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Abstract

Resource Description Framework (RDF) is a W3C Recommendation for
knowledge representation on semantic web. Growing size of RDF anno-
tated data demands scalable semantic stores. Hadoop based distributed and
parallel processing frameworks such as HBase and Hive are increasingly be-
coming popular for storing voluminous data and for enhancing flexibility
to handle complex data. Hive is a Hadoop based data warehousing infras-
tructure with support for complex analytical processing. Its query interface
doesn’t support data exploration using SPARQL, a standard query language
for RDF. Integration of aforementioned technologies with added support for
SPARQL queries may realize a scalable semantic web data store. We have
proposed a semantic preserving SPARQL-to-HiveQL translation scheme that
adds querying interface to the Hadoop based RDF stores. Major contribu-
tions of our research are (i) semantic preserving SPARQL-to-HiveQL query
translation algorithm (ii) a storage schema independent querying mechanism
that accommodates different storage schemes without impacting translation
time. The experimental results show the efficient working of proposed trans-
lation algorithm and its support for different types of SPARQL queries.
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Chapter 1

Introduction and Background

This chapter gives an introduction of the overall work done and it includes

briefing about the technologies used.

1.1 Introduction

Resource Description Framework (RDF) (Manola et al., 2004) is the funda-
mental building block of Web of Data, also known as Semantic Web (Lee
et al., 2001). It provides a standardized framework for data representa-
tion and integration. The flexibility offered by RDF has gotten it widely
accepted in the Semantic Web community and as a result many storage so-
lutions have emerged (Guo et al., 2005). Persistent RDF stores could be
classified as 1) native stores such as Jena TDB (Wilkinson et al., 2003),
Sesame Native (Broekstra et al., 2002), AllegroGraph (AllegroGraph, 2012),
and OpenLink Virtuoso (Erling, 2001); and 2) non-native stores that work as
an overlay on another storage system such as a Relational Database (RDB).
In the later case, an RDF store has to translate RDF queries encoded as
SPARQL (Prud Hommeaux and Seaborne, 2008) into a query language sup-
ported by the underlying storage system such as SQL for RDB. RDF data
is growing very rapidly. To some extent, this trend is attributed to Linked
Open Data initiative (Bizer et al., 2009a). The DBPedia project (Bizer et al.,
2009b), aimed at extracting structured information from infobox section of
Wikipedia articles, is a remarkable example of huge RDF data set. Cur-
rently it describes 2.6m entities and covers 4.7b pieces of information rang-
ing diverse domains. Freebase (Freebase, 2012) is another open repository
of structured data of almost 20m entities. Web Data Commons (WebDat-
aCommons, 2012) is the largest and most up-to-date web corpus, currently
available to public. According to the extraction results of February 2012, it
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CHAPTER 1. INTRODUCTION AND BACKGROUND 2

contains 1.22b typed entities and 3.29b triples. Read and write operations
on such large data sets are increasingly becoming difficult to manage using
traditional approaches (Husain et al., 2010). The avalanche of RDF data de-
mands a distributed scale out storage and processing solution that exploits
flexible graph structure of RDF data. The big challenge in developing such
distributed storage and processing environment is fair data and process dis-
tribution. Adding fault tolerance, high availability and load balancing are
few of many daunting challenges in building such storage system.

Hadoop is an open source cloud computing framework that is designed on
MapReduce programming paradigm and runs on top of low price commod-
ity servers (Apache Hadoop Website, 2012), (Dean and Ghemawat, 2008).
Hadoop approach towards distributed data management has been tested and
proven to be effective in many domains including information retrieval (Lin
and Dyer, 2010), statistical machine translation (Dyer et al., 2008), image
processing (Zhang et al., 2010) and stream processing (Kumar et al., 2010).
Many enterprises including Yahoo, Amazon, StumbleUpon, LinkedIn and
Facebook are using Hadoop for data and processing intensive tasks (Hadoop
Wiki Website, 2012). HBase is Hadoop based column store, that has the ca-
pability of handling sparse data with row level read and write access (Apache
HBase Website, 2012a). These features make it a suitable storage system for
RDF data management. HBase has a very limited set of data exploration
commands including get, put, scan and delete. Therefore complex operations
such as joins need to be implemented as customized MapReduce jobs (Apache
HBase Website, 2012b). In contrast SPARQL supports complex queries over
RDF data using a rich set of operators and functions. Therefore implemen-
tation of all possible SPARQL constructs over HBase as efficient MapReduce
jobs remains a challenging task.

Hive is a Hadoop based open source warehousing infrastructure, that sup-
ports complex analytics using Hive Query Language (HiveQL) over tons of
data stored in Hadoop Distributed File System (HDFS) (Apache Hive Web-
site, 2012). Hive has made the tedious and complex job of writing MapRe-
duce jobs quite easy by automatically generating them for queries written
in HiveQL. It automatically handles joins and other commonly used opera-
tions in queries. Hive can intelligently handle multiple joins in less number
of MapReduce jobs (Thusoo et al., 2010). Enterprises heavily rely on Hive
for generating MapReduce jobs for their analytical tasks. At Facebook, 95%
of data analytics MapReduce jobs are being generated using Hive. It has in-
creased the productivity of raw MapReduce jobs because these jobs deal with
very low level details and therefore are hard to write such custom programs
and difficult to maintain and reuse (Lee et al., 2011).

All demands of emerging RDF stores may be fulfilled using Hadoop frame-
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work, provided answers to the following question. How to store the graph
oriented RDF data on HDFS? How to map RDF data queries into HiveQL?
We have proposed a methodology for adding SPARQL query support to an
RDF store built on top of HDFS. Our approach shows how Hadoop, HBase
and Hive could be used together to design a scale out Semantic Web store
with efficient data storage and retrieval capabilities. We opted HBase to solve
the scalability issue and to exploit its flexibility of handling semi-structured
data and Hive is selected for its data exploration capabilities. Since SPARQL
is the standard language to query RDF data, its support for data extrac-
tion from HDFS is vital. The use of HiveQL to query RDF data requires
translation of SPARQL queries into that of Hive. The manual process of
SPARQL-to-HiveQL translation demands complete knowledge of syntactic
and semantic rules of both SPARQL and Hive languages. Along with this,
it requires thorough understanding of the underlying data storage organiza-
tion. We automated the aforementioned error prone, complex and manual
process of translation. To achieve this goal we have proposed a translation
algorithm, and storage schema mapping and translation procedures. The
storage schema mapping procedures create a virtual view of the underlying
schema. Thus enable the translation algorithm to generate schema specific
fast queries while staying independent of the underlying storage. The segre-
gation of the whole process into schema mapping and translation has made
the proposed approach totally independent of the data storage layer. There-
fore it can easily be used for many configuration of HBase.

Translation 
Algorithm

Parser
+

Analyser

Schema Mapping 
Algorithm

Query 
Result

SPARQL 
Query

Hive Query

Hadoop/HBase Cluster

Node 1
S P1 P...nS P O

Node...
S P1 P...nS P O

Node m
S P1 P...nS P O

MR 
Job n

MR 
Job1

MR 
Job...

Hive Query Engine
Solution Set

Translation Layer
 

Figure 1.1: System Flow Model
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The overall flow of the system is shown in Figure 1.1. The translation
process starts after getting an input SPARQL query. The input query is
validated using SPARQL parser and a parse tree is generated. The generated
parse tree is then passed to the translation algorithm. The translated Hive
query is then passed to the Hive query engine. Hive engine automatically
translates the Hive query into MapReduce jobs, which are then executed on
RDF data stored in HBase to get the solution set.

Our main contributions are,

1. Semantic preserving SPARQL-to-HiveQL query translation algorithm.

2. Storage schema independent querying mechanism that accommodates
different storage schemes without impacting translation time.

We conducted extensive experiments to prove the following features of the
proposed algorithm: correctness, support of varying SPARQL constructs, ef-
ficiency and storage schema independence. We showed the correctness by
comparing our generated solution sets with that of Jena. The efficiency, sup-
port for various SPARQL constructs and working of the designed algorithm
is proved by translating SPARQL queries of varying complexity. To prove
storage schema independence, all queries are translated for two different stor-
age schemes. The translation time of algorithm remains in the range of 79ms
to 115ms even for lengthy and complicated SPARQL queries irrespective of
the underlying storage schema.

1.2 Organization

The rest of the thesis is structured as follows: Chapter 2 discusses the state
of the art for our work and the preliminary concepts, around which our
methodology is designed. Chapter 3 briefly discusses SPARQL queries. In
Chapter 4, we have discussed storage schema mappings in Hadoop. In Chap-
ter 5, we have explained the SPARQL-to-HiveQL translation algorithm along
with its working examples. In Chapter 6, we have presented the evaluation of
proposed algorithms and Chapter 7 concludes the whole study and presents
future work direction.



Chapter 2

Literature Review

This chapter gives a brief overview of the work done in domain of scalable

semantic stores and it explains our work in the context of existing work.

2.1 Related Work

With proliferation of Semantic Web applications, tremendous efforts are be-
ing made by researchers to build mature RDF stores that could stock up huge
amount of RDF annotated data (Sakr and Al-Naymat, 2010). The research
work in this domain can be categorized into 1) native RDF stores, 2) RDF
storage over RDB, and 3) RDF storage over no-sql data storage systems (such
as Hadoop). For category 2 and 3, SPARQL queries - the lingua franca for
talking to RDF stores (Prud Hommeaux and Seaborne, 2008), should be
translated to the language understood by the back end storage system such
as SQL for relational databases (Bajda-Pawlikowski, 2008), (Chebotko et al.,
2009), (Chebotko et al., 2006), (Elliott et al., 2009a) , (Harris and Shadbolt,
2005), (Lu et al., 2008), (Lv et al., 2010), (Son et al., 2008) and (Zhou and
Zheng, 2011). No query translation may be required for the first category
of RDF stores, therefore we excluded it from our literature review. Query
translation approaches, used in rest of the two categories of RDF stores are
discussed subsequently.

2.1.1 SPARQL Over RDB

The research community has proposed and developed mature RDF APIs
and stores including Jena (Wilkinson et al., 2003) SDB, Sesame (Broekstra
et al., 2002), 3store (Harris and Shadbolt, 2005), (Harris and Gibbins, 2003)
and RDFSuite (Theoharis et al., 2005). These stores use mature and vigor-
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CHAPTER 2. LITERATURE REVIEW 6

ous RDB query engine as a back end tool. Since RDF data is based upon
graph model, storing it in a RDB has posed many challenges including effi-
cient storage and querying support. Chong (Chong et al., 2005) proposed a
SQL based RDF querying approach as a simplistic solution for storing and
retrieving RDF data instead of using any other data query language like
SPARQL. He introduced an RDF-Match table function in SQL to search an
intended SPARQL graph pattern. He also added support for RDFS infer-
encing and rules-based reasoning. This approach strives for reduced query
response time at the cost of ignoring advanced SPARQL constructs such as
Optional Graph Patterns. Since SPARQL is the de facto standard Seman-
tic Web query language, its support in RDF stores is very critical. This in
turn requires translating SPARQL queries into equivalent SQL queries for
RDB backed RDF stores. Cyganiak (Cyganiak, 2005) has discussed logi-
cal equivalence of SPARQL and RDB constructs. He provided grounds for
SPARQL to SQL translation by presenting transformation of SPARQL con-
structs into semantically equivalent relational algebra operators and hence
their translation into SQL. Moreover, he outlined the semantic mismatches
among different SPARQL and SQL constructs, but the discussion on practi-
cally mapping SPARQL data into a RDB considering storage schema design
was left untouched. Harris and colleagues, unfolded implementation of trans-
lating SPARQL queries into relational algebra for the 3store system (Harris
and Shadbolt, 2005). Their work misses out support for nested optional,
union and complex value constraints. SPARQL filter constraints to SQL
translation is discussed in detail by Lu (Lu et al., 2008). Chebotko and
colleagues proposed an algorithm for basic and optional graph pattern trans-
lation into SQL for triple-table based RDB storage schema (Chebotko et al.,
2006). The assumption that RDF data is stored only using triple-table ap-
proach is very limiting and not optimal (Abadi et al., 2009). Recent studies
have considered storage schema mapping along with the translation pro-
cess and have proposed relational functions to accommodate different stor-
age layouts (Chebotko et al., 2009; Elliott et al., 2009b). Chebotko’s recent
work (Chebotko et al., 2009), notable among other similar efforts, is based on
equivalence of relational algebra operations with semantics of SPARQL query
operations as outlined in the latest W3C recommendation (Prud Hommeaux
and Seaborne, 2008; W3CWebsite, 2012). They proposed two mapping func-
tions α and β for generating underlying storage schema information, although
the results demonstrate efficiency of their approach, but it is evaluated for
only triple-table storage schema. The work discussed in (Elliott et al., 2009b)
is an extension of the aforementioned approach. It has added support for all
SPARQL constructs and generated flat SQL queries instead of nested queries,
but it is useful for RDF-LIB style storage schema. Most of the translation
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algorithms discussed this far generate SQL query considering a fixed storage
schema layout. The translation work independent of the underlying storage
schema follows the four-step model (Lv et al., 2010; Son et al., 2008). Step
one covers SPARQL query pre-processing such as parsing. The translation
is performed in second step. SQL post-processing such as query simplifica-
tion and optimization based on general principles of relational algebra and
equivalence rules is performed in third step. The fourth and final step targets
query optimization based on the underlying logical and physical data model.

The research work presented in (Lv et al., 2010) and (Son et al., 2008) has
suggested that, translation should be kept independent of the underlying stor-
age schema. Instead of tuning a query as per underlying storage scheme their
work focuses on generating query specific view of the relational database.
The hypothesis is that complexity of the storage design shouldn’t influence
the translation step as it may require extra work for adapting new storage
schemes. Both view based approaches support only a subset of SPARQL
queries. Zhou proposed a mechanism for execution of SPARQL queries over
heterogeneous databases with the help of uniform SPARQL query interface,
though only simple filters, optional and union SPARQL queries are sup-
ported (Zhou and Zheng, 2011). A manual tool based approach (Bajda-
Pawlikowski, 2008) for SPARQL to SQL translation also exists, though it
works only for Triple store, Property store and vertically partitioned storage
structure but it supports limited SPARQL constructs.

2.1.2 SPARQL Over Distributed Stores

The research work discussed in previous section covers only moderate sized
RDF data repositories. These systems support query processing and reason-
ing using a single node architecture. Such approaches do not scale well for
emerging data intensive semantic enabled applications. Another challenge in
using RDB for handling Semantic Web data is the mismatch in the relational
model and RDF. RDF follows a graph data model and is very flexible, while
relational model requires a strict schema definition. Therefore most suitable
solution would be a distributed RDF store with distributed query process-
ing capabilities and flexible schema definition. The research community has
already been investigating such distributed solutions. The studies (Husain
et al., 2010; Farhan Husain et al., 2009; Franke et al., 2011; Sridhar et al.,
2009; Sun and Jin, 2010) have concluded that Hadoop based technologies
are most suitable for storing semi-structured and growing RDF data. Hus-
sain and colleagues conducted two different studies targeted at semantic data
management in distributed manner (Husain et al., 2010; Farhan Husain et al.,
2009). They proposed Hadoop based infrastructure for storage and retrieval
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of large RDF graphs. They have presented a storage schema for RDF over
HDFS by dividing and storing data in different files using two steps. Data
is first divided on the basis of predicates called PS Split and secondly data
is further divided on the basis of explicit Type information of objects called
POS Split. Along with the data storage schema design over Hadoop, they
presented an algorithm for determining best execution plan and cost model
to execute a SPARQL query as a MapReduce job. Since the data storage
scheme presented in (Farhan Husain et al., 2009; Husain et al., 2010) is data
dependent thus its performance would degrade if RDF data is skewed, as
it would generate unbalanced partitions. The aforementioned scheme works
efficiently for basic graph pattern queries, but it lacks support for other
SPARQL constructs. MapReduce approach could be used for efficient stor-
age management and retrieval of huge RDF data. Sridhar, for instance, used
Pig Latin (Gates et al., 2009), a high level data flow language based on
MapReduce (Olston et al., 2008), for processing RDF data analytics (Srid-
har et al., 2009). To add support for complex analytical queries they have
proposed few extensions. Pig Latin and Hive both are used as automatic
MapReduce job generators. A study shows that Hive out performs Pig Latin
in terms of efficiency (Jia and Shao, 2009).

Column oriented stores are most suitable for Semantic Web data (Abadi
et al., 2009; Weiss et al., 2008). Abadi and colleagues have also proposed that
property-table storage schema for RDF data storage reduces the number of
joins required to answer queries. The work reported in (Franke et al., 2011)
and (Sun and Jin, 2010) suggest that HBase is quite suitable for RDF data
storage, since its use resolves the issue of null values and at the same time it
exploits the semi-structural properties of semantics web data.

Most of the work reported so far has focused the use of RDB for Semantic
Web data, this led the work on SPARQL to SQL translation. The steady
increase in amount of RDF annotated data is an evidence that distributed
systems are necessary and critical for managing big RDF data-sets. Some
researches have suggested the use of cloud based technologies for RDF data
handling, but their work mainly focuses the storage schema design, while
querying support part hasn’t got much attention (Franke et al., 2011; Sun
and Jin, 2010). Different techniques for building distributed query engines,
using Hadoop (Husain et al., 2010; Farhan Husain et al., 2009) are also
suggested in the literature. To the best of our knowledge, there is no effort
towards utilizing the existing implementation of MapReduce such as Hive for
a scalable and explorable Semantic Web data store.



Chapter 3

SPARQL and Hive

This chapter gives a brief overview of the preliminaries concepts of Hive

and SPARQL pertinent to the proposed methodology.

3.1 SPARQL Queries in context of Hive

SPARQL is a W3C recommendation for RDF data (Prud Hommeaux and
Seaborne, 2008). In general a SPARQL query has two parts: 1) query type
followed by query variables, and 2) WHERE clause followed by graph pat-
tern. According to W3C a query type specifies one of the four possible
SPARQL queries including SELECT, ASK, DESCRIBE, and CONSTRUCT.
Whereas, a graph pattern specifies query semantics. A graph pattern is one
of the following types: Basic Graph pattern (BGP), Basic Graph Pattern
with Filter Constraints (FGP), Optional Graph Pattern (OGP), Alternative
Graph Pattern (AGP) or UNION Graph Pattern (UGP) and Group Graph
Pattern (GGP). A BGP, FGP, and OGP is composed of one or more triple
patterns, while AGP/UGP and GGP are made of one or more BGPs, FGPs
or OGPs. A triple pattern has three parts subject, predicate and object,
called triple parts or query variables. In a SPARQL query a variable is
either bound or unbound. A variable is considered bound, if its value is al-
ready specified, otherwise it is unbound variable. In contrast to SPARQL,
Hive query in general has three parts: 1) query type 2) tables references, and
3) WHERE clause. During translation process a graph pattern in SPARQL
is translated to constraints in WHERE clause and join conditions in FROM
clause of Hive query. Figure 3.1 shows the partial structure of the SELECT
query tree of BNF grammar for both SPARQL and Hive. These trees are
generated by our SPARQL and Hive parsers, for the BNF grammar of re-
spective languages using ANTLR (ANTLR Website, 2012). The Figure 3.1

9
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shows the transformation of SPARQL query tree parts into that of Hive.

Hive Query Parse Tree (Partial)

selectStatment

selectClause fromClause whereClause

’SELECT’ selectList ’FROM’ joinSource ’WHERE’ searchCondition

SPARQL Query Parse Tree (Partial)

selectQuery

whereClause’SELECT’ var

’WHERE’ groupGraphPattern

triplesBlock

triplesSameSubject

varOrTerm propertyListNotEmpty

verb objectList

M
ap

p
in

g
 +

 T
ra

n
sl

at
io

n
 A

lg
o

ri
th

m

Figure 3.1: An Example of SELECT Query Parse Tree

Graph pattern is most crucial building block of any SPARQL query. The
solution set of a query depends on matching the Graph pattern. The Hive
equivalent for each type of Graph pattern is discussed below.

• Basic Graph Pattern (BGP): Since a BGP may consists of single
triple pattern or a set of triple patterns that must match. Hive equiva-
lent query for a single triple BGP is simple, in which all restrictions are
specified in the WHERE clause. Multiple triple patterns in a SPARQL
query may require specification of restrictions in the WHERE as well
as FROM clause of an equivalent Hive query.

• Basic Graph Pattern with Filter or Value Constraints (FGP):
A BGP with filter further restricts a solution set by specifying more
constraints. In Hive, value constraints are specified in WHERE clause.

• Optional Graph Pattern (OGP): An OGP defines optional inclusion
instead of eliminating solution bindings. In Hive the semantics of OGP
could be implemented using LEFT OUTER JOIN.

• Alternative Graph Pattern (UGP) or (AGP): It allows the solution
set to be obtained by combining the results of different BGPs. In Hive,
a UGP/AGP could be implemented by using UNION ALL.

• Group Graph Pattern (GGP): A GGP is combination of one or
more of the above explained graph patterns. Therefore its translation
is done using the above mentioned points.
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All operator and functions of SPARQL could be mapped to semanti-
cally equivalent operators and functions. After analysing the semantics of
SPARQL and Hive operators and functions, we prepared the mapping list
shown in Table 3.1:

Table 3.1: Filter Operators and Functions Mapping in Hive

SPARQL Operator/Function Hive Mapping
+A A=A+1
-A A=A-1

A ‖ B A OR B
A && B A AND B
A = B A = B
A != B A != B
A < B A < B
A > B A > B
A ≤ B A ≤ B
A ≥ B A ≥ B
A ∗B A ∗B
A//B A//B
A + B A + B
A - B A - B

Bound(A) A is NOT NULL
!Bound(A) A IS NULL
STR(A) cast (A as STRING)

DATATYPE(A) cast (A as DATATYPE)
isURI or isIRI A REGEXP B

REGEX(STRING A, PATTERN B) A REGEXP B



Chapter 4

Storage Schema

This chapter describes different storage schemes for stocking up RDF data

in scalable way. It also discusses our designed storage scheme mapping

generation algorithms. The mapping algorithms are integral part of the

translation process.

4.1 Storage Schema Mapping in Hadoop

As discussed earlier, column oriented stores are most suitable for efficient
storage and retrieval of Semantic Web data (Abadi et al., 2009; Weiss et al.,
2008). A group of researchers (Franke et al., 2011; Sun and Jin, 2010) took
this hypothesis one step further and proved that HBase could be used as
highly scalable, efficient and fault tolerant Semantic Web storage systems.
After reviewing the work done for designing a scalable RDF store, we classi-
fied it in two broad categories: (i) Static Schemes and (ii) Dynamic Schemes.
Since we are using HBase and Hive on top of HDFS, therefore we made the
HBase schema and updates visible in Hive as external tables. Furthermore
to keep the translation process independent of the data storage structure,
an algorithm for generating a storage schema view is essential. Contrary to
the storage view generation approaches (Lv et al., 2010; Son et al., 2008), we
generate a virtual view. The Algorithm 4.3 is responsible for creating the vir-
tual view. It uses mapping procedures presented as Algorithms 4.4, 4.5, 4.6
and 4.7. The mapping Algorithm 4.3 also uses a helper function isVariable.
The function isVariable(triplePart) takes a triple part and returns true if it
is a SPARQL variable and false otherwise. The mapping algorithm receives a
data structure tableName(SubRef, PreRef,ObjRef) from the helper proce-
dures and returns it to the translation algorithm. The data structure is made
of the following four pieces of information: tableName, name of the table in

12
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which a triple match for the given triple pattern triplePattern(s, p, o) could
be found, where SubRef , PreRef and ObjRef are the storage references to
the columns for triplePattern.s, triplePattern.p and triplePattern.o parts
of the triple pattern. In succeeding subsections initially we discussed the
storage schema categorization and its accessibility in Hive, and then the
storage schema mapping Algorithm 4.3 and its helper procedures refereed as
Algorithms 4.4, 4.5, 4.6 and 4.7 are discussed.

4.1.1 Procedures to make HBase table visible in Hive

In this subsection, we have discussed the storage classification and its acces-
sibility in Hive.

Static Schemes

Storage schemes that map RDF data to a fixed schema structure come un-
der this category. The schema layout of such approaches do not evolve even
after data changes. There are two known static storage schemes, one is
triple-table (Broekstra et al., 2002; Chong et al., 2005; Harris and Gibbins,
2003; Wilkinson et al., 2003) and the other is Hexa store approach (Sun and
Jin, 2010; Weiss et al., 2008). The triple-table approach with a single three
columnar table to store subject, property, and object parts is the most simplis-
tic and widely used storage scheme for storing RDF data. Many traditional
and mature RDF data management systems including Jena (Wilkinson et al.,
2003), Sesame (Broekstra et al., 2002), 3store (Harris and Gibbins, 2003) and
Oracle (Chong et al., 2005) are using its variants. Structure of a triple-table
is depicted through an example in Table 4.1. The other type of static and

Table 4.1: Triple-Table Example

Row Key ColumnFamily:triple
unique value triple:subject triple:Property triple:object

1 Ali type Student
2 Ali memberOf IEEE
3 Ali year 4th
4 Asher type Research Associate
5 Asher memberOf IEEE
6 Asher officeExt 1234

ontology independent storage scheme is introduced in (Weiss et al., 2008) and its imple-
mentation using HBase is discussed in study (Sun and Jin, 2010). All RDF data is mapped
to six tables S PO, SO P , P SO, SP O, SO P and PO S. The table name shows the
storage order of subject (S), predicate (P) and object (O) within a triple. All tables share
similar three column structure as shown in Table 4.1, but have different indexing pattern.
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The variations in indexes allows efficient searching for different types of triple patterns,
though posing a huge overhead on storage because of redundancy.

Algorithm 4.1 GenerateStaticSchema

Require: List of HBase tables t = tablet1, tablet2, . . . , tabletn
Ensure: HBase tables are accessible through Hive
1: for tablet1 to tabletn ∈ t do

2: Probe HBase for tableti structure
3: table structure is returned in the form

〈tableti, (columnci1, . . . , columncin)〉
4: expose table tableti in Hive as external table tablehti
5: for j = 1 to all j = n ∈ ith two-tuple do

6: Add column columncij to Hive table tablehti
7: end for

8: end for

Making an ontology independent storage scheme accessible in Hive is simple. It re-
quires declaring HBase tables in Hive as external tables. It makes a static HBase storage
accessible in Hive. The Algorithm 4.1 takes a list of HBase tables to be manged by Hive as
input and probes HBase for getting the table structure information. The table structure
information is a two-tuple set member of the form 〈tableti, (columnci1, . . . , columncin)〉.
Where, 1 ≤i≤ n. In the aforementioned two tuple tableti, is the ith HBase table with
list of columns (columnci1, . . . , columncin). The Algorithm 4.1 exposes tableti in Hive as
an external table named as tablehti. In next step it defines the structure of the Hive ta-
ble tablehti by adding all columns (columnci1, . . . , columncin) as per table tableti structure.
In this manner it makes all HBase tables assessable through Hive.

Dynamic Schemes

A storage structure that evolves with change in data falls under this category. Such
schemes are mostly ontology dependent, i.e. for different ontologies the final storage
layout might turn out to be completely different but obey similar principles. Property
tables (Abadi et al., 2009) as well as the predicate family structure presented in (Franke
et al., 2011) are its prominent examples. In property table approach a separate table is
created for each unique property. Each table has two columns one for subject and the other
for storing object part. The general structure of a property table is shown in Tables 4.2,
4.3, 4.4 and 4.5.

Table 4.2: Property Table:Type

subject object
Ali Student

Asher Research Associate

Table 4.3: Property Table:memberOf

subject object
Ali IEEE

Asher IEEE
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Table 4.4: Property Table:year

subject object
Ali 4th

Table 4.5: Property Table:officeExt

subject object
Asher 1234

The other variant of ontology dependent scheme is predicate-table. In this approach
a table stores all property values of a subject as key-value pairs in one row. Hence row
count of the table is equal to the number of distinct subjects in RDF data. The structure
of predicate-table approach is demonstrated through an example in Tables 4.6 and 4.7.

Table 4.6: Predicate-Table: SPO

Row Key ColumnFamily:predicate
subject predicate:p1 predicate:p2 predicate:pn

Ali
type year memberOf

Student 4th IEEE

Asher
type officeExt memberOf

Research Associate 1234 IEEE

Table 4.7: Predicate-Table:OPS

Row Key ColumnFamily:predicate
object predicate:p1 predicate:p2 predicate:pn

Student
type
Ali

4th
Year
Ali

IEEE
memberOf

Ali
Asher

Research associate
type
Asher

1234
officeExt
Asher

In predicate-table approach data is replicated in two tables to optimize searches on
both subjects and objects. The replicated table only takes objects as row keys contrary
to subjects as used in the primary predicate-table. An example is listed in Table 4.7.
Algorithm 4.2 is used for making an ontology dependent storage structure visible in Hive.
The algorithm requires the list of HBase tables to be manged by Hive and the type
of the storage structure as arguments. It checks if the schema type is predicate-table,
then it creates two tables SPO and OPS. In SPO a column named subject is added
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Algorithm 4.2 GenerateDynamicSchema

Require: List of HBase tables t = tablet1, tablet2, . . . , tabletn, Storage
Schema Type τ

Ensure: HBase tables are accessible through Hive
1: if τ 7→ predicate-table then

2: Expose table SPO ⊲ SPO is a table with subjects as row key,
predicates as columns, objects as cell values

3: Add column subject
4: Add column predicate 〈propertyAsKey, objectASV alue〉 ⊲ It will

automatically add all columns
5: else

6: if τ 7→ predicate-table then

7: Expose table OPS ⊲ OPS is a table with object values as row
keys, predicates as columns, subjects as cells

8: Add column object
9: Add column predicate 〈propertyAsKey, subjectAsV alue〉 ⊲ It will

automatically add all columns
10: end if

11: else

12: if τ 7→ Property Table then

13: for tablet1 to tabletn ∈ t do

14: Expose table tablehti in Hive with name tableti
15: add column subject
16: add column object
17: end for

18: end if

19: end if
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to store all distinct subjects, while all other predicate and object parts are added as a
map 〈propertyAsKey, objectAsV alue〉. In map predicate names are stored as keys and
objects are stored as values. In OPS object is the first column, while all other columns are
added as a map〈propertyAsKey, subjectAsV alue〉. In map predicate names are stored
as keys and subjects are stored as values. In this manner the tables SPO and OPS are
exposed as Hive external tables. In second case if the schema type is Property Table,
then the Algorithm 4.2 simply exports all the tables as a two columnar matrix, where one
column is named as subject and the other is object.

4.1.2 Storage Schema Mapping Algorithm

In this subsection we will explain the algorithm responsible for creating virtual stor-
age schema view and its helper procedures. The Algorithm 4.3 takes as arguments,
the triple pattern triplePattern(s, p, o) and the target storage schema type schemaType

and depending upon the schema type it calls an appropriate helper mapping proce-
dure. The called procedure creates a virtual view of the schemaType for the triple
pattern triplePattern(s, p, o), and returns the mapping information as a data structure
tableName(SubRef, PreRef,ObjRef) to the calling Algorithm 4.3.

Algorithm 4.3 GenerateSchemaMapping

Require: schemaType, triplePattern(s, p, o)
Ensure: Schema mappings are generated and aliases are assigned
1: if schemaType=TripleTable then

2: return TripleTableSchemaMapping()
3: else

4: if schemaType=HexaStore || schemaType=PropertyTable && is-
Variable(p)=true then

5: return HexaStoreSchemaMapping(triplePattern(s, p, o))
6: end if

7: else

8: if schemaType=PropertyTable && isVariable(p)=false then

9: return PropertyTableSchemaMapping(triplePattern(s, p, o))
10: end if

11: else

12: if schemaType=PredicateTable then

13: return PredicateTableSchemaMapping(triplePattern(s, p, o))
14: end if

15: end if

Now we will discuss the helper procedures used by Algorithm 4.3 in schema mapping.
The helper procedures named as Algorithms 4.4 and 4.5 are used for mapping a given
triple pattern to a storage structure for a static storage scheme.

The algorithm 4.4 creates mapping, if the data is in triple-table format. It maps a
given triple pattern to a table TripleTable. The subject part of triple pattern to col-
umn subject, similarly predicate part is mapped to column predicate and object part
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Algorithm 4.4 TripleTableSchemaMapping

Ensure: Schema mapping is generated.
1: tableName ← ′TripleTable′

2: ś ← ′subject′

3: ṕ ← ′predicate′

4: ó ← ′object′

5: return tableName (ś, ṕ, ó)

to column object. After generating mapping, it returns the data structure: tableName

(SubRef ,PreRef ,ObjRef). The data structure is described earlier.

Algorithm 4.5 HexaStoreSchemaMapping

Require: triplePattern(s, p, o)
Ensure: For a given a triplePattern schema mapping is generated.
1: if isV ariable(s) = false then

2: given =′ S ′

3: else

4: var =′ S ′

5: end if

6: if isV ariable(p) = false then

7: given = concat(given,′ P ′)
8: else

9: var = concat(var,′ P ′)
10: end if

11: if isV ariable(o) = false then

12: given = concat(given,′O′)
13: else

14: var = concat(var,′O′)
15: end if

16: tableName = concat(given,′ ′, var)
17: ś ← ′subject′

18: ṕ ← ′predicate′

19: ó ← ′object′

20: return tableName (ś, ṕ, ó)

The algorithm 4.5 is responsible for generating a virtual view of the physical storage,
when data is in a Hexa store. It directs data retrieval to different tables, depending upon
the return value of helper function isVariable. If isVaraible returns true for one of the
subject s, predicate p or object o part of the triplePattern, then tableName is mapped
to one of the tables S PO, P SO, SO P respectively. Similarly if isVaraible() returns
true for for any two of the subject s, predicate p or object o parts of triple pattern, then
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tableName is mapped to one of the tables SO P , SP O, PO S. All tables in Hexa store
share a three columnar structure. Therefore subject, predicate and object parts are always
mapped to subject, predicate and object table columns respectively. The algorithm 4.5
returns a data structure tableName(SubRef ,PreRef ,ObjRef) to the calling procedure.

Algorithm 4.6 PropertyTableSchemaMapping

Require: triplePattern(s, p, o)
Ensure: Schema mappings are generated and aliases are assigned
1: tableName ← p

2: ś ← ′subject′

3: ṕ ← tableName

4: ó ← ′object′

5: return tableName (ś, ṕ, ó)

The algorithms 4.6 and 4.7 generate a virtual storage view for dynamic schemes. The
algorithm 4.6 is used to generate virtual view for property-table based store. Since the
property table storage design is based on the fact, real world SPARQL queries have known
predicate values. Therefore this approach is used to efficiently answer SPARQL queries
with known predicate values. It directs the query for a given triplePattern to the target
table triplePattern.p, referred as tableName. It directs the subject part to the subject

column and the object part to the object column.
The Algorithm 4.7 generates, a storage mapping for the input triple pattern: triplePattern

(s, p, o), when data is in a Predicate store. It uses the helper function isVarable to deter-
mine the mapping for table name. It directs the query to the table OPS, if the function
isVariable returns true for subject part of the triple pattern triplePattern.s and false
for the object part triplePattern.o. Furthermore using the function isVariable, it gen-
erates mapping for all three parts s, p and o of the triplePattern. In the table OPS a
column named object stores the object part of triple pattern, therefore it is mapped as
objet = triplePattern.o. The predicates and subject parts are stored as a map named
predicate〈propertyAsKey, subjectAsV alue〉. Therefore if function isVariable is false for
predicate part, then predicate is mapped to predicate[p]. The subject part is mapped to
the value of the key as follows predicate[p] = triplePattern.s. In similar manner storage
mappings are generated for a given triple pattern, when isVariable returns false for subject
part of the triple pattern. In this case tableName is mapped to SPO and the column
mappings for the subject, predicate and object part of triple pattern are generated as
explained earlier for table OPS.
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Algorithm 4.7 PredicateTableSchemaMapping

Require: triplePattern(s, p, o)
Ensure: Schema mappings are generated and aliases are assigned
1: if isVariable(s)=true && isVariable(o)=false then

2: tableName ← ′OPS ′

3: ó ← ′object′

4: if isVariable(p)=false then

5: ṕ ← predicate[p] ⊲ predicate[p] refers the key of
map predicate〈propertyAsKey, subjectAsV alue〉

6: else

7: ṕ ← ∗
8: end if

9: ś ← ṕ

10: else

11: tableName ← ′SPO′

12: ś ← ′subject′

13: if isVariable(p)=false then

14: ṕ ← predicate[p]
15: else

16: ṕ ← ∗
17: end if

18: ó ← ṕ

19: end if

20: return tableName (ś, ṕ, ó)



Chapter 5

SPARQL-to-HiveQL

Translation

This chapter discusses the overall translation process and all its technical peculiarities.
Initially parsing details are explored and then all Translation algorithm are explained

with examples.

5.1 SPARQL-to-HiveQL Translation

In this section, we will discuss translation of SPARQL queries into semantically equivalent
Hive queries using the proposed translation algorithm. First step in translation is valida-
tion and identification of query parts. Therefore a query scan using complete grammar
rules of input language is crucial. We designed a SPRAQL parser to parse the query for
validation. Parser also builds a parse tree, used in query parts identification. This ap-
proach saves the time and effort of manual query scan. After query scan, the real process
of translation starts.

Our translation algorithm generates a flat SPARQL query for each BGP, this feature
results in simple and efficient Hive queries without requiring further processing and simpli-
fication. To make the translation process more flexible and adaptable in accordance with
W3C SPARQL recommendations, we have designed it around SPARQL graph patterns.
The translation process starts in Algorithm 5.1. An input SPARQL query and target
schema type are passed as inputs to the Algorithm 5.1. It then, using the helper transla-
tion procedures refereed as Algorithm 5.2 and 5.3, and helper mapping procedure refereed
as Algorithm 4.3, decodes the passed query into Hive language. An overview of the overall
translation process is as follows. The Algorithm 5.1 create a list of unbound SPARQL
variables, referred as required and another list of bound variables, refereed as given. The
lists required and given are created for each BGP using helper translation procedure,
Algorithm 5.2. Each list is assigned a sequential graph number using a helper translation
function groupAlias(). Lists related to one BGP are used to form a flat query, so if there
is only one BGP, made of dozens of triple patterns, a flat Hive query is generated. In
case, when a group graph pattern is made of more than one nested graph patterns, then
initially flat queries are generated for each graph pattern. In next step depending upon
the connecting operator or keyword between the graph patterns, flat queries are joined
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to form a nested Hive query while preserving query semantics. The process of joining
together any number of flat Hive queries to generate one query, involves two steps. In
step one the translation of the connecting graph pattern operator is performed. In step
two, it connects the flat queries using the translated BGP connecting operator, and adds
a new SELECT clause. The SELECT clause of nested sub queries is generated by taking
union of their required lists. Finally SELECT clause is refined by taking an intersection of
the variables in SELECT clause of the grouped Hive query, with that of the selectClause

list generated by helper translation function genFormat(sparqlQuery). The translation
Algorithm 5.1 is also responsible for limiting the level of nesting in the target Hive query.
Nesting is limited to the number of participating graph patterns in an input SPARQL
query rather than the number of triple patterns.

The in-depth working of the Algorithm 5.1 is as follows. The semantics of a SPARQL
is hidden in its WHere clause. Therefore to ensure correct translation, we format it to
a form processable by the Algorithm 5.1. In general the WHERE clause of a SPARQL
query is a group made of one or more BGPs (BGPi) connected together through different
operators(opi), where 1 ≤i≤ n. The BGP connecting operator op is a member of the
set gOp = {OPTIONAL, UNION, NoOperator}. To make input query processable,
it is passed to the helper translation function genFormat(sparqlQuery), which returns
the wherePart in a format like this: {BGP1, op1, BGP2, . . . , opn, BGPn} and, a list of
SPARQL query Select clause variables refereed as : selectPart. Each operator opi in
wherePart is from the set gOp. To make the working of function genFormat(Qi) more
clearer, lets process a query using it. The processing of the whereClause for a group
graph pattern query say Qi ={BGP1 OPTIONAL {BGP2 OPTIONAL {BGP3}}}. The
function genFormat(Qi) process Qi and returns wherePart = {BGP1, OPTIONAL1,

BGP2, OPTIONAL2, BGP3}. After having input query in processable format, it is passed
to the Algorithm 5.1. It calls the helper translation procedure, Algorithm 5.2 for each
BGPi in sparqlQuery and translate it into a flat Hive query hfi. In next step, it starts
connecting the generated flat Hive queries in descending order. Initially generated queries
hfn and hf(n−1) are connected using OPn−1 to form a nested hive query hn−2. In next step
hn−2 is connected with hf(n−2) using opn−2 to produce hn−3. The process of connecting
flat queries is continued until a query h is formed by connecting h1 with hf1 using op1.
The BGPs connecting operator opi has three possible values in case 1, opi = OPTIONAL

is translated to (⋊⋉), and in case 2, opi = UNION is decoded to UNION ALL and in last
case 3, opi = NoOperator is replaced by (⋊⋉) in the decoded Hive query. For operators
in case 1 and case 2 the (⋊⋉) or (⋊⋉), joining condition among two BGPss in a query
h is generated by calling the helper translation procedure, Algorithm 5.3. The detailed
working of Algorithm 5.3 is given at the end of this section. In case 3 h is generated by
connecting flat queries with Hive operator UNION ALL .

Now we will explain the working of the helper translation procedure, Algorithm 5.2.
It is used for resolving the semantics of each BGP. It takes a BGP as input and process
it. After processing, it returns two lists named: required and given.

The Algorithm 5.2 resolves a set of triple patterns(tpi) and filter patterns(fi) within
a BGP(BGP ), where ≥i≤. At first place, it takes BGP={tp1, f1, tp2, f2, . . . , tpn, fn} as
input and using the helper translation function reOrder(), reorders it. The helper trans-
lation function reOrder() arranges the triple patterns, and filter patterns within a BGP
by moving all filter constraints to end of the BGP as follows: BGP={tp1, f1, tp2, . . . ,
tpn, f2, . . . , fn}. All tpi ∈ BGP and all fi ∈ BGP are processed in an iterative man-
ner. To process each tpi ∈ BGP , it uses the helper mapping procedure, Algorithm 4.3,
that generates storage mappings for tpi. The Algorithm 5.2 then using the mapping in-
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Algorithm 5.1 GenerateHiveQuery

Require: sparqlQuery, schemaType

Ensure: h

1: Call genFormat(sparqlQuery)
2: for i = 1 to i = n ∈ wherePart do

3: Call BasicGraphPattern(BGPi)
requiredfi ← required, givenfi ← given

4: Add all members of requiredj to projectfi
5: for j = 1 to j = n ∈ projectfi

selectClausefi = concat ws((if(i > 1),′ ,′ ,′ SELECT ′), projectij)
6: jCondfi ← genJoinPairs(requiredfi)
7: for k = 1 to k = n ∈ jCond

Add an equality based Join to the fromClausefi
8: for k = 1 to k = n ∈ given

whereClausefi = concat ws((if(i > 1),′ ,′ ,′ WHERE ′), givenik)
9: hfi = concat ws(selectClausefi, fromClausefi, whereClausefi)
10: end for

11: if i > 1 then

12: for j = i− 1 to j = 1 do

13: for k = i− 1 to k = j

projectj = projectf(k+1) ∪ projectfk
14: for l = 1 to l = n ∈ projectj

selectClausej−1=concat ws((if(l > 1),′ ,′ ,′ SELECT ′), projectjl)
15: if opj = OPTIONAL then

16: op =LEFT OUTER JOIN

17: else

18: if opj = UNION then

19: op =UNION ALL

20: end if

21: else

22: if opj = noOperator then

23: op =JOIN

24: end if

25: end if

26: fromClausej−1=
concat ws(′FROM(′, (if(j = i− 1), hf(j+1), hj), op, hfj,

′ )′)
27: if op 6=UNION ALL then

28: jCondfi ← genJoinPair(projectj)
29: for k = 1 to k = n ∈ jCond

Add an equality based Join to the fromClausej
30: end if

31: hj−1 = concat ws(selectClausej−1, fromClausej−1)
32: end for

33: return h

34: else

35: return hfi
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Algorithm 5.2 BasicGraphPattern

Require: BGP={tp1, f1, tp2, f2, . . . , . . . , tpn, fn}
Ensure: Two lists required and given

1: Initialize lists required , given=∅
2: reOrder(BGP ) ← {tp1, tp2, . . . , tpn, f1, f2, . . . , fn}
3: for tp1 to tpn ∈ BGP do

4: tableName(SubRef, PreRef,ObjRef)←GenerateSchemaMapping(schemaType, tpi)
5: genAlias(tpi) ⊲ genAlais is responsible for assigning aliases
6: if isV ariable(tpi.subject) = true then

7: required= required ∪ TableAlias.SubRef as var subject

8: else

9: given= given ∪ TableAlias.SubRef = subject

10: end if

11: if PredStorageRef ! = TableName then

12: if isV ariable(tpi.predicate) = true then

13: required= required ∪ TableAlias.Ref as var predicate

14: else

15: if isMap(PreRef) = true then

16: given= given ∪ concat ws(TableAlias.PreRef,′ ISNOTNULL′)
17: end if

18: else

19: if isMap(PreRef) = false then

20: given= given ∪ TableAlias.PreRef = predicate

21: end if

22: end if

23: end if

24: if tpi.object 6= tpi.subject then

25: if isV ariable(tpi.object) = true then

26: required = required ∪ TableAlias.ObjRef as var object

27: else

28: given= given ∪ TableAlias.ObjRef = object

29: end if

30: else

31: given= given ∪ TableAlias.SubRef = TableAlias.ObjRef

32: end if

33: end for

34: for f11 to fn ∈ BGP do

35: hiveCond ← operatorMapping(sparqlCond)
36: given ∪ TableAlias.ColRef(hiveCond)) ⊲ TableAlias.ColRef is

obtained by looking operand in required list
37: end for

38: return required, given



CHAPTER 5. SPARQL-TO-HIVEQL TRANSLATION 25

formation tableName(SubRef, PreRef,ObjRef) and some helper functions isV ariable

and isMap() creates lists. It creates lists by adding the subject triplePattern.s, pred-
icate triplePattern.p and object triplePattern.p parts of tpi along with the storage in-
formation to either required or given. After processing all tpi ∈ BGP , it starts to
processing the filter constraints fi ∈ BGP . For this purpose it makes use of the helper
function operatorMapping(). The function operatorMapping() basically searches for
best match of SPARQL filter operator listed in the table 3.1, implemented as a hash-
map 〈SPARQLoperator(key), HiveOperator(value)〉. After translating each filter con-
straint and getting its operands storage mapping information, the translated filter con-
straint is added to list given.

Finally working of the helper translation procedure refereed as Algorithm 5.3 is dis-
cussed. Its purpose is to generate the list of joining conditions for a graph pattern. It
takes as input, a list required of all unbound variables in a group pattern and generates
another list jCond. List jCond contains a pair of join operands at its each index position.

Algorithm 5.3 genJoinPairs

Require: required
Ensure: jCond
1: for i = 1 to i = |required| − 1 do

2: for j = i+ 1 to j = |required| − 1 do

3: var1← varPart(required[i])
4: var2← varPart(required[j])
5: if var1 = var2 then

6: jCond = jCond ∪ concat(var1,′ ,′ , var2)
7: break

8: end if

9: end for

10: end for

The step wise working of the proposed translation algorithm is illustrated with the
help of following example.

Example 1: SPARQL Basic Graph Pattern Query

SELECT ?item

Where { ?item rdf:type ?type . #(tp1)

?item mods:subject ?object #(tp2)

}

In Example 1 translation process of a BGP query is explained in three steps. The input
query in Example 1 is translated for four different types of storage schemes. The Step 1
shows, storage schema mappings generated for Triple store, Hexa store, Property store
and Predicate store using Algorithm 4.3. In Step 2 shows the lists given and required

generated using Algorithm 5.2. The Step 3 shows the final output Hive queries produced
by the Algorithm 5.1. The brief explanation of each steps is given below.

The storage mappings generated by the Algorithm 4.3 using its helper mapping pro-
cedures refereed as, Algorithms 4.4, 4.5, 4.6 and 4.7 are shown in Step 1. In Step 1
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Step 1: Generating Schema Mappings

Triple store: TripleTable(subject , predicate , object)

(tp1)

TripleTable(subject , predicate , object)

(tp2)

Hexa store: P_SO(subject , predicate , object)

(tp1)

P_SO(subject , predicate , object)

(tp2)

Property store: rdf:type(subject ,rdf:type ,object)

(tp1)

mods:subject(subject ,rdf:type ,object)

(tp2)

Predicate store: SPO(subject ,predicate[’rdf:type ’], predicate

[’rdf:type ’]) (tp1)

SPO(subject ,predicate[’mods:subject ’], predicate[’mods:subject

’]) (tp2)

Step 2: Generating the Bound and Unbound Variables Lists

Triple store: required[t1.subject as var_item , t1.object as

var_type , t2.subject

as var_item , t2.object as var_object] given[t1.predicate=’rdf

:type ’, t2.predicate=’mods:subject ’]

Hexa store: required[t1.subject as var_item , t1.object as

var_type , t2.subject

as var_item , t2.object as var_object] given []

Property store: required[t1.subject as var_item , t1.object as

var_type ,

t2.subject as var_item , t2.object as var_object] given[t1.

predicate=’rdf:type ’, t2.predicate=’mods:subject ’]

Predicate store: required[t1.subject as var_item , t1.

predicate[’rdf:type ’] as

var_type , t2.subject as var_item , t2.predicate[’mods:subject

’] as var_object] given[t1.predicate[’rdf:type ’] IS NOT

NULL , t2.predicate[’mods:subject ’] IS NOT NULL]

the shown storage mapping for Triple store is generated using Algorithm 4.4. The Algo-
rithm 4.4 directs tp1 to the table TripleTable. It also specifies that, tp1.s = var item

be mapped to the subject column of TripleTable. Similarly tp1.p = rdf : type and
tp1.o = var type be respectively mapped to columns predicate and object of TripleTable.
In same way, it generates the storage mapping for tp2. The triple pattern tp2 is also
directed to table TripleTable, where its parts tp2.s = var item, tp2.p = mods : subject
and tp2.o = var object are mapped to subject, predicate and object columns respectively.

The storage mapping for Hexa store is generated using the Algorithm 4.5. The Al-
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Step 3: Translated Basic Graph Pattern Hive Query

Triple store: SELECT t1.subject as var_item

FROM TripleTable t1 JOIN TripleTable t2 ON(t1.subject=t2.

subject)

WHERE t1.predicate ="rdf:type" AND t2.predicate=mods:subject

";

Hexa store: SELECT t1.subject as var_item

FROM P_SO t1 JOIN P_SO t2 ON(t1.subject=t2.subject)

WHERE t1.predicate ="rdf:type" AND t2.predicate=mods:subject

";

Property store: SELECT t1.subject as var_item

FROM rdf:type t1 JOIN mods:Text t2 ON(t1.subject=t2.subject

);

Predicate store: SELECT t1.subject as var_item

FROM PredicateTable t1 JOIN PredicateTable t2 ON(t1.subject

=t2.subject)

WHERE t1.predicate ["rdf:type"] IS NOT NULL

AND t2.predicate [" mods3:subject "] IS NOT NULL ;

gorithm 4.5 shows, table name binding may change. Since only predicate is bound in
both triple patterns tp1 and tp2, therefore they are directed to the table P SO. All ta-
bles share the three columnar structure, therefore tp1.s = var item be mapped to the
column subject of table P SO. Similarly tp1.p = rdf : type and tp1.o = var type be
respectively mapped to columns predicate and object of P SO. In same way, it generates
the storage mapping for tp2. The triple pattern tp2 is also directed to table P SO, where
its parts tp2.s = var item, tp2.p = mods : subject and tp2.o = var object are mapped to
subject, predicate and object columns respectively.

Storage mapping for Property store is generated using the Algorithm 4.6. Since pred-
icates are bound in both triple patterns tp1 and tp2, therefore they are mapped to tables
rdf : type and mods : subject respectively. Since each table in Property store consists of
two column, therefore tp1.s = var item and tp1.o = var type are mapped to the subject

and object column of rdf : type respectively. In similar manner storage mapping for tp2
are generated. Its parts tp2.s = var item and tp2.o = var object are mapped to subject

and object columns of table mods : subject respectively.
Finally for the Predicate store, the Algorithm 4.7 generates storage mappings. For the

given query both triple patterns tp1 and tp2 are mapped to the table SPO, as subject
and object are unbound in both tp1 and tp2. In table SPO, subject is row key and
predicate < predicate, object > is a map, in which predicate is stored as key and object
as value. Therefore for tp1, the subject part var item is mapped to the column subject,
while predicate part is mapped to predicate[′rdf : type′]. Since object part is stored as
value for key predicate in the map predicate, therefore it is refereed through the map
name predicate and its key ′rdf : type′ like this: predicate[′rdf : type′]. Similarly for tp2,
the subject part var item is mapped to the column subject, while predicate part is mapped
to predicate[′mods : subject′]. Since object part is stored as value for key predicate in the
map predicate, therefore it is refereed as given predicate[′mods : subject′].

The Step 2 shows lists of the SPARQL query bound and unbound variables along
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with their table and column name aliases. In Example 1 ?item and ?type in tp1 and
?item and ?object in tp2 are unbound values, therefore are added to the required list,
while rdf : type in tp1 and mods : subject in tp2 are bound, so they are added to the
given list. Similarly for Hexa store both lists required and given are generated in exactly
same manner with same members. The Property store also has the same required list, but
given is empty here. This difference is due to variation of table structure in Property store.
Since predicate names are mapped to tables, and are not added to the given or required
list as shown in Algorithm 5.2. The required and given lists generated for Predicate store
contains the same members with difference in references of table and column names.

The Step 3 shows decoded Hive queries generated by algorithm 5.1. The queries are
generated using the helper translation procedures and helper mapping procedures. The
Algorithm 5.2 is used to generate the lists required and given in similar way as explained
earlier in Step 2. The Algorithm4.3 is used to generate the schema mapping as explained in
Step 2 above. In next step the required list is passed to the helper translation procedure
refereed as Algorithm 5.3, that generates the list of shared variables among the triple
patterns. For Example 1 query the list is: jCond[t1.subject, t2.subject]. Therefore the
triples are joined on the subject column. Since the query in Example 1 is BGP query,
therefor flat Hive query for different storage schemes is shown in Step: 3 Translated Basic
Graph Pattern Hive Query.

5.1.1 Translation Example of Basic Graph Pattern with

Filter Constraint

To understand translation of this genre of queries, lets consider the Example 1 query with
an added Filter constraint: FILTER( ?type! = mods : StillImage ). The translation pro-
ceeds in the same fashion as it went for Example 1. The only difference is an added element
to the given list of all four types of storage schemes. The added element in the given list
for Triple store, Hexa store, Property store is t1.object <> ”mods : StillImage”, while
for Predicate store it is t1.predicate[”rdf : type”] <> ”mods : StillImage”. The filter
constraint is translated using the Algorithm 5.2. The translated Example 1 query with
an added Filter constraint: FILTER( ?type! = mods : StillImage ) is almost same with
a little difference in its WHERE clause. The Queries for the first three schema type con-
tains one more bounding condition And t1.object <> ”mods : StillImage” appended at
the end of the WHERE clause. The Hive query for Predicate store has a condition AND
t1.predicate[”rdf : type”] <> ”mods : StillImage” appended at the end of its Where
clause.

5.1.2 Translation Example of Optional Group Graph

Pattern

In this subsection translation of the OGP query is explained. The sample Example 3 OGP
query, in the proposed representation format is: wherePart = {BGP1, OPTIONAL1,
BGP2}. Hive queries hf1 and hf2 are generated for the groups BGP1 and BGP2 in sim-
ilar manner as explained in Example 1. The flat queries are connected through operator
OPTIONAL. As explained earlier, it is translated to Hive LEFT OUTER JOIN (⋊⋉)).
Therefore hf1 and hf2 are connected using an operator (⋊⋉). The join condition is gener-
ated using the Algorithm 5.3. For the considered query the join is on the shared variable
g1.var item = g2.var item. Finally the refined Select clause is added to project only the
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Example 2: SPARQL Optional Group Graph Pattern Query

SELECT ?recordID ?item

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

OPTIONAL { ?item mods:otherVersion ?version

.

?item mods:isReferencedBy ?reference

} }

variables of list project. To conserve space and avoid repetition, the completely translated
Hive query for only Triple store and Predicate Store is shown in listing:Translated Optional
Group Graph Pattern Hive Query.

5.1.3 Translation Example of Alternative Group Graph

Pattern

The subsection describes translation process of the AGP/UGP queries. Since the solu-
tion set of an AGP/uGP query is the union of all solution sets produced for each graph
pattern. Therefore to preserve query semantics, initially flat queries are generated for
each group graph pattern. The generated flat Hive queries are then combined using Hive
UNION ALL. The translation process of a union query for Triple store and Predicate
store, is explained using a sample Example 3 query. The Algorithm 5.1 using its helper
translation and mapping procedures translates the query. The mentioned query in gener-
alized representation format is: wherePart = {BGP1, UNION,BGP2}. The three step
process, as explained earlier for the Example 3 query is performed for both BGP1 and
BGP2 to generate the flat queries hf1 and hf2. Since the connecting operator here is
UNION, therefore the Hive queries hf1 and hf2 are connected using UNION ALL. Finally
the SELECT clause is refined to include only variables, that are in project list of input
query. The completely translated Hive query for Triple store and Predicate store storage
schemes is shown in listing:Translated Alternative Group Graph Pattern Hive Query.
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Translated Optional Group Graph Pattern Hive Query

Triple store: SELECT g1.var_recordID ,g1.var_item

FROM (SELECT t1.subject as var_recordID ,t1.object as

var_item

FROM TripleTable t1 JOIN TripleTable t2 ON(t1.

object=t2.subject)

WHERE t1.predicate= "mods:records" AND t2.

predicate ="rdf:type"

AND t2.object ="mods:Text")g1

LEFT OUTER JOIN (SELECT t3.subject as var_item , t3.

object as

var_version ,t4.object as var_reference

FROM TripleTable t3 JOIN TripleTable t4 ON(t3.

subject=t4.subject)

WHERE t3.predicate ="mods:otherVersion" AND

t4.predicate ="mods:isReferencedBy ")g2 ON(g1.

var_item=g2.var_item);

Predicate store: SELECT g1.var_recordID ,g2.

var_version ,g2.var_reference

FROM (SELECT t1.subject as var_recordID , t1.

predicate ["mods:records "] as var_item

FROM PredicateTable t1 JOIN PredicateTable t2

ON(t1.predicate ["mods:records "]=t2.subject)

WHERE t1.predicate ["mods:records "] IS NOT NULL AND

t2.predicate ["rdf:type"] IS NOT NULL AND t2.

predicate ["rdf:type "]=" mods:Text")g1

LEFT OUTER JOIN (SELECT t3.subject as var_item ,t3.

predicate ["mods:otherVersion "] as

var_version ,t4.predicate ["mods:isReferencedBy "] as

var_reference

FROM PredicateTable t3 JOIN PredicateTable t4 ON(

t3.subject=t4.subject)

WHERE t3.predicate ["mods:otherVersion "] IS NOT

NULL

AND t4.predicate ["mods:isReferencedBy "] IS NOT

NULL)g2 ON(g1.var_item=g2.var_item);
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Example 3: SPARQL Alternative Group Graph Pattern Query

SELECT ?item

Where { { ?item rdf:type mods:Text .

?item mods:subject ?object }

UNION { ?item rdf:type mods:Text .

?subject mods:records ?item } }

Translated Alternative Group Graph Pattern Hive Query

Triple store: SELECT g3.var_item

FROM (SELECT t1.subject as var_item

FROM TripleTable t1 JOIN TripleTable t2 ON(t1.

subject=t2.subject)

WHERE t1.predicate ="rdf:type" AND t1.object ="mods:

Text"

AND t2.predicate ="mods:subject"

UNION ALL

SELECT t3.subject as var_item

FROM TripleTable t3 JOIN TripleTable t4 ON(t3.

subject=t4.object)

WHERE t3.predicate ="rdf:type" AND t3.object ="mods:

Text"

AND t4.predicate ="mods:records ")g3;

Predicate store: SELECT g2.var_item

FROM (SELECT t1.subject as var_item

FROM PredicateTable t1 JOIN PredicateTable t2 ON(

t1.subject=t2.subject)

WHERE t1.predicate ["rdf:type"] IS NOT NULL AND t1.

predicate ["rdf:type "]=" mods:Text"

AND t2.predicate ["mods:subject "] IS NOT NULL

UNION ALL

SELECT t3.subject as var_item

FROM PredicateTable t3 JOIN PredicateTable t4

ON(t3.subject=t4.predicate ["mods:records "])

WHERE t3.predicate ["rdf:type"] IS NOT NULL AND t3.

predicate ["rdf:type "]=" mods:Text"

AND t4.predicate ["mods:records "] IS NOT NULL)g3;



Chapter 6

Evaluation and Results

The chapter evaluates presented translation and storage schema mapping algorithms.

6.1 Evaluation

The section describes the evaluation of the designed translation algorithm for the following
features: correctness, support for different types of SPARQL queries (simple and complex),
independence of translation from the storage structure. At the end of the section a features
support comparison table of different scalable semantic data management solutions is also
added. SPARQL-to-HiveQL translation layer enables data exploration in Hadoop based
RDF stores, to prove this claim different experiments are conducted. The publicly available
Barton data set is used for evaluation. This data is made from the RDF-formatted dump
of the MIT libraries Barton catalog. It contains more than 50 million triples and there
are 221 unique properties (Abadi et al., 2007).

Evaluation is performed using already defined performance evaluation criteria, men-
tioned in different research studies. The study (Chebotko et al., 2009) has defined cor-
rectness, schema independence and efficiency as a translation scheme evaluation criteria.
Another study evaluated translation schemes on the basis of query translation time and
query transmission time (Son et al., 2011). It has further added that translation time is
affected by the number of translation algorithms, network environment as well as type of
input query. Transmission time on the other hand is affected by the network environment,
input query type, storage structure and data set size. Our main goal is to test the pro-
posed translation algorithm for correctness, support for multiple SPARQL constructs and
storage schema independence. Since optimization of query transmission time is not the key
testing goal, so a relatively smaller segment of Barton data set will suffix the evaluation.
The test data-set consists of 15,563 triples, 4,171 unique subjects, and 39 unique proper-
ties. The proposed translation algorithm translates an input SPARQL query into its Hive
equivalent query. The translated queries are executed using Hive query engine on data
stores built using HBase. Since newer versions of HBase are not compatible with Hadoop,
therefore for testing purpose a Hadoop-0.20.2 append version is built. The Hadoop-0.20.2
append version, HBase-090.3 and Hive-0.9.0 version are configured to work together. The
data repository: triple-table and predicate-table are created to store RDF data. In triple-
table each triple is stored as a row and a unique auto increment unsigned long integer
value is assigned as a row key. Therefore for the used Barton data set chunk, triple-table

32
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has 15, 563 rows. In predicate table, there are 4, 171 rows, where subject is the row key
and object serves as a cell value. To simplify the evaluation process, we have implemented
predicate-table approach with one table. The triple-table and predicate-tables are exposed
in Hive as external tables, using the helper storage mapping Algorithms 4.4 and 4.7.

6.1.1 Test Queries Description

Test queries cover all categories of SPARQL queries that are: BGP, FGP, OGP and AGP.
A short description of query meta-data is given below while the complete SPARQL queries
are listed under appendix A.

• Q1-Q7: SPARQL Queries made of varying SPARQL constructs, including BGP
with single triple pattern, BGP with multiple triple patterns,BGP with single triple
pattern and Filter(F) constraint, BGP with multiple triple patterns and Filter
constraint, OGP with single triple pattern OGP, OGP with multiple triple patterns
and AGP/UGP with multiple BGPs).

• Q8-Q15: Complex SPARQL BGP queries including both bushy and property chain
patterns and with a large number of variables.

• Q16-Q23: Complex Bushy pattern queries with 2 to 16 triple patterns.

In Figures Filter is refereed by F, OGP by O, AGP/UGP by U and Bushy pattern by
B.

6.1.2 Evaluation for Correctness

Correctness is a fundamental and inevitable requirement for any translation process. Cor-
rectness needs to be checked at two levels. At first before the initiation of translation
process, input must be validated, and then after the translation has been done. After
query translation, it should be ensured, query semantics are preserved during the whole
process. The coming sub-subsections includes a discussion on the aforementioned levels of
correctness.

Correctness of Input Query

To ensure input query validation before the initiation of translation process, a set of unit
test cases are designed and conducted using gUnit (gUnit Grammer Tool Website, 2012)
Grammar Test Tool. The test cases are designed for all categories of SPARQL queries
that are: BGP, FGP, OGP and AGP. Test cases are briefly summarised in table 6.1.

Correctness of the Translation algorithm

Correctness of the translation algorithm ensures that, semantics of an input query are not
altered during the whole process. A translated query is correct if its results are complete
and precise as compared to the input query results. To be more clear there should be
no false positive or false negative in the solution set of the translated query. SPARQL
queries Q1 to Q7 are executed using Apache Jena in-memory store. The solution set
produced using Jena is considered as a benchmark solution set. The solution set produced
by the same query after translation and then execution using Hive is compared to the
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Table 6.1: Summarised Description of Unit Test Cases

Query De-
scription

Category
Expected
Result

Actual
Result

gUnit
Status

Remarks

BGP Queries

Positive
Tests

Ok Ok ✔ These test cases make sure that the
parser accepts all valid BGP queries.

Negative
Tests

Fail Fail ✔
These test cases make sure that the
parser does not accepts any invalid
BGP query.

FGP Queries

Positive
Tests

Ok Ok ✔
The set of designed test cases validates
that all correct FGP queries are ac-
cepted by the parser.

Negative
Tests

Fail Fail ✔
The set of designed test cases vali-
dates that all incorrect FGP queries
are flagged as invalid.

OGP Queries

Positive
Tests

Ok Ok ✔
The test cases designed for this cate-
gory make sure that the parser accepts
only valid OGP queries.

Negative
Tests

Fail Fail ✔
The test cases designed for this cate-
gory make sure that the parser does
not accept any invalid OGP query.

AGP/UGP
Queries

Positive
Tests

Ok Ok ✔ Designed test cases make sure that the
parser accepts only valid AGP queries.

Negative
Tests

Fail Fail ✔
Designed test cases ensures that the
parser properly flags grammatically in-
valid AGP queries.
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solution set of Jena. The Comparison results are shown in table. 6.2. The solution sets
produced by translated queries are equivalent to that of input queries. According to the
observations, there are no false positive or false negative in the solution set of a translated
query, therefore the translation algorithm is not modifying query semantics and hence is
correct. It also proves the correctness of helper storage schema mapping procedures.

Table 6.2: Solution set comparison of Translated Hive Queries with Apache
Jena

Query
Apache
Jena

Hive

Triple-
table
Store

Triple-
table
Store

Predicate-
table
Store

Q1 (1 tp) 20 20 20
Q2 (2 tp) 288 288 288
Q3 (1 tp-F) 4165 4165 4165
Q4 (2 tp-F) 209 209 209
Q5 (2 tp-O) 299 299 299
Q6 (4 tp-O) 206 206 206
Q7 (4 tp-U) 1130 1130 1130

6.1.3 Efficient and Storage Independent Data Explo-

ration Support for SPARQL

The sub-subsection describe the observations made during the execution of SPARQL
queries with varying constructs on two storage anatomies: Triple store and Predicate
store. The complexity of a SPARQL query can be measured along the following dimen-
sions: varying SPARQL constructs, increasing number of triple patterns, increasing num-
ber of joins, increasing number of distinct variables. We tested the proposed translation
algorithm along all mentioned axes of complexity. The observations and test results are
discussed below.

Different SPARQL Constructs

To show working of the translation algorithm along this dimension, queries Q1 to Q7 (made
of different SPARQL constructs) are translated. Query Q1 is an example of simplest
SPARQL BGP query with only one triple pattern in its WHERE clause. It has been
translated for both ontology independent triple-table and ontology dependent predicate-
table storage approaches. Complexities of queries gradually grows from Q1 to Q7. The
Fig. 6.1 shows the translation time of different queries. In Fig. 6.1 translation time is along
Y-axis while queries are along X-axis. The Fig. 6.1 demonstrates the following observa-
tions 1) support for all categories of SPARQL queries and 2) translation time growth rate
is minimal as compared to queries complexity and 3) there is no significant performance
difference in translation time for triple-table and predicate-table storage approaches. The
aforementioned observations prove the translation algorithm is storage schema indepen-
dent and it supports various SPARQL query constructs.
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Figure 6.1: SPARQL Constructs Support

6.1.4 Complex SPARQL Queries

The number of participating triple patterns is a also a measure of query complexity. The
increasing number of triple pattern implies increasing checks that must be performed on
RDF data elements before allowing them to participate in solution set. The long property
chain and Bushy pattern are common types of complex SPARQL queries, therefore the
translation algorithm is evaluated for mentioned query types.

Property Chain Queries

To show the efficient translation support of proposed algorithm for Long property chain
queries, queries Q8 to Q15 are translated. In Queries the number of triple pattern are
increased as a multiple of 2. The increasing triple patterns add more variables, properties
and joins to the input query. The translation of Q8 to Q15 is demonstrated in Fig. 6.2.
The queries translation time is along Y-axis while queries (with an increasing number of
triple patterns as a multiple of 2) are shown along X-axis. The Fig. 6.2 shows, translation
time ranges from 80ms to 115ms for different queries starting with query Q8 (having 2
triple patterns) to Q15 (having 16 triple patterns). The comparison of query complexity
with that of translation time pertains that Q15 is 8 times more complex than Q8, while
the translation time is not even doubled. These observations prove efficient working of
the translation algorithm for complex queries involving a large number of variables and
property chains. The Fig. 6.2 shows, working of the translation algorithm for two different
storage structures that are triple-table and predicate-table. Translation time curves in
Fig. 6.2 are very close to each other thus proving efficient functionality of algorithm for
different storage organizations.
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Figure 6.2: Complex Queries with Property Chain Patterns

Bushy Pattern Queries

To observe the translation algorithm behaviour along this dimension of increasing complex-
ity, input queries Q16 (1 join) to Q23 (15 joins) are translated using proposed algorithm.
The bushiness is increasing along each next query while starting from Q16 to the last test
query Q23. The experiment results are shown in Fig. 6.3. In Fig. 6.3 Queries translation
time is along Y-axis while queries with increasing complexity are along X-axis. Translation
time curves for triple-table and predicate-table shows the time remains in range of 79ms to
93ms. The experiment proves the efficient working of proposed algorithm for complicated
Bushy pattern queries with large number of joins.

6.1.5 Performance comparison of Flat versus Nested

SPARQL Queries

According to literature query transmission time is dependent upon underlying storage
structure, the number of translation algorithms, type of input query and size of data (Son
et al., 2011). Type of translated query also impacts query transmission time and flat
queries are many times faster than nested queries (Elliott et al., 2009b).

The proposed algorithm limits nesting to the number of group pattern in an input
query, rather than number of triples patterns. Therefore generated queries are many times
faster than their complete nested counter parts. The Hive decoded versions of Q1 to Q23
queries translated using proposed algorithm and their equivalent completely nested queries
are tested for both triple-table and predicate-table storage schemes. The evaluation results
are shown in Fig. 6.4. It has been observed that for simplest queries the performance of
both flat and nested queries is same but with increasing query complexity the performance
gape also grows rapidly. To conserve the space the Fig. 6.4 shows the queries Q1 to Q7
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Figure 6.3: Complex Bushy Queries

made of different SPARQL constructs and Queries Q9 with 4 triple patterns, Q11 with 8
triple patterns and Q13 with 12 triple patterns. It is evident from the Fig. 6.4 that our
generated queries are many times faster for both triple-table and predicate table storage
structures as compared to their semantically equivalent completely nested counter parts.
The other observation that is made in this experiment is that predicate-table storage
structure decreases query transmission time.

6.1.6 Analysis of Scalable RDF Stores in Terms of Sup-

ported Features

To compare the proposed semantic data management solution with the other existing
scalable RDF storage solutions (Hadoop based), a feature support summary is shown in
table 6.3. The table clearly shows that our proposed Hadoop based RDF store with added
SPARQL-to-HiveQL translation layer supersedes all other semantic data storage solutions
in terms of supported features.

6.1.7 Evaluation Summary

The impact of underlying storage organization is minimal on translation time, while the
complexity of input SPARQL queries mainly impacts the translation time. The evaluation
done for long property chains and Bushy pattern queries has shown that the translation
time is affected by the number of distinct variables and the number of Joins. Two queries
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Figure 6.4: Flat vs Nested Queries Performance

with the same number of triple patterns and joins may take different amount of translation
time if the number of variables in participating queries are different. The evaluation also
shows that query transmission time can be decreased by limiting the level of nesting in
decoded Hive queries.
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Table 6.3: Feature Comparison table of different RDF stores

SPARQL-

to-HiveQL

Pig-
Latin (Gates
et al., 2009)

HBase (Franke
et al., 2011;
Sun and Jin,
2010)

Hadoop (Hu-
sain et al.,
2010;
Farhan Hu-
sain et al.,
2009)

RDB (Chebotko
et al., 2009;
Elliott et al.,
2009b; Lv
et al., 2010;
Son et al.,
2008)

Scalability ✔ ✔ ✔ ✔ ✘
Flexible schema struc-
ture

✔ ✔ ✔ ✘ ✘

Rich set of data explo-
ration commands

✔ ✔ ✘ ✘ ✔

Automatic Map-
Reduce

✔ ✔ ✘ ✘ ✘

SPARQL BGP ✔ ✔ ✔ ✔ ✔
SPARQL BGP with
Filter

✔ ✔ ✘ ✔ ✔

SPARQL OGP ✔ ✘ ✘ ✘ ✔
SPARQL AGP/UGP ✔ ✘ ✘ ✘ ✔
SPARQL Named
Graphs

✘ ✘ ✘ ✘ ✔

Ontology dependent
schema support

✔ ✘ ✔ ✘ ✔

Ontology independent
schema support

✔ ✘ ✘ ✔ ✔

Completely flat queries ✘ ✘ ✘ ✘ ✔



Chapter 7

Conclusion and Future Work

The chapter summarises overall work done . It also discusses the dimensions in which
this work could be further expanded.

7.1 Conclusion

In this thesis we formulated a scalable and efficient RDF data management solution using
the distributed paradigm of Hadoop technologies. A storage schema independent transla-
tion algorithm for SPARQL-to-HiveQL translation is proposed. The translation algorithm
is made independent of the underlying storage organization by delegating this functional-
ity to the designed storage mapping procedure. The storage mapping procedure creates
the schema view of the underlying storage and pass this information to the translation
algorithm. Currently, the mapping algorithm can create virtual storage views for triple-
table, hexa-table structure, property-table or even predicate-table storage organizations.
Moreover, it can easily be extended to support future storage schemes built on top of
Hadoop family of stores. The proposed translation algorithm is devised around the W3C
defined SPARQL graph patterns. It supports complex SPARQL queries including BGP,
FGP, OGP, AGP and GGP. Therefore it is capable of transparently translating SPARQL
queries into semantically equivalent Hive queries, enabling RDF data querying on Hadoop
based stores. The proposed algorithm has enabled RDF data querying using Hive engine
thus realizing an efficient, scalable, fault tolerant and highly available RDF data manage-
ment solution. The correctness and efficiency of the translation algorithm was tested using
23 different SPARQL queries of varying complexity on Barton data-set. The evaluation
results show that the formulated approach retains support for complex queries without
impacting translation efficiency on different storage layouts.

7.2 Future Work

In the future we would like to implement the proposed translation algorithm as map-
reduce jobs. It will move the translation process closer to query execution and will allow
query execution to be started as soon as parts of SPARQL queries get translated. The
other possible expansions of work include adding support for the ASK, DESCRIBE, and
CONSTRUCT queries.
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Appendix A

SPARQL Test Queries

Query: 1

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT DISTINCT ?type

Where { ?instances rdf:type ?type }

Query: 2

Query: 2

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT DISTINCT ?item

Where { ?item rdf:type mods:Text .

?item mods:subject ?object }

Query: 3

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?item

Where { ?item rdf:type ?type .

FILTER (?type != mods:NotatedMusic) }
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Query: 4

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type ?type .

FILTER( ?type!= mods:StillImage ) }

Query: 5

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?recordID

Where { ?recordID mods:records ?item .

OPTIONAL { ?item rdf:type ?type } }

Query: 6

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT Reduced ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

OPTIONAL { ?item mods:otherVersion ?version .

?item mods:isReferencedBy ?reference } }

Query: 7

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?item

Where { { ?item rdf:type mods:Text .

?item mods:subject ?object }

UNION { ?item rdf:type mods:Text .

?subject mods:records ?item } }

Query: 8

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text }
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Query: 9

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification }

Query: 10

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator }

Query: 11

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator .

?item mods:language ?language .

?item mods:contents ?contents }
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Query: 12

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator .

?item mods:language ?language .

?item mods:contents ?contents .

?item mods:note ?note .

?item mods:dateIssued ?dateIssued }

Query: 13

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator .

?item mods:language ?language .

?item mods:contents ?contents .

?item mods:note ?note .

?item mods:dateIssued ?dateIssued .

?item mods:relatedTo ?relatedTo .

?item mods:title ?title }
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Query: 14

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator .

?item mods:language ?language .

?item mods:contents ?contents .

?item mods:note ?note .

?item mods:dateIssued ?dateIssued .

?item mods:relatedTo ?relatedTo .

?item mods:title ?title .

?item mods:edition ?edition .

?item mods:publisher ?publisher }

Query: 15

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

SELECT ?recordID

Where { ?recordID mods:records ?item .

?item rdf:type mods:Text .

?item mods:genre ?genre .

?item mods:classification ?classification .

?item mods:subject ?subject .

?item role:creator ?creator .

?item mods:language ?language .

?item mods:contents ?contents .

?item mods:note ?note .

?item mods:dateIssued ?dateIssued .

?item mods:relatedTo ?relatedTo .

?item mods:title ?title .

?item mods:edition ?edition .

?item mods:publisher ?publisher .

?publisher mods:location ?location .

?location mods:name ?name }
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Query:16

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ; }

Query: 17

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism }

Query: 18

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> }
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Query: 19

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> ;

rdf:type mods:Text ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shipley ,

_Thomas_E.> }
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Query: 20

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> ;

rdf:type mods:Text ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shipley ,

_Thomas_E.> ;

mods:note "[by] Leonard Blumberg , Thomas E. Shipley , Jr., [

and] Irving W. Shandler ." ;

mods:language <http :// simile.mit.edu /2006/01/ language/iso639

-2b/eng > }
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Query: 21

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> ;

rdf:type mods:Text ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shipley ,

_Thomas_E.> ;

mods:note "[by] Leonard Blumberg , Thomas E. Shipley , Jr., [

and] Irving W. Shandler ." ;

mods:language <http :// simile.mit.edu /2006/01/ language/iso639

-2b/eng > ;

mods:subject topic:Drinking_of_alcoholic_beverages ;

mods:subject topic:Treatment }
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Query: 22

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3

#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> ;

rdf:type mods:Text ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shipley ,

_Thomas_E.> ;

mods:note "[by] Leonard Blumberg , Thomas E. Shipley , Jr., [

and] Irving W. Shandler ." ;

mods:language <http :// simile.mit.edu /2006/01/ language/iso639

-2b/eng > ;

mods:subject topic:Drinking_of_alcoholic_beverages ;

mods:subject topic:Treatment ;

mods:note "Bibliography: p. [289] -297." ;

mods:subject topic:Alcoholics }
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Query: 23

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX mods:<http :// simile.mit.edu /2006/01/ ontologies/mods3#>

PREFIX role:<http :// simile.mit.edu /2006/01/ role/>

PREFIX topic:<http :// simile.mit.edu /2006/01/ topic/>

PREFIX publisher: <http :// simile.mit.edu /2006/01/ publisher/>

PREFIX place:<http :// simile.mit.edu /2006/01/ place/>

SELECT ?recordID

Where { ?recordID mods:publisher publisher:

Temple_University_Press ;

mods:subject place:Pennsylvania ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Blumberg

,_Leonard_U._1920 -> ;

mods:subject topic:Alcoholism ;

mods:subject place:Philadelphia ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shandler ,

_Irving_W.> ;

rdf:type mods:Text ;

role:creator <http :// simile.mit.edu /2006/01/ entity#Shipley ,

_Thomas_E.> ;

mods:note "[by] Leonard Blumberg , Thomas E. Shipley , Jr., [

and] Irving W. Shandler ." ;

mods:language <http :// simile.mit.edu /2006/01/ language/iso639

-2b/eng > ;

mods:subject topic:Drinking_of_alcoholic_beverages ;

mods:subject topic:Treatment ;

mods:note "Bibliography: p. [289] -297." ;

mods:subject topic:Alcoholics ;

mods:subject topic:Slums ;

mods:issuance "monographic" }
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