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Abstract

We propose a deep learning based semantic segmentation algorithm to identify and label

the tissues and organs in the endoscopic video feed of the human torso region. Our con-

tributions in this project are two-fold: first, we contribute an annotated dataset created

from actual endoscopic video feed of surgical procedures, and secondly, we propose a

deep neural network for semantic segmentation. To cater to the low quantity of anno-

tated data, we propose unsupervised pre-training and data augmentation. The trained

model is evaluated on the independent test set of the proposed dataset. This thesis

serves as the first step towards autonomous minimal invasive surgery.

Keywords: semantic segmentation, deep learning, laparoscopic surgery, convolutional

neural networks
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Chapter 1

Introduction

Deep Learning has revolutionized a diverse variety of domains these days, from Com-

puter Vision to Natural Language Proecssing to Reinforcement Learning. These in turn

have application from self driving cars to healthcare to document analysis to advance-

ment of Artificial General Intelligence. Just like large scale datasets like ImageNet [4]

brought about significant advances in image classification, datasets like the PASCAL

VOC [5] and MS COCO [6] have made possible training of powerful Deep Learning

models for Object Detection and Semantic Segmentation. Especially considering the

domain of autonomous vehicles, datasets like KITTI [7] and CamVid [1] combined with

the state of art Deep Neural Networks have made large strides possible. Self-driving

cars, powered by Deep Learning, would be in production and use within the next 5-10

years. We expect that Aritificial Intelligence (AI) will similarly bring significant ad-

vances in healthcare and surgical procedures as well. To this end, we propose this thesis

as a first step towards autonomous robotic surgeries.

1.1 Motivation

Deep Learning has already made possible more powerful methods in healthcare, includ-

ing predicting diabetec retinopathy [8] and cardiovascular risk factors [9] from retinal

images, and breast cancer detection [10] from pathological images. However, little work

has been done in the domain of automating robotic surgical procedures. While complex

systems like the DaVinci surgical robot have made surgical operations more precise and

quicker, lead to less blood loss than conventional surgeries, and lead to quicker patient
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recovery times; they require a high level of skill and domain knowledge.

Recent advances in AI and Robotics can, however, be used to automate such procedures,

which can result in even more precise procedures (removing human error), as well as

free up more time for doctors and medical practitioners to give to other pressing issues

and medical research. Our proposed work aims to set the foundation for such work.

1.2 Problem Definition

Our work focuses on the broad category of Scene Understanding. In particular, it focuses

on pixel level scene understanding; which can be framed as a pixel level identification or

classification problem i.e. Semantic Segmentation. We show an example of the problem

domain in Figure 1.1.

Figure 1.1: The Semantic Segmentation problem, where a mapping needs to be found from

an input image (Left) to it’s Semantic Segmentation mask (Right) i.e. where all

pixels are assigned to their respective categories. The example is from the CamVid

dataset [1].

Previous work combining Semantic Segmentation and Robotic surgeries has been lim-

ited to instrument segmentation. Deep Learning wise, the work has been limited to

Tool Presence Detection (multi-class classification) and Surgical Phase Identification.

However, for automating surgical procedures, this is not enough. In particular, at the

very least, we need to precisely identify the different organs, instruments, and other

entities present in surgical images and videos. Once we have a good understanding of

the presented scene, only then can we think of automating the procedure. Our work

presents the problem where we have to identify, at a pixel level, every entity present in

2



Chapter 1: Introduction

images of such procedures. Figure 1.2 shows an example.

Figure 1.2: Surgical Scene Segmentation example, where the input (Left) has a corresponding

pixel level mask where each pixel is assigned a class label (Right).

To this end, our contributions in this thesis are:

1. Proposal of a novel problem in the laparoscopic surgical imaging domain

2. A novel dataset, miccaiSeg, which can be used to train and evaluate any proposed

algorithms for the task.

3. An Encoder-Decoder Convolutional Neural Network architecture for addressing

the problem.

4. Baseline results which the research community can build upon and improve.

Chapter 2 gives an overview of the existing literature in the domain, and Chapter 3

discusses the proposed dataset and neural network architecture. In Chapter 4 we present

the results of our network on the dataset. Lastly, in Chapter 5, we conclude the thesis

and outline proposals for future work.
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Chapter 2

Literature Review

We focus on two aspects in the Literature Review: Laparoscopic Image and Video

Analysis, and Semantic Segmentation.

2.1 Laparoscopic Image and Video Analysis

Prior work done in Laparoscopic image and video analysis focused primarily on three

different aspects:

1. Surgical Phase Segmentation

2. Tool Presence Detection

3. Surgical Tool Segmentation

2.1.1 Surgical Phase Identification

Surgical phase identification (also referred to as surgical phase segmentation) refers to

identification of the temporal phase of a surgical procedure. A surgical operation is

sub-categorized into different phases of the surgery. This has applications in surgical

coaching, education, automated and assited surgical procedures, and post surgical anal-

ysis of the operation.

Most methods for surgical phase identification have used some variant of Hidden Markov

Models (HMMs). Recently, Volkov et al. [11] proposed a method which uses color, organ

position, shape (for instruments), and texture features to obtain a Bag-of-Words (BOW)
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representation of frames in surgical videos. They use multiple binary Support Vector

Machine (SVM) classifiers for each phase to classify frames. They then use a temporal

HMM to correct the initial SVM predictions. They used videos of the Laparoscopic

Vertical Sleeve Gastrectomy procedure to segment them into seven distinct phases. They

obtain 90.4 % accuracy using SVMs, and improve it to 92.8 % with the HMM correction.

The M2CAI 2016 Surgical Workflow challenge held as part of the Medical Image Com-

puting and Computer Aided Intervention (MICCAI) conference in 2016 introduced the

TUM LapChole dataset [12]. The dataset contains 20 videos (15 Training and 5 Test) of

the Laparoscopic Cholecystectomy procedure. The videos are annotated and categorized

into 8 distinct phases, namely:

1. Trocar placement

2. Preparation

3. Calot’s triangle dissection

4. Clipping and cutting of cystic duct and artery

5. Gallbladder dissection

6. Gallbladder packaging

7. Cleaning and coagulation of liver bed (haemostasis)

8. Gallbladder retraction

They also provided baseline results for the challenge by using an AlexNet [13] model

trained and tested on 1 frame extracted per second. They later used a sliding window

approach to correct misclassifications by taking the majority vote among the last 10

predictions. The baseline results were average Jaccard Index, average Precison, and

average Recall of 52.4 %, 65.9 %, and 74.7 % respectively.

The challenge winning entry from Jin et al. [14] used a Recurrent Convolutional Net-

work model, EndoRCN. They used a 50 layer ResNet [15] trained for classification into

the eight categories as a visual feature extractor. Secondly, they used the current frame

and the previous 2 frames to extract the visual features using the ResNet model. The

3 extracted features were fed sequentially to a LSTM model which predicted the phase.
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Post-processing using sequential consistency was performed to further improve the pre-

dictions. The authors achieved a Jaccard Index score of 78.2.

Another important work in this domain was proposed by Twinanda et al. [16], where

they introduced another dataset, Cholec80. The Cholec80 dataset contains 80 videos of

the Cholecystectomy procedure, sampled at 1 FPS, where each frame is annotated with

the surgical phase information, and addtionally, also the tool presence annotations.

The surgical phases are once again divided into 8 distinct categories, while there are

tool presence annotations for 7 different surgical instruments (Tool presence annotation

are discussed in detail in Section 2.1.2). The authors use a modified AlexNet [13]

architecture, which predicts both tool presence in a frame, and uses that, along with

the network features, to predict the surgical phase.

2.1.2 Tool Presence Detection

Tool Presence Detection is a multi-class multi-label classification problem, where a map-

ping is desired from image pixels to a vector representing the presence of surgical tools

in the image. This problem can be framed as an image classification problem: a field

Machine Learning and Convolutional Neural Networks has dominated in recent years.

Tool Presence Detection has applications in automated and assistive surgeries, surgical

workflow analysis, and as [16] showed, in aiding phase segmentation.

As discussed earlier in section 2.1.1, the EndoNet architecture [16] was used for joint

training of tool presence detection and surgical phase segmentation. This particular

work also led to the M2CAI Surgical Tool Detection Challenge held at MICCAI 2016.

The challenge dataset, hereby referred to as M2CAI-tool dataset, consists of 15 videos

of cholecystectomy procedures, of which there are 10 training videos and 5 test videos.

The dataset contains tool presence annotation of the following 7 tools:

• Grasper: Used to grasp and maneuver the different organs and tissues

• Bipolar: Used to seal tissues to stop haemorrhages or blood loss

• Hook: Used to burn tissue for ease of later dissection

• Clipper: Used to seal tissues and blood vessels before dissection

• Scissors: Used for tissue dissection

6
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• Irrigator: Used to introduce saline water in case of bleeding/bile. Also used as a

fluid suction

• Specimen Bag: Used to collect and bring the dissected organ out of the body

Not surprisingly, the challenge winning entry by Raju et al. [17] used Convolutional

Neural Networks for the task. They used an ensemble of the popular VGGNet [18] and

GoogLeNet [19] architectures to achieve a mean Average Precision (mAP) of 63.7 % on

the 5 videos in the test set.

The M2CAI-tool dataset is worth mentioning, again, because our work builds upon this

dataset for semantic segmentation.

2.1.3 Surgical Tool Segmentation

Surgical Tool Segmentation is identifying, at a pixel level in an image, where the surgical

tool(s) lie. Surgical Tool Segmentation is one of the important research areas explored

since a few years in the domain of computer-assisted surgical systems. This is important

since it can provide feedback and other guidance signals to the surgeon. This also helps

immensely in surgeries requiring higher precision. Segmenting the tool is important

at a pixel level becasue of the critical nature of surgical procedures. Accurate tool

segmentation can then lead to accurate tool localization and tracking. This step is also

essential for automating surgeries, but not enough, as we also need information about

non-instrument part of the scene. Nevertheless, since our work is an extension of this,

we would first like to discuss some approaches for the task.

Traditionally, image processing techniques were the dominant approach for the task.

Since the scenario has changed with the success of Deep Learning algorithms, we would

focus more on those. But we would describe one of the methods for reference. Doignon

et al. [20] introduced a method based on a combination of various image processing

techniques, including the use of hue, saturation, edge detection, region growing, and

using shape features to classify regions in an image.

More recently though, García-Peraza-Herrera et al. [21] proposed a real-time tool seg-

mentation method which uses Fully Convolutional Networks (FCNs) along with Optical

Flow based tracking to segment surgical instruments in videos. We will go through FCNs

in more detail in Section 2.2. Due to hardware limitations of running FCN inference
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in real-time, they use OpticalFlow tracking and assuming somewhat rigidity of the tool

and scene for a few frames, they compute affine transformation of the new segmentation

mask with respect to the previous one. The segmentation mask are updated as the FCN

computes the results; enabling real-time segmentation. However, with today’s hardware

and efficient Deep Learning architectures, using a purely Deep Learning system for real-

time segmentation is very much possible. More recently, García-Peraza-Herrera et al.

[22] introduced ToolNet, a modified version of the FCN. They introduced 2 different

architectures, one which aggregated predictions across multiple scales before calculating

the loss, and another which incorporated a multi-scale loss function. They also used

the Dice Loss [23, 24], which has shown to be effective for semantic segmentation, espe-

cially across unbalanced classes. We also incorporate the Dice Loss in our work, which

is explained in Chapter 3. They also used Parametric Rectified Linear Units (PReLU)

[25], an adpative version of the Rectified Linear Unit (ReLU) as the activation function.

They achieve a Balanced Accuracy of 81.0 % and a mean Intersection over Union (IoU)

of 74.4 % on the Da Vinci Robotic (DVR) dataset, which was part of the MICCAI 2015

Endoscopic Vision (EndoVis) Challenge.

Attia et al. [26] proposed a Hybrid CNN-RNN Encoder-Decoder network for surgical

tool segmentation. They used a 7 convolution layered CNN to extract feature maps from

the input image. Using just an Encoder-Decoder network produced coarse segmentation

masks. To cater to this and to account for spatial dependencies among neighboring pixels

and to enforce global spatial consistency, the authors used 4 Long Short Term Memory

(LSTM) Recurrent Neural Network (RNN) layers in sequence on the produced encoder

feature maps. They then used a decoder network to upsample the feature maps into the

final segmentation masks. They achieved a balanced accuracy of 93.3 % and an IoU of

82.7 % with their method on the MICCAI 2016 Endoscopic Vision (EndoVis) Challenge

Robotic Instruments dataset.

Another important advance in surgical tool segmentation was the segmentation of the

tool into it’s constituent parts i.e. the tool shaft and the tool’s manipulator. This

tranforms the binary classification/segmentation problem into a 3-class classification

problem, where the 3rd category is Background. Pakhomov et al. [27] proposed a 101-

layered ResNet [15] model which is casted as a FCN for semantic segmentation. They

use Dilated Convolutions [28] to reduce the down-sampling induced by Convolutional

layers without padding. Dilated (also called Atrous) convolutions have proven useful for

8
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semantic segmentation as it allows larger receptive fields while keeping the number of

network parameters low. They achieved the state of the art results (at the time of their

paper) on the MICCAI 2015 EndoVis Challenge Robotic Instruments dataset at 92.3 %

Balanced Accuracy for Binary Classification/Segmentation. They also reported results

for the multi-class segmentation case which can be accessed in their publication [27].

Since instrument segmentation and localization are interdependant tasks, Laina et al.

[29] utilize that for concurrent segmentation and localization of surgical instruments.

Additionally, they frame localization as a heatmap regression problem, where they use

landmark points on the instruments with a Gaussian centered around them to gener-

ate the groundtruth. They then regress for the heatmaps (one per landmark), which

represent the confidence of each pixel to be in the proximity of the groundtruth land-

mark. This approach makes training easier and stable over regressing over 2D (x, y)

coordinates of the landmark points. The authors train jointly for both segmentation

and localization, which helps in improving performance for both tasks. They also use a

multi-class segmentation approach similar to [27], but with 5 different classes namely:

Left shaft, Right shaft, Left Grasper, Right Grasper, Background. They obtain a Bal-

anced Accuracy of 92.6 % on the MICCAI 2015 EndoVis Challenge.

As we can see from the above approaches, Deep Neural Networks, and CNNs in par-

ticular, have been the de facto approach for various tasks in Laprascopic Image and

Video analysis in the previous few years. And rightly so since their success in this do-

main builds upon the success of Deep Learning in general over the last few years. It

should also be noted that joint training for multiple objectives has shown to be helpful

in training for all the objectives.

That said, all the above methods focus on instrument segmentation. For a better and

more complete understanding of a robotic scene, especially considering autonomous

robotic surgeries, this is insufficient. We need to know the precise location of not just

the tools, but also the organs. Till date, to the best of our knowledge, no such approach

for dense instrument and organ segmentation has been explored in literature.
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2.2 Semantic Segmentation

The second part of our Literature Review focuses on Semantic Segmentation, which is a

pixel level classification problem; and has been a landmark domain in Computer Vision

research. But before delving into the Semantic Segmentation literature, it is worth

exploring Convolutional Neural Networks in general, which make for the backbone of

today’s Semantic Segmentation models. We will also go in more detail in Deep Learning

terminology in this section.

2.2.1 Convolutional Neural Networks

The field of Deep Learning has a long and interesting history. We refer the reader to [30]

for an overview of Deep Learning over the recent years, and to [31] for a comprehensive

history and overview of the domain.

The first attempt at a Convolutional Neural Network was by Fukushima in 1982 in his

famous Neocognitron paper [32]. The architecture was inspired by Hubel and Weisel’s

Nobel Prize Winning experiments with the cat visual cortex, where they discoverd that

specific neurons in the cat visual cortex responded to specific patterns showed to the cat.

Later, LeCun et al. [33, 34] applied the backpropagation algorithm to make CNNs learn

by gradient-based optimization to recognize handwritten digits. This was an important

breakthrough as it demonstrated that CNNs can be optimized much more easily than

before.

LeNet is a 7-layered Neural Network comprising of Convolutional Layers, Sub-sampling

layers (now called Polling layers), and Fully Connected Layers. 2D Convolution, in

general, is an operation which takes the dot product of a filter of size k with the input

(in Computer Vision the input is mostly images) in a sliding window manner (where the

amount of sliding is determined by a stride) to produce an output feature map. Figure

2.1 demonstrates a convolution operation with a 2D matrix (which is analogous to a

grayscale image).

Convolutional Neural Networks generally comprise of a large number of such convo-

lutional filters, whose parameters (or weights) are learnt gradient based optimization

algorithms such as gradient descent. The gradient, in this case, is defined as the gra-

dient of the parameters with respect to the loss; where the loss is a pre-defined cost
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Figure 2.1: Example of a convolution operation.

function which measures the disagreement between the network predictions and the

ground truth.

Another important component of the LeNet were the subsampling layers. These lay-

ers subsample the input into a lower dimensional output, which reduces the network

parameters while retaining the most important information. Secondly, pooling allows

for translation invariance as any information from any neurons which respond to some

specific feature in the input is retained irrespective of where the feature is found in the

input. This has some drawbacks, and is considered indesirable nowadays, but neverthe-

less, subsampling and pooling layers remained an important part of CNN architectures

till a few years ago. Figure 2.2 depicts the max pooling operation, where the maximum

element is taken from each sampling window.

Figure 2.2: The Max Pooling operation with Kernel size 2 and Stride 2 . The input is shown

on the left while the output is on the right (Image inspired from [2]).

Fully Connected (FC) layers (also called Linear or Dense layers) are the typical Neural

Network layers where each unit in the input has a connection with every unit in the
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output. The standard neural networks are made up of a number of Fully Connected

layers. A fully connected layer is depicted in Figure 2.3.

Figure 2.3: A Fully Connected Layer, shown connecting 3 neurons in the input to 4 neurons

in the output. The arrows represent the learnable network weights.

More recently though, one of the main triggers for the current Deep Learning era was

Alex Krizkevsky et al.’s ImageNet [4, 35] winning work [13], where they used Convolu-

tional Neural Networks to win the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [35] by a large margin over traditional Machine Learning methods. They

introduced AlexNet, a 7-layered CNN, which they leveraged GPUs for faster training

times over the massive dataset. They used ReLUs, Dropout [36], and parallelization

over GPUs to achieve a then State of the Art top-5 error rate of 15.3 % on the ILSVRC.

Soon after, various more powerful CNN architectures emerged [15, 18, 19, 37], leading

to quicker, simpler, more efficient, and more accurate training of Convolutional Neural

Networks; and leading to significant advancement in almost every domain, especially

Computer Vision.

2.2.2 Semantic Segmentation Networks

Semantic segmentation is the pixel level labeling/classification for any image/video. It

is the natural step after success of several deep learning based object detection networks

[38–43], where objects are located by a bounding box. Object detection at pixel level,
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or getting an accurate object mask, is critical for many applications such as self-driving

cars, and especially in our case of Robotic Surgeries.

Long et al. [44] introduced the first popular end-to-end trainable Deep Learning archi-

tecture for Semantic Segmentation, the Fully Convolutional Network (FCN).

FCN is a deep CNN which uses a series of Convolution and Pooling layers to gener-

ate feature maps. The feature maps are then unsampled using Fractionally-Strided

Convolutions. Fractionally-Strided Convolutions or Transpose Convolutions (also some-

times wrongly referred to as Deconvolution) zero-pad the input feature map between

the pixels, where the number of zeros is the scale factor (k) - 1. A regular convolution

is then performed on this fractionally padded input. This results in a learnable and

differentiable upsampling filter. An example of this is given in figure 2.4. In addition

to Fractionally Strided Convolutions, the authors combine information across different

layers (which results in information sharing across different scales). Lastly, they use an

n-way softmax for each pixel for prediction, where n is the number of classes.

Figure 2.4: An example of the Fractionally Strided Convolution operation. The input feature

map is shown on the left in Red. The middle image shows the zero-padded input

image, with the convolution kernel shown in Green. The upsampled output is

shown on the right in Blue.

Soon after the release of FCN, Badrinarayanan et al. [45] proposed an Encoder-Decoder

network for Semantic Segmentation called SegNet. The Encoder part of the network

is identical to the VGG network [18], where the max pooling indices for each layer

are stored for upsampling later. In the Decoder part of the network, feature maps are

successively upsampled using the corresponding max pooling indices into sparse feature
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maps. These sparse feature maps are then convolved with learnable filters to obtain

dense feature maps, and ultimately a semantic segmentation of the input.

Another Semantic Segmentation architecture worth discussing is the U-Net architecture

[3], which was proposed for biomedical image segmentation. The main feature of the pro-

posed U-Net architecture is feature concatenation (or information sharing) from earlier

in the network to the later layers. This helps retain low level features like edges, which

helps in obtaining sharper segmentation masks. The architecture has been successful

and popular for biomedical image segmentation tasks.

Most popular (and powerful) Semantic Segmentation models use Conditonal Random

Fields (CRFs) [46] to post-process and refine the network predictions. This makes

the network step-wise and not end to end trainable. To circumvent this, Zheng et al.

[47] introduced the CRF-RNN model, where they modeled the CRF component of the

network as a Recurrent Neural Network. This in turn resulted in an end-to-end trainable

network capable of semantic segmentation with a trainable CRF component.

More recently, another popular architecture, the Fully Convolutional DenseNet [48] was

proposed by Jégou et al. This architecture tries to remove the CRF out of the equation

by modifying the DenseNet architecure [49] for Semantic Segmentation. [49] proposed

the DenseNet architecture which is composed of Dense blocks (which can be said as an

extension to the Residual Blocks in [15]). The dense blocks function by concatenating

the outputs of all previous layers (including the first input) with the output of the current

layer. The problem with such an architecture, especially for semantic segmentation as it

requires a Decoder network as well, is the explosion in the number of feature maps as we

go deeper in the network. To cater to this problem, [48] do not concatenate the Dense

Block input to the output in the Decoder Network. They also use skip connections to

combine information from the Encoder network with the Decoder network.
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Proposed Work

Our work builds upon the methods for Laparoscopic Image and Video Analysis and the

general success of Convoluion Neural Networks for Semantic Segmentation, as discussed

in Chapter 2. Since no dataset for the task existed at the initiation of the project,

we made and annotated a dataset for semantic segmentation of robotic surgical scenes.

Section 3.1 describes our work on the miccaiSeg dataset, while section 3.2 details our

proposed method.

3.1 The miccaiSeg dataset

The proposed miccaiSeg dataset is my joint work with Aqsa Riaz. Our proposed mic-

caiSeg dataset is an extension of a small subset of MICCAI 2016 Surgical Tool Detection

dataset [16] (M2CAI-tool). The M2CAI-tool dataset, described briefly earlier in Section

2.1.2, consists of a total of 15 videos, which are divided into 10 training videos and 5

test videos. Each video has a tool presence annotation every 25 frames i.e. at 1 FPS.

There are a total of 7 tools as detailed in Section 2.1.2. However, before moving on to

the miccaiSeg dataset, let’s consider our annotation methodology.

3.1.1 Annotation Methodology

Firstly, we had to do a study of different laparoscopic surgical procedures. The two

we considered the most were Appendectomy (Appendix removal) and Cholecystectomy

(Gall Bladder removal). After study of the procedures and available videos, we eventu-

ally settled for Cholecystectomy because of the availability of the open-source M2CAI-
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tool dataset. We studied the region’s anatomy, the procedure details, and the different

organs and surgical instruments involved in the procedure.

Thereafter, we started to investigate the different annotation procedures and conventions

to label data for Semantic Segmentation. The most popular conventions are using Json

[6] or XML [5] files to store coordinates of the polygons forming an object. However, since

we needed more accurate annotation which often involved circular regions, we didn’t go

for that. We instead relied on a relatively naive approach of generating colored masks

for the different object categories.

For tools and software for generating semantic segmenation annotations, LabelMe [50]

is a popular online tool for generating polygonal annotations of object masks. However,

due to reasons mentioned earlier, and for further ease of annotation, we used a semi-

supervised annotation tool based on MegaPixels [51]. We developed a tool in MatLab

based on MegaPixels, which segments the region into distinct parts. However, sometimes

the tool produced regions which were not representative of segmentation boundaries.

For such images, we manually annotated the difficult regions or region boundaries using

Microsoft Paint or Photoshop first before passing it to the annotation tool. Overall,

using this reduced the annotation time.

3.1.2 Dataset Details

We subsampled 307 images from Videos 1 and 2 of the M2CAI-tool training set and

annotated them at a pixel level into various different categories and sub-categories as

shown below (The values in square brackets show the [R, G, B] value assigned to pixels

of this category):

• Organs:

1. Liver [85, 170, 0]

2. Gallbladder [85, 170, 255]

3. Fat [85, 255, 0]

4. Upperwall [85, 255, 170]

5. Intestine [255, 0, 255]

• Instruments:
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1. Grasper [0, 85, 170]

2. Bipolar [0, 85, 255]

3. Hook [0, 170, 85]

4. Scissors [0, 255, 85]

5. Clipper [0, 255, 170]

6. Irrigator [85, 0, 170]

7. Specimen Bag [85, 0, 255]

8. Trocars [170, 85, 85]: Provide an opening to insert the surgical instruments.

9. Clip [170, 170, 170]: The clips applied by the Clipper to seal the blood vessels.

• Fluids:

1. Bile [255, 255, 0]

2. Blood [255, 0, 0]

• Miscellaneous:

1. Unknown [170, 0, 85]: Used as a label for pixels which are indiscernable for

the annotator.

2. Black [0, 0, 0]: Used as a label for the surrounding region in the image which

is not visible due to the trocar limiting the camera field of view.

• Artery [170, 0, 255]

In total, we annotated a total of 5 different organs, 9 different instruments (of which Tro-

cars and Clip are different from the Tool presence annotation in M2CAI-tool dataset),

2 fluids, 2 miscellaneous categories, and the artery. The annotations were made con-

sidering further use of this information for autonomous robotic surgeries. For example,

the Clip needs to be identified in the videos to be able to learn where and when to

place it. Similarly, the artery needs to be identified since it needs to be sealed. Blood

loss indicates potential use of the bipolar to seal any open incisions, while Bile indicates

that the irrigator potentially needs to be used for sterilization and cleanup. The other

categories are pretty much self-explanatory.

During the image saving procedure, due to the wrong choice of image format (JPEG),

we ran into issues further down the stream where we discovered that pixels near object
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boundaries are smudged (and don’t have the right RGB value). To avoid the costly

re-annotation procedure, we performed (for each pixel) a nearest neighbor search in

the RGB space (from all the 19 categories) to adjust the pixel value to the nearest

RGB value from all the 19 categories. Afterwards, we applied a 5 x 5 median filter to

remove the resultant salt and pepper noise from the images. This obviously effected the

annotation quality a bit, but we proceeded to use that since the noisy pixels would act

as a regularizer during training.

Figure 3.1 shows some sample annotations from our dataset.

3.2 Proposed Network Architecture

Due to the small quantity of annotated data, we focused our efforts on methods which

were data efficient or which worked well with smaller datasets like ours. To this end,

we propose a minimalist Encoder-Decoder Convolutional Neural Network as shown in

Figure 3.2. We will refer to this as the segmentation network.

3.2.1 Network components

Our network has some distinct components, which we identify as:

• The input image

• The convolution layers

• Batch Normalization

• The ReLU non-linearity

• The Convolution Transpose Layers

• Dropout

• Softmax

We briefly go over them in the following sections.
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Figure 3.1: Some samples from the miccaiSeg dataset. The left column shows the original

images while the right column shows their corresponding groundtruth annotations.
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Figure 3.2: Our proposed 10 layer CNN Encoder-Decoder Network. NC means the number of

classes, which is equal to the channel dimensions of the network output.

3.2.1.1 Input Image

The input image is resized to 256 x 256 at training time. Due to the small size of our

dataset, we perform online 10-crop data augmentation at training time, where we take

all 224 x 224 crops from all the 4 corners and the centre, and their horizontal flips

(mirror images). We normalize each image by its RGB per-channel mean [0.295, 0.204,

0.197] and standard deviation [0.221, 0.188, 0.182]. These values are computed over all

the 581923 frames of the M2CAI-tool training set. Figure 3.3 demonstrated the 10-crop

data augmentation.

At test time, the input image is normalized, but we don’t use 10-crop data augmentation.

In this case, the input image is resized to 256 x 256, but since we don’t take any crops,

the resolution stays at 256 x 256 and does not go to 224 x 224.

3.2.1.2 Convolution Layers

Convolution layers are composed of a number of learnable convolution filters which

operate over the input. Over images, we use 2D convolutions which operate over the

spatial dimensions of the image. A convolution is a dot product over a section of the

image, and is mathematically defined as:

(I ∗K)xy =
h∑

i=1

w∑
j=1

K ij · Ix + i -1, y + j -1 (3.2.1)
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Figure 3.3: 10 crop data augmentation. This is done to increase the number of training sam-

ples. The dotted lines show the crop boundaries. The dark green and red boxes

have been slightly shrunk in the image for better visibility of the boxes. In prac-

tice, all crops are the same size. The original image is shown on the left while it’s

horizontally flipped version is shown on the right.

where I is the image, K is the convoluion kernel, h is the input height, and w is the input

width. For our proposed network, we used convolution layers with 64, 128, 256, 512,

and 1024 filters respectively for the Encoder part to obtain the latent representation.

We used a kernel size of 4 x 4, stride of 2, and padding of 1 for all the convolution layers

in our network except the last encoder layer where we used the same kernel size but

with a stride of 1 and no padding.

3.2.1.3 Batch Normalization

Batch Normalization (BatchNorm) was introduced by Sergey and Szegedy [52], which

makes weights in later layers of the network more robust to changes in the weights in

the earlier layer. Normalizing activations leads to better gradient values and learning.

Instead of running values between 0 and 1, though, the output of convolution layers

are instead normalized using a running mean and variance. Those values are controlled

using learnable parameters γ and β. The output of a batch normalization layer is defined

as:
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y = x−mean[x]√
V ar(x) + ε

∗ γ + β (3.2.2)

Batch normalization reduces the covariate shift i.e. the changes in activations of a

particular layer. It also induces a slight regularization effect, since we use mini-batches,

which adds a slight noise to the activations. We used batch normalization in all layers

except the first Encoder layer in our network.

3.2.1.4 ReLU Non-linearity

Using a combination of only convolution layers without any non-linearity would be

extremely detrimental to the performance of Neural Networks, as it can only enable

learning of linear functions of the input. However, the strength of Neural Networks

in practice lies in their ability to learn complex non-linear functions. For that reason,

we need to induce non-linearity in the network. Rectified Linear Units (ReLUs) have

gained popularity as a non-linearity in recent years in their use in Convolutional Neural

Networks since their use in AlexNet [13]. The ReLU non-linearity leads to faster training

times over the conventionally used sigmoid non-linearity, as well as helps stabilize the

gradients, leading to more stable training. It is graphically shown in figure 3.4 and is

mathematically given by:

f(x) = max(0, x) (3.2.3)

Figure 3.4: The ReLU non-linearity.
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3.2.1.5 Convolution Transpose Layers

Once we have obtained the latent representation of our input image after it passes

through the Encoder, it then goes through the Decoder network where it is successively

upsampled using Convolution Transpose Layers. Convolution Transpose Layers use

Fractionally Strided Convolutions described earlier in Section 2.2.2. We mirror the

network about the Latent representation, and thus our Convolution Transpose layers

use the same hyperparameters as the convolution layers in the Encoder network i.e. the

first Decoder layer uses a Stride of 1 and no padding, while all the other layers use Stride

of 2 and padding of 1. The Kernel size is 4 x 4 for all the layers. The number of filters

used in Convolution Transpose layers are 512, 256, 128, and 64 successively, while the

last layer uses filters equal to the number of classes. We also use BatchNorm and the

ReLU non-linearity in all Convolution Transpose layers except the last one, where we

use a softmax for each pixel. The network output is the same size as the resized input

image i.e. 224 x 224 and 256 x 256 for training and inference respectively.

3.2.1.6 Dropout

Dropout [36] is one of the most powerful techniques ever introduced for training deep

neural networks. It is standard in almost all deep learning architectures proposed these

days. During training, Dropout makes zero, with a certain predefined Dropout proba-

bility p, part of the output activations of any layer. This has two powerful effects:

1. It inhibits coadaption of neurons i.e. since during each forward pass, a certain

number of neurons are deactivated, it forces other parts of the network to learn

discriminating features from the input.

2. It acts as a powerful regularization method since every forward pass, a part of the

network is deactivated.

The resultant activations are then scaled up by inverse of the Dropout probability. This

is important since at test time, the total activations of each layer would otherwise be

significantly larger numerically, which would lead to erroneous predictions. At test time,

no neuron is deactivated. This leads to another powerful effect, since now, the network

acts as an ensemble of multiple models for which the predictions are averaged. Overall,
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Dropout can be termed as one of the most important advances, if not the most important

advancement, in Deep Learning in the last few years.

We used Dropout in the first three Decoder layers of our network. We also used the

2D variant of Dropout, which is suitable for Convolutional Neural Networks, and where

convolution kernels in the layer are dropped by the pre-specified Dropout probability.

In our experiments, we set p as 0.5.

3.2.1.7 Softmax

A softmax converts a series of prediction scores to probabilites. In our case, we use a

softmax at the output of our network to calculate the probability of each pixel belonging

to each class. The probabilities obtained for each pixel sum to 1. For each pixel, the

probability the pixel belongs to class c is given by:

P (yc|x) = exc∑
ex

(3.2.4)

where x are the raw scores for that pixel for all classes (in our case, it is the output

of the last Convolution Transpose Layer), xc is the raw score for the class c, and yc is

the probability of the pixel belonging to the certain class. The softmax computes the

probability of each pixel belonging to each class.

3.3 Training Details

We split our dataset into a training set and a test set, containing 245 images and 62

images respectively. Since our dataset size is rather limited, we explored unsupervised

pre-training to learn dataset specific features. We believe this can be particularly helpful

for Semantic Segmentation.

We train over the entire M2CAI-tool training set (581935 frames) for image reconstruc-

tion over 1 epoch. The network used is the same as the segmentation network, except

the last layer of the network uses a Sigmoid instead of a Softmax. We used a learning

rate of 0.01, and a batch size of 64 for the training. For the loss function, we used the

per-pixel Mean Squared Error loss which is given as:
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MSE = 1
n

n∑
i=1

(y − ŷ)2 (3.3.1)

where n is the number of pixels, y is the groundtruth pixel value, and ŷ is the predicted

pixel value. We initilize our segmentation network with weights from the reconstruction

network. We then finetune the network for semantic segmentation. We use the Adam

Optimizer [53] to train both our reconstruction and segmentation networks with β1 and

β2 as 0.9 and 0.999 respectively. Adam stands for Adaptive Moment Estimation and

uses a moving average of the gradients to make the update of the network parameters,

as opposed to using the gradient of just the current iteration as in vanilla Stochastic

Gradient Descent (SGD).

We also used Weight Decay as a regularizer with λ equals 0.0005. Weight decay penal-

izes large weights and thus allows learning of diverse parameters of more or less equal

importance for the network. We used step learning rate decay with the initial learning

rate 0.0001, which is halved every 10 epochs. We trained for a total of 90 epochs with

a batch size of 2 and used a multi-class pixel-wise Dice loss function.

The Dice Similarity Coefficient (DSC) measures the similarity between two image re-

gions, and the discrete version is given as:

DSC = 2 ∗ |Y ∩ Ŷ |
|Y |+ |Ŷ |

(3.3.2)

where Y is the ground truth segmentation map, Ŷ is the predicted segmentation map.

| | indicates the number of pixels belonging to a particular class in the groundtruth

and the predicted segmentation maps. However, the above function is not differentiable

and thus can’t be used as a loss function. However, [23] proposed a continuous and

differentiable version of the function which can be used directly as a loss function in

training Deep Neural Networks. We use that formulation as the loss function of our

network. Using the Dice Loss function benefits training in our case as compared to the

Cross-Entropy loss.
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Results and Evaluation

We evaluate our proposed network on the test set of the miccaiSeg dataset proposed in

Chapter 3. We divide our training and evaluation into two different categories:

1. Single Instrument Class: We categorize all instruments into one single class i.e.

Instruments

2. All Categories: We use all categories as outlined in Section 3.1.2

For evaluation, we report 4 different performance measures, namely Intersection over

Union (IoU) (also called Jaccard Index), Precision, Recall, and the F1 score for each

class, as well as their mean over all classes.

IoU = TP

TP + FP + FN
(4.0.1)

Precision = TP

TP + FP
(4.0.2)

Recall = TP

TP + FN
(4.0.3)

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(4.0.4)

We use a pixel-wise criteria to evaluate the True Positives (TP), False Positives (FP),

and the False Negatives(FN). The IoU represents the degree of overlap between the
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segmentation regions, benefiting from the True Positives while penalizing both the False

Positives and False Negatives. Precision and Recall represent the resilience to False

Positives and False Negatives respectively. Finally, the F1 score is the harmonic mean

between Precision and Recall and gives a more balanced estimate taking into account

both the False Positives and False Negatives.

4.1 Single Instrument Class

These experiments use a subset of all 19 classes, clustering all the instruments into 1

super-category, and merging the Fluid super-category (Blood and Bile) with the Gall-

bladder class; resulting in a total of 9 classes, namely:

1. Unknown

2. Instruments

3. Liver

4. Gallbladder

5. Fat

6. Upper Wall

7. Intestine

8. Artery

9. Black

Table 4.1 shows the results of our proposed network on the above categories.

As we can see from Table 4.1, our network performs well on the majority classes in the

dataset, while its performace suffers on the less dominant classes; especially Intestine

and Artery. This is expected since the number of instances of these two classes are

quite low. This is also the case for the Unknown class as our network fails to correctly

predict that class throughtout the evaluation. This can potentially be explained by the

fact that while human annotators didn’t get how a particular part of the image should
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Class IoU Precision Recall F1 Score

Unknown 0.00 0.00 0.00 0.00

Instruments 0.73 0.79 0.91 0.85

Liver 0.77 0.84 0.90 0.87

Gallbladder 0.50 0.80 0.58 0.67

Fat 0.53 0.61 0.79 0.69

Upper Wall 0.41 0.65 0.53 0.58

Intestine 0.17 0.80 0.18 0.30

Artery 0.09 0.49 0.09 0.16

Black 0.94 0.96 0.97 0.97

Mean 0.46 0.66 0.55 0.57

Table 4.1: Results of our network on the miccaiSeg with a single instrument class.

be labeled, and hence annotated it as Unknown; the algorithm learns features through

which it is able to make a prediction other than Unknown for those image regions.

That being said, the more dominant classes especially Instruments, Liver, and Black

perform well. However, the algorithm fails to impress for Gallbladder and Fat classes,

which are also common. The algorithm mostly confused the Gallbladder and Instru-

ments class. Figure 4.1 shows some of the predictions for our network, while Figure 4.2

shows some failure cases for our network.

As can be seen from Figure 4.2, most failures are for images which are difficult to discern.

Additionally, our network sometimes confuses the Gallbladder for an Instrument due to

potentially similar colors and shape.

4.1.1 Comparison with U-Net

U-Net [3], as disussed earlier in Chapter 2, is a popular architecture for Biomedical

Image Segmentation. We compare the performance of our network with U-Net. The

U-Net architecture was trained from scratch, with the same hyperparameters as our

proposed network. We detail the results in Table 4.2.

Our proposed method outperforms UNet on all categories in all evaluation criteria. It

also shows that the unsupervised pre-training is especially beneficial for small datasets
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Figure 4.1: Predictions of our network on the miccaiSeg dataset with the single instrument

class. The left column shows the original images, the middle column shows the

prediction, while the right column shows the corresponding groundtruth.

in Semantic Segmentation. Figure 4.3 shows the result for our proposed method and

UNet for a particular image from our test set.

As we can see from Figure 4.3, UNet preserves the lower level features nicely such as

edges and shape information, but fails to makes fine predictions globally. We propose
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Figure 4.2: Predictions of our network on the miccaiSeg dataset with the single instrument

class. The left column shows the original images, the middle column shows the

prediction, while the right column shows the corresponding groundtruth.

some interesting directions in the future work section in Section 5.1 on how we can

better leverage this information.
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Class IoU

(Pro-

posed

Method)

IoU

(UNet)

Precision

(Pro-

posed

Method)

Precision

(UNet)

Recall

(Pro-

posed

Method)

Recall

(UNet)

F1

Score

(Pro-

posed

Method)

F1

Score

(UNet)

Unknown 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Instruments 0.73 0.51 0.79 0.68 0.91 0.67 0.85 0.68

Liver 0.77 0.54 0.84 0.61 0.90 0.84 0.87 0.70

Gallbladder 0.50 0.19 0.80 0.40 0.58 0.26 0.67 0.31

Fat 0.53 0.39 0.61 0.69 0.79 0.47 0.69 0.56

Upper Wall 0.41 0.08 0.65 0.15 0.53 0.14 0.58 0.14

Intestine 0.17 0.00 0.80 0.00 0.18 0.00 0.30 0.00

Artery 0.09 0.00 0.49 0.00 0.09 0.00 0.16 0.00

Black 0.94 0.90 0.96 0.92 0.97 0.94 0.97 0.93

Mean 0.46 0.29 0.66 0.38 0.55 0.37 0.57 0.37

Table 4.2: Comparison of the results of out network with U-Net [3], a popular architecture for

Biomedical Image Segmentation.

4.2 All Categories

We additionally perform experiments for training and evaluation on all 19 classes of the

miccaiSeg dataset. The results are shown in Table 4.3.

Again, we see similar trends as in the Single Instrument class case. The majority classes

show good performance, especially Hook, Liver, Gallbladder, Fat. Some categories,

however, are completely inaccurately predicted such as Unknown, Bipolar, Scissors,

Irrigator, Trocars, Clip, Artery, Bile, and Blood. We can attribute the failure to the

very few and often very difficult to discern instances of these classes in the training

dataset.

Overall, we provide a baseline result in the problem domain. We will open source our

work (code and dataset) to enable other researchers to contribute to the problem. We

used the PyTorch Deep Learning framework [54] in our work, and our code is publically

available at https://github.com/salmanmaq/segmentationNetworks.
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Chapter 4: Results and Evaluation

Figure 4.3: Sample of predictions of our network as compared to UNet [3], a popular CNN

architecture for Biomedical image segmentation. The left column shows the input

image, the 2nd column shows the prediction for our network, the 3rd column shows

prediction with UNet, and the last column shows the groundtruth.

Class IoU Precision Recall F1 Score

Unknown 0.00 0.00 0.00 0.00

Grasper 0.39 0.64 0.49 0.56

Bipolar 0.00 0.00 0.00 0.00

Hook 0.64 0.70 0.89 0.78

Scissors 0.00 0.00 0.00 0.00

Clipper 0.34 0.51 0.51 0.51

Irrigator 0.01 0.71 0.01 0.02

Specimen Bag 0.22 0.50 0.29 0.37

Trocars 0.00 0.00 0.00 0.00

Clip 0.00 0.00 0.00 0.00

Liver 0.73 0.78 0.92 0.85

Gallbladder 0.53 0.71 0.68 0.70

Fat 0.55 0.69 0.73 0.71

Upper Wall 0.40 0.69 0.49 0.57

Intestine 0.20 0.64 0.22 0.33

Artery 0.00 0.01 0.00 0.00

Bile 0.00 0.00 0.00 0.00

Blood 0.00 0.00 0.00 0.00

Black 0.92 0.94 0.97 0.96

Mean 0.26 0.40 0.33 0.33

Table 4.3: Results of our network on the miccaiSeg with all the 19 classes.
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Chapter 5

Conclusion

We introduced the problem of Laparoscopic Robotic Scene Segmentation in this thesis,

introduced the miccaiSeg dataset, and proposed a baseline network to tackle the prob-

lem. We also showed that the unsupervised pre-training for Semantic Segmentation is

beneficial for Semantic Segmentation as image reconstruction enables learning features

similar to the features learnt for Semantic Segmentation.

We hope that this work paves way for future work in the domain as it extends the prior

work done in Surgical scene understanding, and we propose it as a first step towards

autonomous robotic surgeries. Below, we outline considerations for potential future

work in this domain.

5.1 Future Work

Since surgical procedures are safety critical, it is essential that any proposed method is

highly accurate. The same is true for other domains such as self-driving cars. We think

that one of the biggest drawbacks of our approach was that some of the minority classes

only have very few instances in our dataset. Especially classes like Clip, Blood, Bile,

and Artery; which are also critical to detect, only have very few instances throughout

the dataset. This is especially so because they only occupy very few pixels even in the

images they are present in. Hence, the proposed miccaiSeg dataset should be extended

so that there’s a better class balance, and there are enough instances of the minority

classes which would enable the learning discriminating features for those classes as well.

Secondly, as we say earlier that UNet [3] predictions retain the lower level information
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such as edges and shapes. This shows that information sharing across the Encoder

and Decoder networks can be useful. And that such an approach can also benefit from

unsupervised pre-training. Secondly, powerful segmentation networks like DenseNet [48]

can be trained if we have a larger dataset. Additionally, Dilated Convolutions [28] have

been quite successful for Semantic Segmentation as they allow to capture context at

multiple scales, thus providing a more global view of the input.

Recently, Pelt and Sethian [55] proposed a simple network which combines Dilated

Convolutions with Dense blocks as in DenseNet. Here, they leverage the complementary

properties of information sharing from lower layers to the later layers and information

aggregation at multiple scales. Such an approach can be beneficial for our case as well.

Several works have pointed out that joint training for multiple objectives, including

any auxiliary objectives can benefit the training stability and accuracy for all the tasks

being trained for. This is because it enables the network to learn features which are

more generic and suitable for multiple tasks across the dataset. Considering that, joint

training for semantic segmentation along with tool presence detection can be beneficial.

Similarly, considering temporal dependencies between successive video frames, temporal

information can also be accounted for while making predictions for semantic segmen-

tation. In this case, 3D CNNs [56] and Recurrent Neural Networks can be helpful for

modeling the temporal dependencies.

Lastly, post-processing of Semantic Segmentation predictions due to spatial dependen-

cies among neighboring pixels can be helpful to increase the network accuracy; but that

usually comes at the cost of additional computational complexity and more complex

network architectures.
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