400 2900	0.6 0.6	atmos. press. carbon steel
floating roof cone roof		50-8000 50-8000	2500 1400	4350 2300	0.55 0.55	×2 for stainless

Figure 47-Data	for	purchase	cost ea	uation
	<i>, -</i> ·	P		

7.2.1 Blower

Table 7.2 Calculation of Blower Purchase Cost

Size Factor (S) / kW	156
Base Cost (C) / £ - 2004	1160
Index Number (n)	0.80
Cost (£)	65742
Cost (\$)	82834

7.2.2 Pump

Table 7.3 Estimate of Pump Purchase Cost

	Cost (\$)	1000
--	-----------	------

7.2.3 Furnace (Cylindrical)

Table 7.4 Calculation of Furnace Purchase Cost

Size Factor/S (KW)	7600
Base Cost/C (\$)	330
Index Number (n)	0.77
Cost (£)	321174
Cost = (\$)	404679

7.2.4 Reactor

The cost of catalyst per kg is taken from literature. The total weight of catalyst in the reactor is calculated in our plant design. The product of cost per kg and total weight gives the purchase cost of the catalyst.

Total reactor cost = Cost of catalyst + Cost of reactor body

Size Factor/S (m ³)	13.5
Base Cost/C (£)	9300
Index Number (n)	0.40
Cost (£)	26340
Cost = (\$)	33188
Catalyst cost/(\$/kg)	22.5
Weight of catalyst (kg)	9176
Cost of catalyst	206460
	·
Total reactor cost (\$)	238699

Table 7.5 Calculation of Reactor Purchase Cost

7.2.5 Oleum Header (Vertical tank)

Table 7.6 Calculation of Oleum Header Purchase	Cost
--	------

Size Factor/S (m ³)	7.00
Base Cost/C (£)	1450
Index Number (n)	0.60
Cost (£)	4660
Cost (\$)	5872

7.2.6 Dilution tank (Jacketed)

Size Factor/S (m ³)	34.8
Base Cost/C (£)	9300
Index Number (n)	0.40
Cost (£)	38469
Cost (\$)	48471

Table 7.7 Calculation of Dilution Tank Purchase Cost

7.2.7 H₂SO₄ tank (Vertical tank)

Tahle '	780	Calcul	ation	of	Storage	Tank	Purc	hase	Cost
Tuble /	.0 0	Juicui	uuon	ບຸ	siorage	TUIIK	гис	luse	cosi

Size Factor/S (m ³)	5.28
Base Cost/C (£)	1450
Index Number (n)	0.60
Cost (£)	3935
Cost (\$)	4958

For the calculation of purchase cost of heating and cooling equipment, we use Fig. 6.3 from Richardson Coulson Volume 6.

Figure 48-Purchase Cost for Shell and Tube Heat Exchangers

The heating surface area is taken from our equipment design. The cost of melter is calculated using Fig.6.3 b. The equation used to calculate total cost is:

Total cost = Bare cost * Material factor * Pressure factor

7.2.8 Sulfur Melter

Heat Transfer Area	90.0
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Fixed Tube Sheet)	0.80
Bare Cost (\$)	32000
Total Cost (\$)	25600

Table 7.9 Calculation of Sulfur Melter Purchase Cost

7.2.9 Coolers

Heat Transfer Area	75.0
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Fixed Tube Sheet)	0.80
Bare Cost (\$)	30000
Total Cost (\$)	24000
Total Cost of both coolers (\$)	48000

Table 7.10 Calculation of Cooler Purchase Cost

7.2.10 Reactor pre-heater

Table 7.11 Calculation of Heater Purchase Cost

Heat Transfer Area	60.0
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Fixed Tube Sheet)	0.80
Bare Cost (\$)	27000
Total Cost (\$)	21600

7.2.11 Heat Exchanger 2

Table 7.12 Calculation of Heat Exchanger Purchase Cost

Heat Transfer Area	200
Material Factor (CS)	1.00
Pressure Factor	1.00

Type Factor (Fixed Tube Sheet)	0.80
Bare Cost (\$)	50000
Total Cost (\$)	40000

7.2.12 Heat Exchanger 3

Table 7.13 Calculation of Heat Exchanger Purchase Cost

Heat Transfer Area	150
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Floating head)	1.00
Bare Cost (\$)	42000
Total Cost (\$)	42000

7.2.13 Intermediate cooler between $1^{st}\,and\,2^{nd}\,bed$

Heat Transfer Area	47.0
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Fixed tube)	0.80
Bare Cost (\$)	22000
Total Cost (\$)	17600

Table 7.14 Calculation of Cooler Purchase Cost

7.2.14 Intermediate cooler between 4th bed and MAT

Heat Transfer Area	60.0
Material Factor (CS)	1.00
Pressure Factor	1.00
Type Factor (Fixed tube)	0.80
Bare Cost (\$)	27000
Total Cost (\$)	21600

Table 7.15 Calculation of Cooler Purchase Cost

The purchase cost of absorbers is calculated using various figures and design calculations.

The cost of packing is calculated using Table 6.3.

	Cost	$f/m^3 (s/m^3)$	
Size, mm	25	38	50
Saddles, stoneware	840 (1400)	620 (1020)	580 (960
Pall rings, polypropylene	650 (1080)	400 (650)	250 (400
Pall rings, stainless steel	1500 (2500)	1500 (2500)	830 (1360

Figure 50-Purchase cost of column packing
The dimensions have been calculated in the design of absorbers. Using Figure 6.5b and the dimensions of the column, we calculate the bare vessel cost. Vessel cost is calculated using the formula:

For the cost of packing, volume of packing and Table 6.3 are used. The volume of packing is taken from our absorption column design.

Total cost of column is calculated using the formula:

Total cost of column = Vessel cost + Cost of packing

7.2.15 Air Dryer

Diameter (m)	0.97
Vessel Height (m)	5.18
Bare Vessel Cost (BVC) / \$	11000
Material Factor - SS / MF	2.00
Pressure Factor / PF	1.00
Vessel Cost (\$)	22000
Packing cost (\$/m ³)	960
Volume of packing (m ³)	3.10
Total packing cost (\$)	2976
Total column cost (\$)	24976

Table 7.16	Calculation	of Air Drver	Purchase	Cost
1 4010 7 110	Guicalation		i ui ciiube	0050

7.2.16 SO₂ Dryer

Table 7.17 Calculation of SO₂ Dryer Purchase Cost

Diameter (m)	1.07
--------------	------

Vessel Height (m)	3.13
Bare Vessel Cost (\$) / BVC	9000
Material Factor - SS / MF	2.00
Pressure Factor / PF	1.00
Vessel Cost (\$)	18000
Packing cost (\$/m ³)	650
Volume of packing (m ³)	2.81
Total packing cost (\$)	1827
Total column cost(\$)	19827

7.2.17 IAT

Diameter (m)	1.18
Vessel Height (m)	7.84
Bare Vessel Cost (\$) / BVC	19000
Material Factor - SS / MF	2.00
Pressure Factor / PF	1.00
Vessel Cost (\$)	38000
Packing cost (\$/m ³)	1020
Volume of packing (m ³)	6.80
Total packing cost (\$)	6936
Total column cost (\$)	44936

Table 7.18 Calculation of IAT Purchase Cost

7.2.18 MAT

Table 7.19 Calculation of Oleum Header Purchase Cost

Diameter (m)	0.84
--------------	------

Vessel Height (m)	5.31
Bare Vessel Cost (\$) / BVC	6500
Material Factor - SS / MF	2.00
Pressure Factor / PF	1.00
Vessel Cost (\$)	13000
Packing cost (\$/m ³)	1400
Volume of packing (m ³)	2.33
Total packing cost (\$)	3262
Total column cost (\$)	16262

7.3 Calculation of Physical Plant Cost (PPC)

PCE (2004) = \$1091822

PCE (2020) = \$1795308

The factors needed to calculate PPC are found in Table 6.1. (BUITEMS, 2019) (BUITEMS, 2019)

		Process type			
Item	Fluids	Fluids- solids	Solid		
1. Major equipment, total purchase					
cost	PCE	PCE	PCE		
f_1 Equipment erection	0.4	0.45	0.50		
f 2 Piping	0.70	0.45	0.20		
f_3 Instrumentation	0.20	0.15	0.10		
f_4 Electrical	0.10	0.10	0.10		
f 5 Buildings, process	0.15	0.10	0.05		
* f 6 Utilities	0.50	0.45	0.25		
* f 7 Storages	0.15	0.20	0.25		
*f 8 Site development	0.05	0.05	0.05		
* f 9 Ancillary buildings	0.15	0.20	0.30		
2. Total physical plant cost (PPC) $PPC = PCE (1 + f_1 + \dots + f_9)$					
= PCI	E× 3.40	3.15	2.80		
f 10 Design and Engineering	0.30	0.25	0.20		
f_{11} Contractor's fee	0.05	0.05	0.05		
f ₁₂ Contingency	0.10	0.10	0.10		
Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{11})$	(12)	200000	2000000		
= PPC	C× 1.45	1.40	1.35		

PPC is calculated using the formula:

$$PPC = PCE(1 + f1 + \dots + f6)$$

Fluids have been selected as the process type because no solids are involved in our plant operation.

Item	РСЕ
Equipment erection (f1)	0.4
Piping (f2)	0.7
Instrumentation (f3)	0.2
Electrical (f4)	0.1
Buildings/ Process (f5)	0.15
Utilities (f6)	0.5
PPC (\$)	5475691

7	'ahle	719	Cal	lcui	lation	of	PPC.
1	unic	1.17	Gui	cui	ution	UJ.	110

7.4 The calculation of Fixed Capital is done using the equation:

FC = PPC(1 + f10 + f11 + f12)

Item	РСЕ
Design and Engineering (f10)	0.3
Contractors fee (f11)	0.05
Contingency (f12)	0.1
Fixed capital (\$)	7939752

Table 7.20 Calculation of Fixed Capital

7.5 Working Capital is estimated to be 10-20% of the fixed capital. We have assumed an average value of 15% to calculate the working capital.

Working Capital = 0.15 * Fixed Capital

Working Capital (\$)	1190962
----------------------	---------

Total investment = Fixed Capital + Working Capital Table 7.22 Calculation of Total Investment

Total Investment (\$)	9130715

7.6 During plant operation, the operating costs are calculated using Table 6.6 of Coulson Richardson Chemical Engineering Design Volume 6.

Figure 52-Data for calculation of Operating Cost

The cost of utilities is calculated using Table 6.5 of Coulson Richardson Volume

6.

Utility	UK	USA
Mains water (process water)	60 p/t	50 c/t
Natural gas	0.4 p/MJ	0.7 c/MJ
Electricity	1.0 p/MJ	1.5 c/MJ
Fuel oil	65 £A	100 S/t
Cooling water (cooling towers)	1.5 p/t	1 c/t
Chilled water	5 p/t	8 c/t
Demineralised water	90 p/t	90 c/t
Steam (from direct fired boilers)	7 £/1	12 S/t
Compressed air (9 bar)	0.4 p/m ³ (Stp)	0.6 c/m ³
Instrument air (9 bar) (drv)	0.6 p/m ³ (Stp)	$1 c/m^{3}$
Refrigeration	1.0 p/MJ	1.5 c/MJ
Nitrogen	6 p/m3 (Stp)	8 c/m ³

Figure 53-Data for calculation of Utility cost

The fixed operating cost is the sum of all the items ranging from 5 to 12.

Total base salary = Annual Base Salary * Number of operators

Allowances = 0.5 * Total Base Salary

Total operating labor = Total base salary + Allowances

 $Lab \ costs = 0.2 * Total \ Operating \ Labour$

Supervision = 0.2 * Total Operating Labour

Plant Overheads = 0.5 * *Total Operating Labour*

Capital Charges = 0.1 * Fixed Capital

Local taxes = 0.02 * Fixed Capital

Item	%	Cost
Maintenance = 0.05*FC	0.05	396987.6309
Operating Labor		
Annual Base salary (\$)	5700	
Shifts	2	
Operators	10	
Total Base Salary (\$)	57000	
Allowances (\$)	28500	
Total operating labor (\$)	85500	
Lab costs (\$)	0.2	17100
Supervision (\$)	0.2	17100
Plant Overheads (\$)	0.5	42750
Capital Charges (\$)	0.1	793975.2618
Local Taxes (\$)	0.02	158795.0524
Total (\$)		1512208

Table 7.23 Calculation of Fixed Operating Cost

The variable operating cost covers the following items:

Raw materials		
Sulphur Cost (\$/tonne) -1998	36.85	
Cost index - 1998	436	
Cost Index -2020	592	
Sulphur Cost (\$/tonne) -2020	50.0	
Sulphur Weight / (tonne/hr)	1.4576	
Sulphur Weight / (tonne/yr)	12768	
Total Cost	638982	

Table 7.24 Calculation of Variable Operating Cost

The cost of miscellaneous materials is calculated using the formula:

Miscellaneous Materials = 0.1 * Maintenace cost

Table 7.25 Calculation of Miscellaneous Material Cost

Miscellaneous Materials	39699
-------------------------	-------

Table 7.26 Calculation of Utilities Cost

Utilities		
Process Water Weight (tonne/yr)	154402	
Variable cost (\$/tonne)	0.5	
Total cost of PW (\$)	77201	
Steam Cost (\$)	0	
Total Utilities Cost (\$)	77201	

Total variable cost = Raw material + Utilities + Miscellaneous materials

Table 7.27 Calculation of Variable Operating Cost

Total Variable costs (\$)	755881
---------------------------	--------

Direct production cost = Fixed operating cost + Variable operating cost

Table 7.28 Calculation of Direct Production Cost

Direct Production Cost (\$)	2268089
-----------------------------	---------

7.7 Calculation of Annual production Cost

 $\label{eq:Annual Production Cost} {\it Annual Production Cost} = {\it Direct production cost} + {\it Sales expense} +$

 $General\ overheads + R\&D$

Annual Production Cost (\$)		
Sales expense		
General overheads	453618	
R&D		
Annual Production Cost (\$)	2721707	

Table 78-Calculation of Annual Production Cost

Annual Production rate (kg)	38605320
-----------------------------	----------

7.8 Calculation of Production Cost per kg

The production cost per kg is calculated using the formula:

$$Production \ cost \ \left(\frac{\$}{kg}\right) = \frac{Annual \ Production \ Cost}{Annual \ Production \ Rate}$$

Production cost (\$/kg)	0.0705

7.9 Calculation of payback period

Total selling price of sulphuric acid

= Selling price per unit mass * mass of acid produced

Annual Cash Flow = Total selling price – Annual production cost

 $Payback \ period = \frac{Total \ investment}{Annual \ Cash \ Flow}$

Table 79-Calculation of Payback Period

Payback Period				
Selling price H ₂ SO ₄ / (\$/tonne)	150			
H ₂ SO ₄ Produced (tonne/ hr)	4.41			
H ₂ SO ₄ Produced (tonne/ year)	38605			
Total price	5790798			
Annual Cash Flow (\$)	3069090			
Payback period (years)	2.94			

CHAPTER 8

Instrumentation & Process Control

Process control system is a set of controls that is used to constantly monitor any deviation from the pre-set conditions and troubleshoot the errors to ensure a safe and efficient process. (Holloway, 2012)

8.1 Overview of the Controllers

8.1.1 Temperature Controller

A temperature controller measures the temperature (process variable) of the stream to which it is connected and compares it to the required value (set value). It does so using a closed or open loop control system. In the open loop system, the temperature of the output or the process variable does not influence the heating/cooling system. However, in the closed loop system, the temperature of the output is fixed and the process variable must be adjusted if there is a deviation from the set value.

A temperature controller uses this error (deviation) and sends an output signal to the manipulated variable that can be a control valve or heater or any other Final Control Element. Any variation in the manipulated variable subsequently has an effect on the Controlled Variable (Process Variable).

For our project, closed loop temperature controllers will be used as the temperatures affect the kinetics of the reactions.

8.1.2 Pressure Controller

Pressure Sensor detects any variation in the pressure of the equipment or the stream and Pressure Controller adjusts it to the set value if need be. Like other controllers, Pressure Controllers are crucial for use in production line as any deviations from the pre-set limits can be hazardous. Over pressurization may lead to explosions and low pressures can sometimes affect the kinetics and hence the quality of the product.

8.1.3 Flow Controller

It is an electrical control device that sends signals to troubleshoot deviations in the pre-set value of a controlled variable. It is connected to a flow control valve or an actuator. The actuator is adjusted by the controller in response to the signal detected by the sensor. The valve opening is adjusted as per requirement.

8.1.4 Level Controller

It uses a displacer which is connected to the sensor to detect fluid level. Displacer is immersed into the fluid and if the level increases and reaches the higher set value, the actuator will receive a signal from the level controller. The control valve opens to allow the level to drop to the set point.

8.1.5 Analyzer Controller

The composition control of the product is imperative for economic operation of the plant. To ensure stringent composition controls, process analyzers are installed that measure the composition (purity) of the product.

8.1.6 Differential Pressure Controller

It has a valve and a pressure actuator that are used to keep a constant and low pressure difference (pressure drop) across a system. It can also be used to control flow across a valve that affects the differential pressure

8.2 Process Control on Equipment

8.2.1 Controls in pump

8.2.1.1 Pressure Controller: The flow rate through the valve determines the amount of work the pump will exert on the

incoming stream of molten sulfur that will subsequently affect the pressure of the outlet stream.

Figure 54-Controls on Pump

8.2.1.2 Flow Controller: The valve opening controls the flow-rate of molten sulphur. Higher the amount of product required, larger the opening.

8.2.2 Controls in Heat Exchanger

8.2.2.1 Flow Controller: The flow rate of SO_2/SO_3 gas mixture is controlled via a control valve. Higher the flowrate of the SO_2/SO_3 gas mixture from the reactor, larger the opening of the valve to ensure required supply of the gas mixture to IAT and vice versa.

8.2.2.2 Temperature Controller: The

Figure 55-Controls on Heat Exchangers

flow rate of the incoming shell-side stream of unconverted SO_2/SO_3 gases from the absorbers will determine the tube side outlet temperature that is coming from the reactor.

8.2.4 Controls in Reactor

Figure 56-Controls on Reactor

The heat exchanger ensures optimum reactor inlet temperature to allow maximum SO_3 yield.

- Flow Controller: Flow-rate of the SO₂ tube side inlet stream is adjusted by a control valve. The opening of the valve is varied as per the required flow of the SO₂ gas mixture in the reactor.
- Pressure Controller: The optimum pressure of the SO₂ inlet stream is 2 atm. A pressure controller is used to ensure that the pressure remains at this value.
- Temperature Controller: The shell side heating stream temperature will ensure optimum tube side SO₂ outlet temperature entering the reactor that will subsequently affect the composition of the SO₃ product formed. For maximum conversion and purity, the temperature of the SO₂ stream must be optimum i.e. 450°C.
- Analyzer Controller: This is a crucial controller that ensures maximum purity of the SO₃ product which affects the quality of our final products i.e. sulphuric acid and oleum as well as the percentage of flue gases released into the atmosphere.

8.2.5 Controls in Absorption Column

Figure 57-Controls on Absorbers

- Flow Controller: The incoming sulphuric acid flow rate will determine absorption extent of the gas mixture in sulphuric acid. The valve opening controls the flow rate. Higher the flow-rate of sulphuric acid required, larger the opening of the valve.
- Differential pressure controller: Absorbers work best at low temperatures and high pressures. However to ensure that there is not a large pressure drop in the packing as it will affect the quality of product, a differential pressure controller is used to allow low and constant pressure drop across the column.
- Level Controller: The controller is connected to a control value at the column outlet to allow for only required level of gas mixture and sulphuric acid in the column. It is typically controlling the level of the interface between the two phases.

• Temperature Controller: The temperature of the outgoing SO₂/SO₃ gas mixture is controlled via the flow rate of the SO₂/SO₃ inlet. Absorption is favorable at low temperatures. Since our reaction is exothermic and the outgoing gas mixture stream has to be at a higher temperature before entering the Reactor Bed 4, the flow rate of the incoming stream must not be low so that maximum absorption takes place and higher amount of energy is produced.

Figure 58-Controls on Dilution Tank

8.2.6 Controls in Dilution Tank

- Flow Controller (Coolant): The flow rate of the coolant ensures proper cooling of the oleum stream. Since the absorption of oleum in water to form sulphuric acid is a highly exothermic reaction, large amount of coolant is required to ensure acceptable level of temperature of the tank.
- Temperature Controller: The coolant flow rate controls the tank temperature. To ensure sufficient cooling of the tank and its products after an exothermic reaction, large amounts of coolant is required.
- Flow Controller: The flow rate of oleum inlet stream must be adjusted according to the need of the final product i.e. sulphuric acid.
- Level Controller: The level controller allows for the output of sulphuric acid as per requirement. If the level gets too high, it will allow the

sulphuric acid to pass through. It will also ensure that only required amount of oleum is entered so that the level does not rise too high or fall too low.

Following is the brief on the function of various controllers in each of our equipment.

Equipment	Name of Controller	Type of Controller	Manipulated Variable	Controlled Variable
D	РС	PI	Flow rate	Pressure
Pump	FC	PI	Valve Opening	Flow rate
	FC	PI	Valve Opening	Flow rate of Air
	LC	PI	Flow rate of H ₂ SO ₄ Outlet	Level
Air Dryer	ТС	PI	Flow rate of H ₂ S ₂ O ₇ Inlet	Temperature of Dried Air
	dP	PI	Flow rate of Dried Air Outlet	Pressure Drop
SO ₂ Dryer	FC	PI	Valve Opening	Flow rate of Air
	LC	PI	Flow rate of H ₂ SO ₄ Outlet	Level
	ТС	PI	Flow rate of H ₂ S ₂ O ₇ Inlet	Temperature of Dried Air
	dP	PI	Flow rate of Dried Air Outlet	Pressure Drop
	РС	PI	Flow rate	Pressure
	FC	PI	Valve Opening	Flow rate
Reactor	ТС	PI	Inlet Flow rate	Reactor Temperature
	AC	PI	Reactor Inlet Temperature	Product composition
Heat	ТС	PI	Shell side inlet	Tube Side

Table 80-Proposed Plant Control System

Exchanger 2			from HEX 3 flow rate.	SO ₂ /SO ₃ Outlet Temperature
	FC	PI	Valve Opening	Flow rate of SO ₂ /SO ₃
Heat	TC	PI	Shell side Inlet from IAT flow rate	Tube Side SO2/SO3 Outlet Temperature
Exchanger 3	FC	PI	Valve Opening	Flow rate of SO ₂ /SO ₃
	FC	PI	Valve Opening	Flow rate of Sulphuric Acid
	LC	PI	Flow rate of Oleum Outlet	Level
IAT	ТС	PI	Flow rate of SO ₂ /SO ₃ Inlet	Outlet Temperature of SO ₂ /SO ₃ mixture
	dP	PI	Flow rate of SO ₂ /SO ₃ Outlet	Pressure Drop in the column
	FC	PI	Valve Opening	Flow rate of Sulphuric Acid
	LC	PI	Flow rate of Oleum Outlet	Level
МАТ	TC	PI	Flow rate of SO ₂ /SO ₃ Inlet	Outlet Temperature of flue gases
	dP	PI	Flow rate of flue gases	Pressure Drop in the column
	FC	PI	Valve Opening	Flow rate of Oleum Inlet
Dilution	ТС	PI	Flow rate of coolant	Temperature of the tank
Tank	LC	PI	Flow rate of H ₂ SO ₄ Outlet	Level
-	FC	PI	Valve Opening	Flow rate of coolant

CHAPTER 9

Safety Analysis

As we look at different manufacturing plants, including the Oleum and Sulphuric Acid Plant, it is important to adopt a wide range of procedures to ensure the well-being and safety of the staff as well as the smooth and reliable plant operation. (Wong, 2010) It is also imperative to prevent the emergence of any hazards and operability issues. These safety measures are classified into four different categories as mentioned below: (Industries, 2004) (Baldwin, 2002)

9.1 Design strategies and continuous inspection

- Location of administration building away from the plant
- Plant boundaries consolidation with strong walls for safety and security
- Incorporation of noise controlling measures
- Proper illumination
- Proper ventilation for displacement of harmful oxides with air
- Minimization of fire risks by construction of roads
- Proper accessibility throughout the plant
- Easy accessibility of safety lifts, ladders and other instrumentation equipment
- Proper insulation of equipment for conservation of temperatures and safety of operators
- Proper guarding and inspection of rotating and moving parts
- Walkthrough audits to monitor the effectiveness of existing procedures and policies

9.2 Health and safety communication

- Periodic training of all employees regarding prevention of risks and vocational health and safety
- Induction of safety signs in compliance with national and international standards

- Proper tagging and labeling of all equipment
- Demarcation of different areas of the plant and walk ways
- Provision of instruction manuals for different equipment
- Establishment of access point to material safety data sheets

9.3 Safety practices and personal protective equipment (PPE)

- Preparation of suitable work schedules to avoid fatigue
- Proper cleaning facilities for workers to use during and after shifts
- Medical testing for proper monitoring of employee health
- Usage of personal protective equipment

Type of PPE	Application
Hard Hat	Protects skull from impacts, penetration and electrical injuries especially in compact areas (converter and absorption column) and in multilevel units with restricted head space
Safety Shoes	Protection against rolling and falling objects, electrical hazards, hot surfaces and hot liquid splashes Recommended to be worn throughout the plant
Goggles	Protection against flying fragments, dusts and hot liquid splashes Recommended to be worn near high concentration oleum and Sulphuric acid production units
Respirators	Protection against inhalation of toxic vapors such as oxides of Sulphur, Sulphuric Acid mist etc.

Table 9.1 Types of PPE and its application

• Implementation of safety protocols other than personal protective equipment depending on likelihood and severity of the hazard

9.4 Emergency Planning

- Allocation of assembly points near admin building in case of emergencies
- Incorporation of a functioning, frequently tested system of alarms
- Induction of fire extinguishers at different locations
- Sufficient stock of first aid material due to excessive exposure to sulphuric acid and oleum
- Directions for all first aid equipment (showers, eye-wash stations, stretchers, kits) throughout the plant
- Installation of health care center near the plant
- Detailed procedures for immediate evacuation in case of emergency
- Back up services such as extra water tanks and fire ponds

9.5 Detailed HAZOP Analysis

A Hazard and operability study (HAZOP) is an overall systematic examination and structured representation of a complex planned operation or process for the identification and evaluation of problems that may pose a risk to either the equipment or personnel.

The first step is a detailed analysis of the three major materials that are entering as reactants, or coming out as products namely Sulphur, Oleum and Sulphuric Acid. The major hazards associated with them and the course of action that can be employed for their mitigation have been mentioned below. (Khan, 2018)

Sulfur	Flammable	Isolated area for storage that must be monitored Charging in melter using Automated Conveyer System
Oleum	Corrosive	Provision of level gauge Provision of Personal Protective Equipment to all employees Provision of double drain valve to Sulfuric Acid storage tank
Sulfuric Acid (98.5%)	Corrosive	Display of precautions and first aid Safety training for all employees Provision of eye wash and safety shower Closed process for Sulphuric Acid handling

 Table 9.2 Hazard Analysis of Raw Materials and Products

Following the analysis of the materials, we then moved onto the major equipment. This was done by using certain guidewords to look for any probable causes of incidents in equipment, their consequences, as well as the necessary action required for their mitigation. We will be dealing with the equipment one by one with the help of tables mentioned below. (BUITEMS, 2019)

9.5.1 Sulfur Melter HAZOP Worksheet

Title	Melting of Sulfur					
Part Considered	Storage tank and Pump Activity Melting					
Design Intent	Pressure	Temperature	Material	Sulfur		
	101.3 kPa	150°C	1457.6 kg/hr	Source	Sulfur Storage Tank	

Table 9.3 Property data for Sulfur Melter

Table 81-HAZOP Analysis on Sulfur Melter

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions required
Temperature	More	 High temperature of steam High ambient temperature Low sulfur quantity 	 Explosion due to ignitable mixture of H₂S vapors, sulfur steam and dust Change in molecular structure of sulfur causes pump failure 	 N₂ blanketing of vapor phase to eliminate source of ignition Controls on flow, temperature & pressure
	Less	 Low temperature of inlet steam Low ambient temperature Increased quantity of sulfur to the burner 	 Plant shutdown due to blockage of sulfur in lines Incomplete melting of sulfur may cause failure of pump 	 Install a bypass heater Periodic maintenance and Calibration of heating and control system

Parameter	Guide Word	Possible Causes	Possible Consequences	Actins Required
Pressure	More	 Temperature of incoming stream is very high Choking in the outlet valve 	• Over pressurizatio n may cause adverse effect on unit operation	 Controls on temperature and pressure Periodic inspection of the Sulfur melter Vent valves must be installed
	Less	 Low Temperature Low flow Failure in PSV (Pressure Safety Valve) 	• Wrong operation procedures due to different process conditions	 Install flow and temperature indicator PIAL (Pressure Indicator Alarm Low) installed
Level/Flow	More	 Outlet valve choked Faulty level indicator High flow rate or pump running over-speed 	 Accumulatio n of material may cause over- pressurizatio n that will cause leakage and thus poor quality products will be formed Overflow and spillage of molten sulfur in sulfur melter 	 Pressure and level indicators must be used Usage of Vent valves Installation of high level alarms in melter Use a diversion tank with proper valve arrangemen ts

	Less •	Leak in feed line or melter Insufficient supply of raw material Inlet valve choked	•	Probability of running dry Change in molecular structure of sulfur and an increased pumping power leading to its failure	•	Install automatic flow control valve Use NDT such as liquid penetration inspection or radiography
	Reverse •	Higher pressure and flow rate at the outlet causes a back flow	•	Product set off	•	Install NRV (Non-Return Valve)
Sulfur and Steam	As well • as	Leakage in the steam coil Foreign impurities	•	The quality of sulfur will deteriorate due to exposure with steam	•	Non- invasive techniques to detect leaks Regular Quality Control
	Power Failure		•	Sulfur blockage will cause pump failure	•	DG supply

9.5.2 Furnace HAZOP Worksheet

Title	Burning of Sulfur with Air						
Part Considered	Sulfur Burn	Sulfur Burner Activity Combustion					
Design Intent	Pressure	Temperature	Flow	Material	Sulfur		
	101.3 kPa	2014 ^o C	1458 kg/hr	Source	Sulfur Melter		

Table 9.5 Property data for Furnace

Table 82-HAZOP Analysis on Furnace

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions required
Temperature	More	• High flow rates of incoming streams	• Rupture of furnace walls	 Closed process Controls on flow, temperature & pressure
	Less	 Low incoming air temperature Less amount of fuel incoming 	 Incomplete or no combustion of sulfur to produce SO₂ 	 Install a bypass heater Periodic Calibration of heating and control system
Pressure	More	 Inlet air flow is higher than set point High inlet pressure Choking prevents SO₂ gas discharge 	 Rupture of furnace Heavy leakage may start 	 Use flow control valves Use PSV Install bypass line for restrictions

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions Required
Level/Flow More	 Choking at the outlet High flow rates of incoming streams Faulty level indicator 	• Over pressurizatio n and overheating may cause rupture of walls	 Vent valve should be connected Regular check of Level indicators Installation of high level alarms in furnace 	
	Less	• Less flow of raw materials than set value	• Incomplete combustion of sulfur to produce SO ₂	 Automatic flow control valve installation Periodic inspection and maintenance
	No	 No flow of raw materials due to pump or valve malfunction Power failure 	 No combustion of sulfur Blockage of sulfur in burner 	 Installation of flow controller Connect to DG supply

9.5.3 Reactor HAZOP Worksheet

Title	Combustion of SO ₂ with air					
Part Considered	Packed Bed	Packed Bed Reactor Activity Combustion				
Design Intent	Pressure	Pressure Temperature Flow			Sulfur	
	101.3 kPa	450°C	11658.38 kg/hr	Source	Sulfur Melter	

Table 9.7 Property data for Reactor

Table 83-HAZOP Analysis on Reactor

Parameters	Guide Words	Possible causes	Possible Consequences	Action Required
Temperature	More	• Incoming streams are a a higher temperature than set value	 Inefficient reaction due to temperatur e deviation Over pressurizati on may occur 	 Monitoring of pre coolers to ensure optimum temperature of the inlet stream Periodic inspection of PSV
	Less	• Raw material inlet is at a lower temperature than set value	• Reaction kinetics will change and reaction rate will slow down	 Higher concentration of SO₂, more formation of SO₃
Pressure	More	 High temperature Leakage in pipelines 	• Over pressurizati on of the reactor	 Installation of PSV Use NDT such as robotic crawlers etc

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions Required
	Less	• Failure of PI controller which sends a bad signal	• Decrease in the operation conditions causing inefficiency in reactor	 Monitoring of controllers to avoid undesirable reactions and maintain SO₃ production
Level/Flow	More	 Excessive pump speed Failure of flow control valves 	 Increase in pressure Decrease in temperatur e leading to change in reaction kinetics 	 Regular inspection of pump motors Install high level alarms LCV (level control valve) inspection
	Less	 Less air flow Valve is partially closed Leak in the pipeline 	 Unconverte d SO₂ due to incomplete combustion Product specificatio ns not met 	 Recycling of unconverted SO₂ to temporary storage Control loop to automatically switch on/off the valve Use of NDT such as electro- magnetic testing
	No	 No air flow Closed valve Line blockage Pipeline rupture 	 No product formed (SO₃) Excess SO₂ in the reactor. 	 Inspection of transfer lines Efficient communicatio n with operators Possible Shutdown

Parameters	Guide Words	Possible Causes	Possible Consequences	Actions Required
	Part of	 Normal flow of decreased concentration of O₂ Environment al conditions/ polluted air 	 Unreacted SO₂ Compositio n of product will alter • due to impurity 	Check O ₂ supply equipment after charging Inspection of pump design and associated pipeline
	Other than	 Material flow other than O2 in line Environment al pollution (main source of oxygen) 	 Poisoning of catalyst Equipment failure 	Equipment shutdown Inspection of equipment

9.5.4 Absorber HAZOP Worksheet

Title	Absorption of SO ₃ in Oleum					
Part Considered	Absorption (Absorption Column Activity Absorption				
Design Intent	Pressure	Temperature	Material	SO ₃		
	101.3 kPa	200ºC	3654.93 kg/hr	Source	Reactor	

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions required
Temperature	More	 High inlet stream temperature Excess flow of heated raw materials 	 Disturbed rate of reaction Increased temperature leads to excess buildup of pressure 	 Installation of high level alarms Installation and inspection of Pressure Relief Valve
	Less	 Low temperature of inlet streams Low temperature of column 	 Inadequate absorption due to change in reaction kinetics 	 Installation of temperature controls at inlets and outlets
Pressure	More	 High pressure of inlet streams Closed flow control valve causing restriction Malfunction of valve 	 Breakage of packing Bursting of column 	 Installation of Vent Valve or PSV Use of Radiography and Ultrasonic Testing
	Less	 Low pressure of inlet streams Malfunction of pressure regulating valve 	 Leads to improper reaction Leads to abnormal temperature and pressure in column 	 Using Differential Pressure Control to ensure safe limit Installation and Inspection of Pressure Relief Valve

Table 84-HAZOP Analysis of Absorber

Parameter	Guide Word	Possible Causes	Possible Consequences	Actions Required
Flow/Level	More	 FCV (Flow Control Valve malfunction Valve left open by the operator 	 High pressure drop across the column Flooding 	 Regular inspection of valves
	Less	 Leakage of the pipe Valve partially opened 	 V/L ratio is lower than required. Inefficient absorption/ reaction 	 Use of Non Destructive Techniques Install PIAL (Pressure Indicator Alarm Low)
	No	 Blockage of the pipeline Valve failure Failure of flow in previous unit 	 High liquid hold up in the column V/L ratio is lower than required 	• Installation of level controller alongside alarm in case of excessive liquid hold- up

9.5.5 Heat Exchanger HAZOP Worksheet

Table 9.11	Property	data on	Heat	Exchanger
------------	----------	---------	------	-----------

Title	Temperatur	Temperature Optimization for reactor				
Part Considered	Heat Exchar	Ieat ExchangerActivityHeating/ Cooling				
Design Intent	Pressure	Temperature	Material	SO ₂ /SO ₃		
	101.3 kPa	471°C	15338.7 kg/hr	Source	Reactor	

Parameters	Guide Words	Possible Causes	Possible Consequences	Action Required
Temperature	More	 Higher shell side inlet stream temperature Increase in the shell side inlet stream flow Higher tube side inlet temperature 	 Increase in temperature difference increases power requirement and fluctuation in outlet temperature s Increase in pressure 	 Maintenance of control loops Installation of a flow indicator Implement a differential pressure gauge to work with input and output currents for the tube side
	Less	 Leakage in the pipes due to cracks or corrosion Shell side temperature is lower Decrease in shell side flow rate 	 Decrease in the contact area Over pressurizatio n Increased outlet stream temperature Temperature difference decreases 	 Use differential pressure gauge to work with input and output currents for the tube side Eddy current probes insertion in tubes to check for corrosion Maintenance of flow control loops

Table 85-HAZOP Analysis of Heat Exchanger

Parameter	Guide Words	Possible Causes	Possible Consequences	Actions required
Pressure	More	• Higher tube side pressure due to valve malfunction	• Rupture of tube	• Installation of high pressure alarm
Flow/level	More	 Increase in shell side inlet flow Failure of shell side inlet valve to close 	 Higher decrease in tube side outlet temperature than set value 	 Low temperatur e alarm Installation of temperatur e indicators before and after the heat exchanger
	Less	• Less shell side inlet flow due to pipe leakage or blockage	• Constant tube side temperature	 High temperatur e alarm installation Installation of flow meter
	Reverse	 Flow of tube side is reversed due to malfunction of tube side valve 	 Product specification s are not met 	 Installation of Non Return Valve

temperature alarm installed

CHAPTER 10

Optimization

One of the major objectives of our project, after design, was to present an optimized and workable solution of the conventional problems in Sulphuric Acid production process and plants.

While keeping an economic investment in mind, taking into consideration all the requirements of the Industry and assuring a compliance with all the issued guidelines, a few optimization steps were thus introduced as a part of the project and well incorporated into it. These plans and propositions are given below along with their ample elaborations and annexing details.

10.1 Dual functionality

The plant is dual functional as it produces both Sulphuric acid and Oleum as per the requirement.

Percentage	Sulfuric Acid (kg/hr)	Oleum (kg/hr)
100% H ₂ SO ₄	4410	0
100% H ₂ S ₂ O ₇	0	4005
50% H ₂ SO ₄ , 50% H ₂ S ₂ O ₇	2205	2002.5
25% H ₂ SO ₄ , 75% H ₂ S ₂ O ₇	1102.5	3003.75
75% H ₂ SO ₄ , 25% H ₂ S ₂ O ₇	3307.5	1001.25

Table 86-Proposed Capacity

10.2 Reactor efficiency

Inter-stage cooling is introduced between the catalyst beds of the reactor to keep temperature uniform in order to assume an adiabatic reactor which results in efficiency increase, better product quality, no catalyst deactivation and cost optimization.

10.3 Yield maximization

Due to the fact that all recycle streams and equipment outlets, or inlets are interlinked, the final value of plant capacity for oleum or sulfuric acid production or the definite yield becomes a function of a number of variables i.e. the split ratios of all these interlinked streams/recycles. Any change in one/more of these variables brings some change in the product amount and these changes when brought collectively can either increase or decrease our product yield. Thus, by employing the hit and trial methods on multiple drafts of the simulation model, the resulting yield of each constraint application was observed and crosschecked until a well-suited optimum value was reached. This capacity obtained can hence be termed as the optimized maximum and efficient capacity of our subject plant. The numerical value achieved for capacity here was 4407kg/hr.

Split Ratio Oleum	Split Ratio H2SO4	Yield (H ₂ SO ₄)
0.397	0.4920	3499
0.45	0.4420	3772
0.55	0.4920	4410

Table 87-Optimization of yield based on split ratios

10.4 Energy recovery and its cost effectiveness

Pinch Analysis is performed on the entire plant to optimize the energy requirements as depicted in the table. This saves the need to supply any excess energy thus making the process more cost effective and completely green. The energy values are provided in the table below.
Heating equipment	Energy value (MJ)	Cooling equipment	Energy value (MJ)				
H-100	285	C-100	13890				
H-101	3090	C-101	11320				
Sulfur Burner	27412	C-102	1236				
		C-103	4258				
		Air Dryer	62.3				
		SO ₂ Dryer	0.10				
		IAT	827				
		МАТ	248				
		Dilution Tank	356				
Total energy consumed (MJ)	30787	Total energy released(MJ)	32197				
Remaining energy (MJ) = 1410							

Table 88-Energy recovery

Table 89-Energy contribution of equipment

Equipment	Percentage energy contribution
Sulphur Burner coolers	52.0%
Reactor coolers	17.1%
Dryers	1.30%
Absorption tanks (IAT + MAT)	22.2%
Dilution Tank	7.40%

The energy recovered from the Sulphur burner and reactor is high grade energy and should be used in process heating or power requirements where the energy requirement is large. Whereas, energy coming from dryers, absorption and dilution tanks is low grade energy and should only be used for processes such as water heating or inline heating of process lines such as molten Sulphur transfer lines.

Unit	Utility	MJ/hr	kW	Ср	Δ Τ	m(kg/ s)	m(kg/h r)	m(ton/ yr)
Melter (H100)	S	285	79.2	1.87	125	0.339	1219	10680
H-101	S	3090	858	1.87	265	1.73	6226	54540
Sulphur Burner	S	27412	7614	1.87	1864	0.115	413	3618
Total steam = 68840 tons								
Cost of steam per ton (\$/ton) = 12								
Cost saved (\$) = 826082								

Table 90-Steam energy consumption

Table 91-Cooling Water consumption

Unit	Utility	MJ/hr	kW	Ср	Δ Τ	m(kg/ s)	m(kg/ hr)	m(ton/ yr)
Burner (C-100)	CW	13890	3858	4.18	1014	0.910	3277	28707
Burner (C-101)	CW	11320	3144	4.18	930	0.809	2912	25509
Reactor (C-102)	CW	1236	343	4.18	75.8	1.08	3903	34186
Reactor (C-103)	CW	426	1182	4.18	323	0.875	3152	27609
Dryers	CW	62.4	17.3	4.18	15	0.276	995	8718
MAT	CW	248	68.9	4.18	113	0.146	525	4599
IAT	CW	827	229	4.18	90	0.611	2198	19257
DT	CW	356	98.9	4.18	47.4	0.499	1797	15739
Total CW = 164326.3								

Cost per ton (\$/ton) = 0.5

Cost saved (\$) = 48118

Total cost saved = Steam cost + Cooling Water cost

Total cost saved (\$) = 874200

Figure 59-Energy Recovery Process Flow Diagram

CONCLUSION

The plant thus designed has a capacity of 4410 kg/hr of Sulphuric Acid with a dual functional facility provision along with variant optimization techniques employed at every stage. It offers inter-stage cooling between adiabatic catalytic beds of the reactor thus saving catalyst deactivation and excessive running cost. A pinch analysis of the entire plant is offered as an add-on which indicates maximum energy recovery about 70% of which is offered by the plant's own coolers. The conversion efficiency for SO₃ formation is maximized by properly tested optimization of all contributing recycle streams and inlets/outlets. Process is ensured to be designed keeping well in mind the green considerations for the plant and it offers an efficiency of 99.7%. With an overall payback period of 2.94 years, the production plant fulfills all the set objectives and can hence be termed as workable, cost friendly, Eco-system catering, efficient, practical and green.

BIBLIOGRAPHY

- [1] Baldwin, D. G. (2002). Chemical Safety Handbook.
- [2] BUITEMS. (2019). Journal of Applied and Emerging Sciences.
- [3] Cengel, Y. A. (2014). *Thermodynamics: An Engineering Approach, 8th editon.*
- [4] Coulson, J. M. (2005). *Coulson and Richardson's Chemical Engineering. Vol. 6, Chemical Engineering Design.* Oxford.
- [5] Donobam, J. R. (1984). *Encyclopedia of Chemical Technology, 3rd edition.* Wiley.
- [6] Henley, E. J. (2005). Separation Process Principles, 2nd edition.
- [7] Holloway, M. D. (2012). *Process Plant Equipment- Operation, Control, and Reliability.* John Wiley.
- [8] Industries, K. C. (2004). Hazard and Operability Study.
- [9] Khan, F. (2018). Hazard and Operability Study (Process Safety).
- [10] Kumareswarn, S. (2013). Design of a Plant to Manufacture Sulfuric Acid from Sulfur.
- [11] Levenspiel, O. (1999). *Chemical Reaction Engineering*. Wiley.
- [12] Levenspiel, O. (1999). *Chemical Reaction Engineering*. Wiley.
- [13] Magazine, S. (2010). Sulphuric Acid Plant Modelling.
- [14] McCabe, W. L. (1993). Unit Operations of Chemical Engineering.
- [15] Moulijin, J. A. (2013). *Chemical Process Technology, 2nd edition*. Wiley.
- [16] Perry. (2007). Perry's Chemical Engineers' Handbook. McGraw-Hill.
- [17] Sultana, S. (2011). *Aspen-Hysys Simulation Of Sulfuric Acid Plant.* Researchgate.

- [18] Vatavuk, W. M. (2002). CEPCI.
- [19] Watson, K. M. (1954). *Chemical Process Principles Part 1: Material and Energy Balance, 2nd edition.* John Wiley and Sons.
- [20] Wikipedia. (2012). Values of R (Gas Constant).
- [21] Wong, W. (2010). The Risk Management of Safety and Dependability.
- [22] Zein, R. (2014). Design of a chemical absorption system for the separation of propane/propylene mixture.