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Abstract

The promise of pay-as-you-go and scalable model of Cloud Computing has at-
tracted a large number of medium and small enterprises to adopt E-Commerce
model of conducting on-line businesses. While E-Commerce applications on
the Cloud expand businesses by making them more widely accessible, they
also makes these applications susceptible to economic denial of service at-
tacks - a form of application layer attacks that drive up the cost of Cloud
computing by using up application resources. This paper focuses on de-
tection and mitigation of EDoS for E-Commerce based applications. EDoS
is different from traditional DDoS in that, the intention of the latter is to
consume all the resources (like memory, bandwidth, CPU etc) of the Web
Server thus making it unavailable to its legitimate users. EDoS on the other
hand is caused by malicious users who are not interested in following the
regular workflow of an E-commerce application by purchasing items but by
employing it for their own purposes of entertainment, price-checks and idle
surfing. We have a twofold solution, (i) admission control and (ii) congestion
control. In the first, we limit number of clients that can simultaneously send
requests, thus allowing only enough clients that can be served easily within
available resources on the Web server. In the second, we change the priority
of allowed clients based on the type of resources they visit and type of ac-
tivities they perform, thus making the maximum resources available to good
clients. Our contribution is two-fold: (1) We model the workflow of a typical
E-Commerce application and identify key parameters that identify good and
bad users and (2) we present the design of a learning-based classifier that
distinguishes good and bad users depending on the values of the parameters
they select while web browsing. We have integrated and evaluated this so-
lution in a Web Application Firewall and found it quite effective in term of
resources distribution among good and bad clients.
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Chapter 1

Introduction

1.1 Introduction

Cloud Computing is a new trend that enables the delivery of computing
resources via the Internet. Cloud service providers provide customizable fa-
cilities like Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) with minimal maintenance cost to their
consumers, thus eradicating the upfront cost of hardware needed for infras-
tructure setup. Moreover Cloud services are typically highly flexible, scalable
owing to the ready availability of almost unlimited resources, making it ideal
for organizations which don’t want to buy the entire infrastructure required
upfront. Cloud Computing follows a pay per use pricing model. Besides all
these benefits, Cloud Computing does come at the cost of increased security
risks which is currently one of the biggest challenges this technology is facing
today, limiting the number of organizations willing to embrace it wholeheart-
edly. The impact of attacks that previously plagued traditional networked
environments increases manifold when applied to the emerging Cloud envi-
ronments. According to (Jackson, 2011) DDoS is the next battleground for
cyber security considerations and is observed as the most devastating and at
the same time the most prevailing attack of the current era. According to
DDoS security vendor Prolexic (Prolexic, 2013), DDoS attack incidents re-
ported in 2012 were more than 25% of the attacks reported in 2011. Among
them, there is a 25% increase in application layer denial of service attacks
and this rate is constantly increasing with time (Prolexic, 2013). The inten-
tion behind application layer distributed denial of service attacks (see Figure
1.1) is to exhaust the application with a large number of requests, so that it
may crash thus making it unavailable to its legitimate users.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Application DDoS Scanario

DDoS attack in traditional networked (non-Cloud) environment usually dis-
rupts the service which hurts reputation and incurs economic loss. In Cloud
environments, disrupting a service is not so easy due to its inherent capabil-
ity of auto-scalability and service level agreements (SLA). However, DDoS
attempts on Cloud environments have another more alarming repercussion in
that it the consumption of more Cloud resources to provide auto-scalability,
normally exceeds the economic bounds for service delivery, thereby incurring
Economic Denial of Sustainability (EDoS) for the organization whose service
or Virtual Machine (VM) is targeted. EDoS (VivinSandar and Shenai, 2012)
is new breed of DDoS attack specific to Cloud environments. In this case,
the Cloud service provider activates more and more resources to meet the
SLA for the availability of the service for the customer, which eventually
adds extra billing cost leading to EDoS. With the advent of the Cloud, a
wrong perception has been prevailing that DDoS attacks will no longer be a
problem anymore, because it has the tendency to absorb the load in terms
of read availability of resources. What consumers don’t realize is that on the
Cloud, resources are metered on resource billing. Fraudulent consumption of
bandwidth and computational resources of Web based cloud services incur
financial burden on the Cloud consumer (Idziorek and Tannian, 2011). Ta-
ble 1.1 depicts the pricing model for one Linux server on Rack Space cloud,
which clearly shows how the cloud consumer has to pay exorbitant rates for
extra usage of resources as in the unintentional case of DDoS attack. The
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motivation of our work is to save this extra cost for the cloud consumer and
at the same time making the service more readily available.

Linux Servers

RAM Bandwidth Monthly Cost
1 512MB 1GB $203.78
2 1GB 2GB $231.64
3 2GB 5GB $275.80
4 4GB 10GB $364.00
5 8GB 15GB $539.80
6 15GB 30GB $848.20
7 32GB 50GB $1,069.60

Table 1.1: Pricing for Rack Space Cloud server (Managed)

It has been observed that the conversion rate i.e. percentage of visits that
leads to purchase and eventual profit is very low for E-Commerce applica-
tions which means there are less number of valuable customers who consume
application resources than are non-valuable customers. According to (Moe
and Fader, 2004) purchase conversion (converting store visits to purchases)
rate for E-Commerce application is still less than 5%, which means majority
of visitors of applications utilize application resources for only the purpose of
window-shopping. Work by (Idziorek et al., 2011) considers fraudulent use
of resources on the Cloud a major threat for Cloud consumers apart from
security threats, that can cause EDoS quite easily. EDoS can be performed
against an E-Commerce application by making simple legitimate requests
that have heavy workload effect on the hosting application e.g. requesting
large media files (image, videos), making frequent searches on entire product
range, which results in large queries on backend databases such as involv-
ing joining of tables. Workload can be on any of the resources -bandwidth,
processing, memory etc. We assume in this work that customers that visit
E-Commerce applications on the Cloud utilizing valuable resources with no
intention of making eventual purchases cause a type of EDoS attack.

In this article, we assert that application DDoS is the major cause of EDoS in
Cloud Computing environments, and explored application DDoS techniques
and proposed a defense solution named EDoS Armor to mitigate it. EDoS
Armor is a multi-layered defense system; firstly, we use a challenge mecha-
nism to restrict bots or scripts from flooding the target, secondly, we have
an admission control which authenticates only limited number of valid users,
to avoid over burdening the hosting application or server. Thirdly, we have
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congestion control which uses a browsing behavior learning mechanism and
assigns priority to good users on this basis. This priority value decides the
distribution of resources among users, so the higher the priority, the higher
the bandwidth allocated to browse resources and vice versa.

1.2 Motivation

DDoS attacks are observed as the most devastating and at the same time
most prevailing attack of the current era, whether one has resources on Cloud
environment or non-Cloud environment. DDoS attack alone has caused a
great deal of damage to various businesses worldwide; among the major af-
fectees are Sony PlayStation Network, the Hong Kong stock exchange, Visa,
MasterCard, PayPal, Word Press and Joomla. According to DDoS security
vendor Prolexic, DDoS attack incidents reported in 2013 are more than the
attacks reported in 2012 (Prolexic, 2013). Moreover Cloud Security Alliance
(CSA) annoounced the top nine security threats on the Cloud and DoS at-
tack is on the 5th position (CSA, 2013), which strengthened our motivation
for this work.

1.3 Thesis Aims and Objectives

The main aims and objectives of this thesis are as follows:

I. To provide deployable defense mechanism against Economic Denial of
Sustainability (EDoS) attack on E-commerce applications in the Cloud.

II. Defense system should be efficient together with effectiveness.

1.4 Thesis Contribution

In this research, we have solved the following issues and produced the sub-
sequent contributions in the field of access control models.

I. Modeled the workflow of a typical E-Commerce application and identified
key parameters that differentiate good and bad users.

II. Designed a learning-based classifier that distinguishes good and bad
clients depending on the values of the parameters they select while
web browsing.
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1.4.1 Conference Publication

The conference paper on this research work has been written with the title
EDoS Armor: A Cost Effective Economic Denial of Service Attack Mitiga-
tion Framework for E-Commerce Applications in Cloud Environments, and
submitted in INMIC 2013 for publication.

1.4.2 EDoS Armor Module

This work serve as a EDoS/DDoS Defense mechanism for E-Commerce appli-
cations and can be integrated in a Web Application Firewall. As a test case,
I have integrated it in a Semantic based Web Application Firewall (SWAF).
EDoS defense enabled SWAF works as a reverse proxy and can be placed
in front of any Web server to provide defense for e-commerce applications
hosted in Web server.

1.5 Thesis Organization

Rest of the thesis is organized as follow: Chapter 2 describes the discusses
related work and existing solutions. Chapter 3 describes system architecture
and design of proposed system. Chapter 4 talks about implementation de-
tails. Chapter 5 describes testing and evaluation of the system and in the end
Chapter 6 concludes thesis work and highlights future research directions.



Chapter 2

Related Research

There is a large body of literature available on DDoS defense mechanisms,
but the main limitation is that it mostly focuses on techniques for prevent-
ing flooding of seemingly legitimate requests at the network or application
layer. We were unable to find lightweight and deployable solutions particu-
larly for mitigating EDoS attacks in Cloud Computing environments where
E-Commerce like applications are accessed by bots or by legitimate users
but with malicious intent. In these environments the examination of packet
payload or violation of HTTP and related web and IP protocols is insufficient
and browsing behavior also needs to be taken into consideration. We found
very limited work on EDoS for Clouds as it is a fairly new concept. Our re-
view below therefore considers in large part both EDoS detection techniques
as well as relevant application layer DDoS detection techniques.

2.1 Traditional DDoS Defense Techniques

(Yu et al., 2010) proposed a trust management helmet (TMH) which uses
trust as a base to differentiate between a legitimate user and an attacker. The
trust value is calculated on the basis of visit history of a particular client and
is stored with the client. (Yu et al., 2010) defined different trust measuring
factors like short-term trust, long-term trust, negative trust & misuse trust,
on the basis of which overall trust is calculated for a client. This trust is
to ensure connectivity of good users in the situation of attack. A license is
maintained on client side through cookies, hashed with a key private. This
license serves two purposes; one for user identification, and second for trust
computation. For each session connection request, TMH checks whether the
client is blacklisted (i.e. trust level below threshold) if yes then the request is
dropped otherwise trust is computed and a connection request to the server

6
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using trust-based scheduling is made. This technique provides partial defense
against application DDoS as it handles only session flooding attacks.

(Ranjan et al., 2009) introduced a DDoS Shield mechanism integrated into
the reverse proxy to either allow or deny requests before it reaching the Web
server tier. DDoS-shield consists of two modules; i) suspicious assignment
module which assigns suspicious value to a session based on historic behav-
ior and ii) DDoS-resilient scheduler that decides when and what request is
to be forwarded based on the scheduling policy. DDoS-shield maintains the
requests history, the request arrival time and workload profile for a session.
This information is used by the suspicious assignment module for assigning
a suspicion value to a session. Resource utilization reports together with
throughput and response time measures are monitored periodically to detect
the DDoS attack without involving the lower layers. This technique involves
time-related characteristics for HTTP sessions like session inter-arrival time,
request inter-arrival time and session arrival time, which are insufficient for
detecting application DDoS because intelligent bots are available to attacker
which provides control over the packet sending rate.

(Yu et al., 2007) characterized application layer attacks into three categories;
request flooding, session flooding and asymmetric attacks. The objective is
to maximize a normal user’s service request rate and minimize his delay for
service. The authors named their technique as DOW (Defense and Offense
Wall) which provides defense against application DDoS by a combination of
detection and currency technology. In detection model, suspicious sessions
are dropped while in currency model, more legitimate sessions are encour-
aged. An anomaly detection method based on K-mean clustering is used to
detect and filter request flooding and asymmetric attacks (Yu et al., 2007).
To provide defense against session flooding attack, an encouragement model
is proposed that uses the client’s session rate currency. Both the methods
in collaboration can provide normal clients, high service rate and lower de-
lay response time. Shortcoming of DOW is that it requires large amount of
training data for its detection model.

(Xie and Yu, 2009) authors introduce a new scheme to achieve early at-
tack detection and filtering for application-layer DDoS attack. For this, an
extended hidden semi-Markov model is proposed to describe the browsing
behaviors of web surfers. In order to reduce the computational amount in-
troduced by the model’s large state space, a forward algorithm is derived for
the online implementation of the model based on the M-algorithm. Entropy
of the user’s HTTP request sequence in reference to the model is used as
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a criterion to measure the user’s normality. If the entropy is larger than a
predefined threshold, the user is considered as abnormal, and the request
sequence will be discarded. Otherwise the user is considered as benign. The
biggest problem of Hidden Semi-Markov method is the algorithmic complex-
ity. Although authors improved this drawback based on M-algorithm, it was
still found that tracking each user’s visiting sequence was not a practical task
(Wen et al., 2010)

(Ali, 2009) proposed a light weight mechanism for mitigation of session flood-
ing and request flooding attacks. To mitigate session flooding attacks, user’s
visiting history is evaluated and a trust value is assigned. Requests are then
scheduled in decreasing order of trust to allocate available session to the user.
For request flooding attack, the concept of source throttling is used. This
mechanism will get activated only when the server is under load. The server
will send a puzzle to the client along with JavaScript to solve it, hence CPU
cycle of client are utilized as apposed to that of the server. Clients who will
send correct results of the puzzle will get their requests processed and not
otherwise. Thus request flooding is handled through throttling client’s CPU.
This technique is limited to only session flooding and request flooding attack.
It involves client side changes which can malfunction in case of users using
unconventional Web browsers.

(Wang et al., 2011) discussed the detection of application DDoS by present-
ing two models; click-ratio based model and Markov process based model, to
characterize Web clients access behavior. Authors then used Large Deviation
(LD) theory to measure the deviation of ongoing client’s access behavior from
priori normal Web client access behavior for these two models and come up
with two detection schemes LD-IIP (click-ration) and LD-MP(Markov pro-
cess). Large deviation theory is mainly used to compute the probability of
occurring rare events in a system. LD-IIP technique proved better in com-
parison to LD-MP by results.

In (Lee et al., 2011) authors proposed a sequence order independent method
for profiling web browsing behavior to detect application DDoS attack. Se-
quence order is considered to be more harmful than helpful in the profiling
of web browsing behavior because it varies significantly for different indi-
viduals and different browsing behaviors. Authors extracted sequence-order-
independent informative attributes from web page request sequences; like
web user’s activeness, pages of interest, and the breadth and intensity of
their interest. These are described in a matrix and use multiple principal
component analysis (PCA) to model profiles of normal browsing patterns.
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Authors used the reconstruction error of the multiple PCA as a criterion for
distinguishing Application-DDoS attacks from normal usage. This technique
lacks automatic learning which make it a non practical solution.

In (Srivatsa et al., 2008) the author proposed a twofold mechanism for mit-
igation of application DDoS. First is admission control to limit the number
of concurrent clients served by the online service. It is based on port hiding
that renders the online service invisible to unauthorized clients by hiding
the port number on which the service accepts incoming requests. Second
is congestion control on admitted clients to allocate more resources to good
clients. Congestion control is achieved by adaptively setting a client’s pri-
ority level in response to the client’s requests in a way that can incorporate
application-level semantics (Srivatsa et al., 2008). This technique has limited
incorporation of application level semantics as it is only suitable for static
applications.

2.2 EDoS Defense Techniques

(VivinSandar and Shenai, 2012) proposed a defense framework for mitigation
of HTTP and XML DDoS attack on the Cloud. Authors have talked about
a new breed of DDoS on the Cloud called Economic Denial of Sustainability
(EDoS) which targets unfair utilization of resources of service on the Cloud
thus causing economic loss to consumer. The author proposed a combina-
tion of a firewall and challenge server to provide defense against EDoS. The
challenge server sends the challenge to the client, and if the client is able to
solve that challenge then a rule is added into firewall for that client to allow
its future requests. Conversely if the client is unable to solve the challenge
which means it is some type of bot, then a rule is added to the firewall to
block its requests in the future. This technique is good in that it limits
traffic from bots but it has no defense for situation where bots are utilized
after solving challenge by humans. Moreover this technique is too basic to
provide a stable defense mechanism for EDoS the Cloud Computing version
of DDoS.

2.3 Conclusion

In our literature study, we have noted that there are a lot of defense mech-
anisms available for application DDoS but few for Cloud based EDoS which
are not enough mature. Both categories of defenses try to ensure availability
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of resources to legitimate clients. But some techniques are complex making
them unpractical, some require more training data, some are not adaptable
to new circumstances, and some become the target of DDoS themselves. Our
proposed technique is client transparent, requires less training data, and pro-
vides a multi-layered defense for mitigation of EDoS in Cloud environments
specific for E-Commerce applications, which is the most popular category of
applications hosted on Clouds.



Chapter 3

Design and Methodology

3.1 Threat Model

In this article, we assumed that the attacker can launch attack on a Web
or application service hosted in the cloud. We also assumed a sophisticated
attacker that can launch both network as well as application layer DDoS.
This means the attacker targets TCP/IP layer exploits for DDoS e.g. sync
flooding attack. Objective of network layer DDoS attacks is to exhaust pro-
cessing, network and memory resources of target server by flooding with
either large number of IP packets or TCP connections requests. Moreover
he can launch application layer DDoS attack. Due to advanced application
server technologies, modern application server now perform complex oper-
ations like heavy weight transactional and database queries processing. By
understanding application semantics, the attacker can craft a DDoS attack,
which involves highly resource intensive requests for instance in an online
book store, the attacker can perform frequent searches, which consume band-
width and put processing load on the backend database. Hence application
level DDoS attacks are harder to detect at IP layer because of unavailability
of application-layer semantics that are mostly only known to the application
developers.

3.2 Defense Model

DDoS attack is detrimental to applications deployed on both Cloud as well
as well as conventional web service based environment. In Cloud Computing
environments a DDoS attack manifests itself as an Economic Denial of Sus-
tainability EDoS attack. To provide an effective defense against DDoS attack
we must have client transparency and light weight mechanisms and ensure

11
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that our defense strategy covers both application layer and well as network
layer DDoS attacks. Security experts also recommend defense for DDoS to
be multi-layered (Durcekova, 2013). In this regards, we found IBM solution
for application DDoS (Srivatsa et al., 2008) which also tried to achieve more
or less the same objectives, but it has talked at a very abstract level about
the algorithm and attributes used, thus it has enough roam for details and
improvements. So we designed EDoS Armor, focusing the missing and am-
biguous part of (Srivatsa et al., 2008) and added some improvements in it
and finally came up with a more improved solution for DDoS over cloud.

3.3 Architecture

Similar to (Srivatsa et al., 2008) EDoS Armor is a multi-layered defense
for application DDoS. First we restrict the bots or automated scripts by
mean of a challenge; challenge-based mechanism is a neat way to throttle
the intensity of a DDoS attack. Due to readily availability of free tools for
application DDoS, things are quite easy for attacker in term of flooding the
target with a high or customized rate of HTTP request to crash the target
application or service. So to avoid this damage, we have a challenge server in
place, which allows to differentiate bots or scripts from human by throwing a
challenge in response to first request from client, if client responds by solving
the challenge correctly, then it is allowed to communicate further, otherwise
it is considered as bot or automated script, and its requests are blocked.

Figure 3.1: Architecture of EDoS Armor Defense

Now if requester is a human user, which responds with correct solution of
challenge, it is authenticated into our admission control module, and assigned
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a secret/hide port on which further communication is carried out. This hide
port will be invisible to other non-authenticated clients. In this way, we are
also limiting number of concurrent clients that can be served by the service at
one time. Another advantage of invisible hide port is that, unauthenticated
clients can’t even launch network DDoS (e.g. TCP SYN flooding attack) on
the server, thus limiting them before than they try to consume CPU, mem-
ory and network resources high above the network stack.

Next comes the congestion control module, which is to keep a check on the
admitted clients. For this, a priority value is maintained; a priority is dy-
namically allocated on the basis of client’s history or on the basis of requests
types keeping in view the application semantics. Motivation for this is to
make maximum resources available to good clients in comparison to bad
clients.

EDoS Armor works in combination of HTTP and IP layers i.e. HTTP layer
on client side i.e. making it client transparent using Web browser and IP
layer on server side i.e. packet filtering performed before it reaches applica-
tion layer up the stack, thus saves a lot of computation, memory and disk
resources for processing of packets.

Figure 3.2: Deployment Scenario for EDoS Armor

Our solution is client transparent, as it does not require any extra software to
be installed at client side. DDoS Armor will be deployed as a reverse proxy in
front of Web server as shown in figure 3, thus making it a deployable solution
as it does not require any extra hardware. By evaluation, we have come to
know that our solution is light weight in term of processing thus there is no
performance overhead.
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Implementation

4.1 Challenge Server

When the client tries to start a session with the server by making first request,
its request is forwarded to challenge server which sends a challenge to every
client at the start of the session. This challenge can be of image based or
any cryptographic challenge. If the client solves the challenge correctly, then
authentication into admission control is possible, otherwise further requests
from that IP are dropped. Challenge mechanism is most widely used for
dealing with flooding attacks.

4.2 Admission Control

The admission control module is used to limit the number of clients that
can connect to Web server at one time. The clients which have solved the
challenge correctly, provided by the challenge server, can only get authen-
ticated in admission control and hence can communicate with the web server.

When the client solves the challenge correctly, the challenge server sends
the client a random port key. On the basis of which hide port is calculated.
This hide port is calculated using the client IP, server IP, current time and
the port key. This hide port calculation process is carried out on both server
and client end. Port key is shared with the client at HTTP layer in browser
cookie. After hide port calculation at the server, it starts listening on the
hide port for that client, while client starts communicating to server over
newly calculated hide port i.e. send request on hide port, and further com-
munication is carried out through this hide port. The hide port is a 16 bit
integer, which means that its value can vary from 0 to 65535. The server

14
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distinguishes the clients on the basis of valid hide port, which is checked
from a table maintained on the server containing client IP with allocated
hide port. Only the clients, who have valid hide port, can connect to web or
application server. To keep the communication totally safe from attackers,
hide port changes periodically during the session. The hide port calculation
involves port key which in term involves server key. So by changing server
key, new port key is generated and shared with client, on the basis of which,
new hide port is calculated and further communication shifts on this.

Figure 4.1: Working Scenario of DDoS Armor

The admission control filter also involves IP layer in combination of HTTP
layer. It takes the benefit of network firewall i.e. iptables. Rules are added
into iptables to only allow authenticated clients requests to pass through
and clients with invalid ports are denied at IP layer before reaching at HTTP
layer, thus prevents the consumption of CPU, memory and network resources
of the server as it passes through lower layers to higher layers in network
stack. Hence, without knowing the valid hide port attacker can’t perform
network DoS against the server because this hide port is added in destina-
tion port section of TCP packet. In other words, admission control helps in
providing defense against network DDoS attack. Figure 4.1 shows the inter-
action of client server during a client session.
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Hide port calculation process is carried out on server side as well as on the
client side, and here client’s transparency is achieved through JavaScript.
That hide port is added as destination port in TCP packet. When packet
reaches at server IP layer, this destination port is matched with hide port
calculated on server side, if it matches, then this TCP packet is accepted
otherwise dropped. In the case of acceptance, NAT forwarding is use to map
destination port to HTTP default port i.e. 80. In this way, admission con-
trol involves IP layer together with HTTP layer for its seamless processing.
Figure 4.2 below shows the pictorial representation of working of admission
control.

Figure 4.2: Admission Control Module

4.3 Congestion Control

The congestion filter operates on top of the admission control filter. The pur-
pose of the congestion control filter is to perform allocation of available re-
sources among admitted clients. Additionally it ensures that more resources
are provided to good clients in comparison to bad clients. Congestion con-
trol is implemented through a client priority table that records the current
priority level for every client. Each client is entertained on the basis of its
priority; good client gets the high priority while bad clients get low priority.
A client’s priority level is adaptively varied by the server using application-
specific knowledge and nature of requests made by the client.

For instance in the case of E-commerce application, one may choose to in-
crease a client’s priority level if the client performs a purchase transaction
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and decrease a client’s priority level if the client performs resource-intensive
operations like perform heavy search queries on the application. A client’s
priority level defines the request rate limit for that client at IP layer. Set-
ting the client’s priority involves the incorporation of application-specific
semantics (domain knowledge) together with client application access be-
havior. Request rate filtering at IP-level (firewall) ensures that most HTTP
DDoS attack requests are dropped before they can reach above in network
stack. Now there is a policy similar to (Srivatsa et al., 2008) to reward or
set penalty for the good and bad clients respectively i.e. an additive in-
crease in priority if good behavior is observed and multiplicative decrease
in priority if bad behavior is observed. This behavior analysis is made with
respect to legitimate client utility model. The challenge server initializes a

Figure 4.3: Congestion Control Module

client’s priority when the client first accesses the secured Web application.
We filter the traffic of admitted clients at server firewall (IP level) based
on priority set at HTTP level. This filtering implements the throughput
priority using weighted fair queuing, that is, it ensures that a client with
priority level 100 may send twice as many requests (per time unit) than a
client with priority level 50. Requests from clients attempting to issue a
disproportionately large number of requests (relative to their priority level)
are dropped at the IP layer itself, thereby significantly reducing the amount
of processing/memory/network/disk resources consumption. The applica-
tion layer implements the response time priority, that is, it ensures that a
client with a higher priority level experiences a smaller response time for
the processing of its requests. The tweaking the client’s priority based on
application-specific semantics is also done at application layer. The working
of the Congestion Control module can be explained by the following figure.
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The request rate γ for client is set on IP layer and requests from client
are accepted at this defined rate on the server. Request rate is according to
the priority ρ of that particular client at application layer. The client whose
priority is high is allowed to have a high rate of request where as the client
having low priority can have a lower rate of request. Thus ρ α γ. If a client
tries to send request more than its rate of request, then such request packets
would be dropped. The advantage of filtering the traffic early below the net-
work stack saves lot of computing and memory resources on the server. On
the application layer, the application server handles a request based on the
request’s priority level. The server can improve the response time to clients
with higher response time priority levels by setting a higher priority for the
threads that handle their requests. In general, the handling thread priority
is proportional to the request’s response time priority level. As congestion
control examines clients requests on application layer, thus it can be said
that it help in detection of application layer DDoS attacks.

Figure 4.4: Two layered Defense for DDoS

4.4 Priority Calculation

In congestion control module, there is another check on already admitted
clients through admission control. Congestion control module assigns prior-
ity to all clients and adaptively change their priority based on the browsing
behavior of clients e.g. in case of e-commerce application, the ultimate ob-
jective is to predict clients intension for purchase. Now there are different
attributes/parameters that can help us predict purchase for a client e.g. pur-
chase history, average page visit time, if some certain brands are visited or if
there is certain spending on average per order etc, then there is high chance
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for a purchase. These factors can be vendor specific based on their experi-
ences. Hence if there is a chance for purchase by a client, then its priority will
be increased otherwise, if a client is only traversing the application without
buying intension then its priority will be decreased. In this case, prior client
is considered good and later one bad. Here our intension is to make more
resources available to our good clients rather bad clients. More resources can
be available to good clients in a way that they should be allowed to send
requests at high rate to the server with less response time from server while
bad clients get opposite to it i.e. low request rate and high response time
from server end.

There can be an additional factor which can be used to set priority for a
client i.e. weight of the resources accessed by client. Weight of resource
means, how much valuable a particular resource is in the whole application.
For example order confirmation page will have high weight because this page
eventually leads to the purchase, while a search page has low weight because
it put load on the server for fulfilling search queries, and at this point it is
also not sure that client will make a purchase or not in current session. This
weighting of resources is good option for static applications but for dynamic
applications where resources add, delete or change on the go, this will not be
practical approach.

Priority updating is not a one time process but server will keep on changing
client’s priority based on its browsing behavior. This is done after certain
number of requests from that client. As the good clients gets high prior-
ity and bad clients the other way round, the penalty and rewarding factors
are multiplicative and additive respectively i.e. additive increase priority for
good clients and multiplicative decrease for bad clients. Changing priority on
every request for every client is not feasible as it will create overhead on the
server, thus degrade performance. New priority is sent to client in browser
cookie as response. Priority calculation formula is

Good Clients Priority:
NewPriority = OldPriority + (α * OldPriority)
Where α is a constant value.

Bad Clients Priority:
NewPriority = OldPriority / (β * OldPriority)
Where β is a constant value.

Here value of α and β can be set by vendor based on how much s/he
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wants to reward and punish clients.

4.5 Classification of Users

Consider an e-commerce application like amazon.com, the general walk through
the e-commerce application follows as; first client browse product categories
for product or search product, then on finding the desired product client
add the product to cart, then place order by entering account information,
then confirm order by providing payment and shipping information. We have
characterized application clients into two types; one that follows application
full walk through till the end i.e. make a purchase, are good clients while
other category which surf the application without buying intension, these are
bad clients. Good clients are potential customers, in principle they must be
given preference over bad clients in term of resources.

Figure 4.5: E-Commerce Application Walk Through

In implementation, we perform classification using decision tree algorithm
J48. To classify a client in real-time environment, we first have to perform
learning on some training data taken out from access log of legitimate clients
in application server. Once learning has been performed, a classifier model
has been generated. Then on real time, when a new request arrives from
some client, it is first parsed and parameters are extracted from it, then
these parameters are provided to the classification system which uses classifier
model and client information as input and classifies the client either good or
bad as a result. Then on the basis of this we increase or decrease priority of
a client.
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Figure 4.6: Clients Classification Mechanism

The classification of clients are totally based on the parameters we get dur-
ing the session. Learning is performed on the pattern of these parameters
and then classification is done using this learning as input together with
new client session parameters. I have identified from literature, some general
e-commerce application parameters and categorized into major categories.
They are mentioned below.

To get more control on the whole client session, the classification of client
must be calculated multiple times in a session; for example a clients visits an
online bookstore, in start of session, we can have parameters like session ID,
demographics, session depth etc from client’s search results, these parame-
ters help us initial classification of client. From now onward there are two
scenarios, either client will quit the session or will continue to add product
to cart. If session ends, then in our defense system it is classified as bad
client, otherwise more parameters are collected with further clicks and after
client place order, when we have parameters like average page visit time,
session time elapsed, session clicks etc which shows how much serious a par-
ticular client is in making purchase, at this point in time, it is appropriate
to perform classification again to validate our initial result. Here again there
are two scenarios, either client quits the session or continues with providing
account information. So on quitting, client will be classified as bad, in other
case parameter collection process starts again. Then client enters account
information and confirms the order by providing payment and shipping in-
formation. After this we have all information parameters of client like age,
gender, purchase history, visits frequency, average order amount etc which
are really useful parameter from the perspective of classification. So per-
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Category Attributes

Purchasing history

Recency of last Purchase
Average difference in Purchase Recency
Total No. of Purchases
Total Spending on Site
Average Purchases Per Visit
Purchased at Last Visit

CPU Processing Time
Processing Time for Request
Average Processing Time for Accessing Resource

Session Information

Session ID
Customer ID
Frequency of Visits
Recency of Visit
Average Time Between Visit
Average time of Visit
Average Clicks in a Session
Average Time per Click

Resources Access Pattern

Page Access Pattern
Total No. of Products Viewed
Purchased Made or Not
Ordering Cost of Current Order

Table 4.1: Deciding Attributes for Client’s Classification

forming classification here again can really help in confirmation of our prior
classification result. The reason for classification multiple times during the
session is to ensure that Web or application server’s resources are not wasted
due to wrong intermediate classifications, because on cloud environment you
are paying for every single resource you utilize, so only useful utilization of
resources is desirable.

The mechanism for rewarding and penalizing is based on priority which in
turn relies on the classification result. If a client is classified as bad then its
priority will be decreased and if it is good, then it is the other way around.
This priority has direct effect on the request rate at IP layer which is as-
signed to a particular client for future transactions. There can be a chance
that in start of session client is classified as bad but then client made such
moves which depict the good traits then it can be classified as good and will
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be assigned high priority for rest of session. This was the motivation for
classifying the clients multiple times during a session to ensure that we can
track the client’s intension during the whole session.

4.5.1 Classification Algorithms Tried

We have tried different classification algorithms on our data set. As we have
labeled data set, so effectiveness of algorithm can be checked by error rate in
classification i.e. lower the error rate, higher the effectiveness of algorithm.
Among all the tried algorithms we found decision tree best of all due to its
lowest error rate in classification. All the tried algorithms with their error
rate are mentioned in table 4.2

Classification Algorithm Classification Error Rate
Naive Bayes 12.02%
Decision Rule 4.44%
Decision Tree 1.37%
Nearest Neighbor 3.17%
Instance based Classifier 17.07%

Table 4.2: Tried Classification Algorithms

4.6 Tools and Technologies

4.6.1 Development Environment

• EDoS Armor is developed using JAVA 6.0 in IDE NetBeans 6.7 on
Linux platform utilizing iptables firewall

• Sample E-commerce application is a JSP application developed in IDE
Eclipse

4.6.2 Libraries Used

• HTTP Core API for implementation of HTTP request reply model for
Web server

• WEKA API for classification of E-commerce application clients
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Testing and Evaluation

5.1 Testing

EDoS Armor needs to be tested for the evaluation purpose. The main ob-
jective was to test its behavior on allocation of E-commerce application re-
sources among good and bad clients. For this, we need to simulate the good
and bad clients’ behaviors on E-commerce application to the EDoS Armor
server. Bandwidth allocation, CPU processing time and response time al-
location among good and bad clients are the means to evaluate the EDoS
Armor effectiveness. Moreover, there is a need to test the efficiency of the
EDoS Armor in term of CPU load, memory consumption.

To perform above mentioned tests, we used a sample JSP E-commerce ap-
plication, and for automating its multiple sessions, we used Apache JMeter.
JMeter works in this way that first we record a web application plan into it
and then automate this through multiple threads on the target server. JMe-
ter keep track of requests and their responses and gives results as a measure
of user throughput and response time on the server.

5.1.1 Tools Used

• JMeter: For automating the clients behavior and measuring their through-
put, response time generation by server.

• Bandwidthd: For measuring bandwidth allocation among clients at
server.

• JConsole: For measuring EDoS Armor overhead cost in term of CPU
load, memory utilization.

24
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5.2 Evaluation

5.2.1 Data Set

For evaluation of our system, we have used KDD Cup 2000 data set (Dis-
covery and Mining, 2000), which is an E-Commerce application Gazelle.com
data set, containing the click stream and purchase transactions data. It con-
tains 3 types of data sets in total. Each data set is derived by aggregating
two un-aggregated data sets. Each data set is specific to the question/s asked
in the KDD Cup competition, out of three data sets two are aggregated at
session level (joined click stream data to session data) i.e. each record rep-
resents a single session, while third data set is aggregated at customer level
i.e. each record represents a customer (joined click stream data to order line
data). The numbers of attributes for first two aggregated data sets are 296
and 299 respectively, while third data set contains 518 attributes. Number
of records for the first two data sets are same i.e. 234,954 and for third data
set records are 1,781.

Figure 5.1: Data Set Details

In our case, we considered third data set containing orders information ag-
gregated with customer click stream information. This data set contains the
differentiating attributes like users who spend more than $12 on average per
order or if a client visits expensive brand products and client has purchase
history and session depth average etc which help us classifying a client as
good or bad. The threshold values for attributes can vary from vendor to
vendor; moreover attributes may also vary depending upon vendor’s require-
ments.

We have a class attributes in each data set which already has classification
result value. This attribute confirms the effectiveness of our classification
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algorithm. It is desirable to match classification result to this class attribute
with minimal error rate. The schema for our data set is as follow comprising
some of major attributes.

... Customer Session ID Age Gender Purchase Count

Session Visits Count Session Depth Session Processing Time

Avg Order Amount Avg page visit time Session time elapsed

Session clicks ...

Table 5.1: Major Attributes from Data set

5.2.2 Test Bed

We have performed evaluation of DDoS Armor for resources distribution
among good and bad clients. For this, we hosted a JSP e-commerce ap-
plication on Apache Tomcat 7.0 Web server. This application is hosted on
machine with hardware specifications Intel corei5 CPU 2.30 GHz proces-
sor with 4 GB memory and running Windows as operating system. DDoS
Armor is deployed as a reverse proxy on separate machine in front of Web
server with hardware specifications; 2.1 GHz Intel core2duo processor, 2 GB
memory.

Good and bad client’s requests are generated simultaneously from separate
machines to monitor the behavior of our system in term of resources allo-
cation and performance. We started our experiments with few numbers of
sessions and gradually increased the sessions and closely observed the be-
havior of DDoS Armor in term of throughput, response time and bandwidth
allocation. Below are the figures that depict resources allocation between
good and bad clients.

5.2.3 Test Results

In our test, we bombarded DDoS Armor with up to 400 mix requests from
good and bad clients and checked how our system behaved in term resources
distribution among good and bad clients. We have analyzed DDoS Armor
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on three major factors i.e. bandwidth utilization, throughput and response
time for processing requests on server.

Figure 5.2 shows the bandwidth utilization behavior by good and bad clients
during multiple sessions comprising varying number of requests. Ideally, good
clients must utilize major portion of bandwidth than bad users to limit the
wastage of bandwidth utilization by bad clients because on the Cloud, billing
is done on quantitative utilization of these resources and one don’t want to
pay other than requirements. Here bandwidth difference is not so obvious
when we have less number of requests but as we increased the number of re-
quests, the bandwidth difference is majorally increased which is a good sign
for effectiveness of DDoS Armor.

Figure 5.2: Bandwidth Allocation among Good and Bad Clients

Throughput is the measure of number of requests target system can handle
per second. We have used throughput as a measure for identifying processing
time occupied by good and bad clients during a session. Figure 5.3 shows that
DDoS Armor responded well for both the type of clients requests (good and
bad) i.e. bad clients in comparison to good clients got low throughput from
start and difference remained constant till the end, which means preference
is given to good clients requests for processing. We don’t want to stop or
drop the requests of bad clients but limit their CPU share on the server.
Bad clients are actually non-valuable customers who never bought anything
online and just visit e-commerce site for fun or window shopping.
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Figure 5.3: CPU Time Distribution among Good and Bad Clients

Next measuring factor is response time, which involves request processing
time on the server. DDoS Armor has implemented threading concept to-
gether with fair queuing which made this functionality work.

Figure 5.4: Average Response Time Comparison for Good and Bad Clients

Ideally, bad clients must get higher response time than good users. Good
clients are the potential customers, so they must not get service delay; on
the other hand, if bad users get high response time, then they will not be
bothered about this. Figure 12 showed the comparison of average response
time allocation to good and bad users which clearly limit the response time
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to below 3000ms for our good users, thus making DDoS Armor a practical
solution.

5.2.4 EDoS Working Overhead

EDoS Armor has shown good results in perspective of resources distribution
among good and bad clients, now there is a need to evaluate EDoS Armor
in term of overhead. So EDoS Armor is evaluated in term of CPU, memory
utilization and the results are shown in figures below.

Figure 5.5: CPU Utilization by EDoS Armor

The above figure shows the CPU utilization by EDoS Armor. Here we can
see that, EDoS Armor utilized only less than 9% for its working, thus there
is no major overhead on the EDoS Armor server’s CPU. This is the reason
which makes this favorable for real world deployment.
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Figure 5.6: Memory Utilization by EDoS Armor

This is the memory utilization graph of EDoS Armor, which shows linear
behavior in start, then as the number of requests increases, it become stable.
This is again good behavior in term of memory utilization by EDoS Armor.

5.2.5 Comparison with IBM Technique

We have implemented IBM technique and tested it on the same test bed.
Table 5.2 shows the tabular representation of comparison between EDoS
Armor and IBM technique. EDoS Armor fairly has better features than the
IBM technique, which proved EDoS Arbor as a major improvement over IBM
technique, thus making it deployable and practical defense solution for EDoS
attack on the Cloud.

Properties DDoS Armor IBM Solution
Classification of Users Yes No
Support Dynamic Web App. Yes No
Weights of Resources No Yes
Priority Calculation Verification Yes No
Human Intervention No Yes
Continuous Learning Yes No
Chance of Error Very Low High

Table 5.2: DDoS Armor vs. IBM Technique
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Conclusion and Future Work

6.1 Conclusion

This research focuses on detection and mitigation of EDoS for E-Commerce
based applications. EDoS is different from traditional DDoS in that, the in-
tention of the latter is to consume all the resources (like memory, bandwidth,
CPU etc) of the Web Server thus making it unavailable to its legitimate users.
We have a twofold solution, admission control and congestion control. In the
first, we limit number of clients that can simultaneously send requests, thus
allowing only enough clients that can be served easily within available re-
sources on the Web server. In the second, we change the priority of allowed
clients based on the type of resources they visit and type of activities they
perform, thus making the maximum resources available to good clients. Our
contribution is two-fold: (1) We model the workflow of a typical E-Commerce
application and identify key parameters that identify good and bad users and
(2) we present the design of a learning-based classifier that distinguishes good
and bad users depending on the values of the parameters they select while
web browsing.

6.2 Future Work

The defense against DDoS attacks can not be foolproof, but it can be tried
to minimize attack effect. In order to address this, we have recommended
the following future research directions.

• Modification of current solution with respect to SaaS based Cloud ar-
chitecture to deploy it in public Cloud.

• This work provides defense for only e-commerce applications in cloud

31
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for now, it can be extended to include other DDoS target applications
e.g. banking applications.

• Classification algorithm performance enhancement can be a direction
to work on.

• Clients priority can be set based on the parametric value, which means
now vendor can get more control on the clients. Vendor can define use-
ful parameters with their weights in advance and priority updation can
be done based on accumulative weight of parameters gathered from a
client session e.g. clients having more useful parameter in session will
automatically get high priority and vice versa.
Some useful parameters with their respective weights are described be-
low as a test case.

Parameters Weight (Total = 1.0)
Purchase Count 0.4
Avg. Order Amount 0.2
Session Depth 0.15
Avg. page visit time 0.1
Transaction Time 0.075
Age 0.05
Gender 0.025

Table 6.1: Weight of Resources w.r.t their Usefulness in Classification
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