

A Translation Layer for Automatic Conversion

of High-Level Access Control Policies to SQL

Procedures

By

Zahid Rashid

(2009-NUST-MS PhD-IT-26)

Supervisor

Dr. Zahid Anwar

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MS IT)

In

School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)

H-12, Islamabad, Pakistan

(May 2013)

i

APPROVAL

It is certified that the contents and form of thesis entitled “A Translation Layer for

Automatic Conversion of High-Level Access Control Policies to SQL Procedures”

submitted by Zahid Rashid, have been found satisfactory for the requirement of degree.

Advisor: __________________

(Dr. Zahid Anwar)

 Committee Member: _________________

(Dr. Sharifullah Khan)

Committee Member: _________________

(Dr. Osman Hasan)

 Committee Member: _________________

(Mr. Muhammad Bilal)

ii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY LOVING FAMILY

iii

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at NUST SEECS or

at any other educational institute, except where due acknowledgement has been made in the

thesis. Any contribution made to the research by others, with whom I have worked at NUST

SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author Name: Zahid Rashid

Signature: ______________

iv

ACKNOWLEDGEMENTS

First of all I am extremely thankful to Almighty Allah for giving me courage and strength to

complete this challenging task and to compete with international research community. I am also

grateful to my family, my parents who have supported and encouraged me through their prayers

that have always been with me.

I am highly thankful to Dr. Zahid Anwar for his valuable suggestions and continuous guidance

throughout my research work. His foresightedness and critical analysis of things taught me a lot

about valuable research which will be more helpful to me in my practical life.

I am highly grateful to Dr. Sharifullah Khan, Dr. Osman Hasan and Mr. Mohammad Bilal for

their help and guidance throughout the research work. I am also thankful to all of my teachers

who have been guiding me throughout my course work and have contributed to my knowledge.

Their knowledge, guidance and training helped me a lot to carry out this research work.

Zahid Rashid

v

TABLE OF CONTENTS

LIST OF FIGURES ... vii

LIST OF TABLES.. viii

ABSTRACT .. ix

INTRODUCTION ... 1

1.1 Problem Background .. 1

1.2 Problems in Existing Access Control Models ... 2

1.3 Motivation ... 4

1.4 Problem Definition and Contributions .. 5

1.5 Outlines of Thesis .. 6

BACKGROUND.. 7

2.1 Transaction Datalog (TD) ... 7

2.2 Bell La Padula (BLP) ... 9

2.3 Chinese Wall Policy (CWP) ... 11

2.4 Role Based Access Control (RBAC)... 12

2.5 Temporal Policies .. 13

RELATED WORK .. 15

3.1 An authorization mechanism for a relational database system ... 16

3.2 Hippocratic Databases .. 17

3.3 Oracle Virtual Private Databases .. 18

3.4 Reflective Database Access Control Model (RDBAC) .. 18

SYSTEM FLOW MODEL .. 20

4.1 System Flow Model ... 20

ALGORITHMS FOR TRANSLATING TD RULES TO SQL QUERIES .. 23

5.1 Parsing of TD Rules ... 23

5.2 Reading Database Schema.. 25

5.3 Creating UDFs for Assertion and Retraction ... 26

5.4 Creation of FROM Clause .. 28

5.5 Variable Binding .. 28

5.6 Creating SELECT Clause ... 29

vi

IMPLEMENTATION OF ACCESS CONTROL POLICIES AND MODELS IN RDBAC

FRAMEWORK ... 31

6.1 BLP ... 31

6.1.1 Simple Security Property of BLP Model ... 32

6.1.2 *- Property of BLP Model ... 33

6.2 CWP .. 35

6.2.1 Implementation of Simple Security Property of CWP .. 36

6.2.2 Implementation of *-Property of CWP .. 37

6.3 RBAC .. 42

6.4 TRBAC.. 46

FORMAL VERIFICATION THOROUGH MODEL CHECKING.. 48

7.1 Constructing the Model .. 48

7.2 Verification through SPIN model checker .. 50

PERFORMANCE EVALUATION... 51

CONCLUSIONS AND FUTURE WORK .. 59

REFERENCES .. 60

vii

LIST OF FIGURES

Figure-1: System Flow Model ... 20

Figure-2: Parsing of TD Rule... 24

Figure-3: Variable Binding .. 29

Figure-4 : Performance of TD to SQL Compiler .. 51

Figure-5: Simple Security Property of BLP (50 Users) ... 54

Figure-6: Simple Security Property of BLP (10 Users) ... 54

Figure-7: Simple Security Property of BLP (100 Users) ... 54

Figure-8: *-Property of BLP (10 Users) ... 54

Figure-9: *-Property of BLP (100 Users) ... 54

Figure-10: *-Property of BLP (50 Users) ... 54

Figure-12: Simple Security Property of CWP (100 Users) .. 55

Figure-11: Simple Security Property of CWP (100 Users) .. 55

Figure-14: Simple Security Property of CWP (100 Users) .. 55

Figure-13: Simple Security Property of CWP (100 Users) .. 55

Figure-15: Simple Security Property of CWP (500 Users) .. 56

Figure-16: Simple Security Property of CWP (500 Users) .. 56

Figure-18: *- Property of CWP (100 Users) ... 56

Figure-17: *- Property of CWP (100 Users) ... 56

Figure-20: *- Property of CWP (500 Users) ... 56

Figure-19: *- Property of CWP (100 Users) ... 56

Figure-22: *- Property of CWP (500 Users) ... 56

Figure-21: *- Property of CWP (500 Users) ... 56

Figure-23: RBAC (10 Roles) ... 58

Figure-24: RBAC (20 Roles) ... 58

Figure-25: RBAC (30 Roles) ... 58

Figure-26: TRBAC (30 Roles) ... 58

viii

LIST OF TABLES

Table 1. Database Schema for Implementation of BLP with Categories ... 31

Table 2. TD Rule of Simple Security Property of BLP Model .. 32

Table 3. Equivalent SQL Query of Simple Security Property of BLP Model .. 32

Table 4. TD Rule of *- Property of BLP Model with Categories .. 33

Table 5. Equivalent SQL Query of *- Property of BLP Model ... 33

Table 6. Database Schema for Implementation of CWP ... 35

Table 7. TD Rule of Simple Security Property of CWP .. 36

Table 8. Equivalent SELECT Query of Simple Security Property of CWP ... 36

Table 9. TD for updating the write access rights .. 37

Table 10. Equivalent SELECT Query of *-Property of CWP ... 38

Table 11. CoiClasses ... 38

Table 12. Users... 38

Table 13. Clients ... 38

Table 14. ClientData .. 38

Table 15. UsersAccess ... 38

Table 16. Database Schema for Implementation of RBAC ... 42

Table 17. TD for Policy "Doctors may view the contact data of patients" ... 43

Table 18. Equivalent SELECT Query of "Doctors may view the contact data of patients" 44

Table 19. TD for Policy "Doctors may view the contents of prescription of patients for whom they have

written prescriptions" .. 44

Table 20. Equivalent SQL SELECT query of "Doctors may view the contents of prescription of patients

for whom they have written prescriptions" ... 45

Table 21. Database Schema for Implementation of Simple TRBAC ... 46

Table 22. TD for Policy "Doctors on night duty may view the contact information of patients during night

time" ... 46

Table 23. Equivalent SQL SELECT query of "Doctors on night duty may view the contact information of

patients during night time" ... 47

Table 24. BLP Schema modeled in Promela .. 48

Table 25. Arrays of typedef for modeling the records in tables ... 49

Table 26. Promela code for modeling the functionality of simple security property of BLP 49

Table 27. Datasets for BLP .. 52

Table 28. Datasets for CWP ... 55

Table 29. Datasets for RBAC .. 57

ix

ABSTRACT

In enterprise and cloud environments where employee and customer data is rapidly and

constantly changing there is a need for fine grained and flexible access control policies which are

easy to administer. Traditional models like access control lists (ACL) and database views fall

short and enterprises typically resort to embedding access controls in the applications itself, a

process which is developer error prone and results in increased application complexity. As a

consequence of these problems, the use of reflective security policies is becoming popular where

database privileges are expressed as database queries themselves rather than a static privilege

contained in an access control matrix (ACM). Actual data in the database is used for its own

protection and any updating of queries results in automatic update of policies. The focus of this

work is the proposal of a mechanism to further reduce the task of database security policy

administration. Transactional Datalog (TD), an extension of classical datalog has been proposed

as a medium for authoring access control policies by which high-level policies may be

automatically converted to reflective SQL procedures to be stored in the database. This

mechanism provides a reflective way of implementing security policies instead of static

privileges contained in ACLs. In this thesis we have provided a translation layer for compiling

TD rules into appropriate SQL statements and storing as user defined functions in the database.

Our translation layer allows a security administrator to express powerful access control policies

in the high-level language of TD while having minimal knowledge of the underlying database

schema or database implementation. We have evaluated our translation layer by authoring four

popular and reasonably complex policy models namely (i) Chinese Wall (ii) Bell La Padula (iii)

x

Role Based Access Control (iv) and Temporal Policies. Detailed rule-sets and their

corresponding database schemas have been discussed along with examples. Security

administrators new to usage of reflective access control policies can tailor the four policy models

to almost any variation they desire because the policy models we have picked in literature serve

as foundation for many policy models today. Finally to verify that our translation layer does not

compromise security or degrade performance we have tested our translation algorithm using two

different approaches. Formal verification of access control policies using SPIN model checking

tool shows that the security of the automated translation is as good as the manual approach and

timing analysis of realistic applications demonstrate that it adds negligible impact on

performance.

-1-

INTRODUCTION

This chapter is about the introduction of research work that has been undertaken in this thesis.

The contents of this chapter include problem background, problem in existing access control

models, motivation and problem definition and contributions of our research work.

1.1 Problem Background

Access control is the core component of database security. It is the ability to allow only

authorized users, programs or processes to access the database based on the access control

policies. The functionality of database access control is based on the implementation of access

control policies. The proper implementation of access control policies in an efficient access

control model would ultimately enhance the efficiency and performance of a database system in

terms of confidentiality, availability, integrity, non-repudiation, authentication and

accountability. There should be a flexible mechanism for enforcing access control policies based

on data contents and other relevant contextual information (Bertino & Sandhu, Jan-Mar 2005).

There are many access control models and policies available for different types of environments.

Bell LaPadula Model (BLP) (Bell & LaPadula, Mar. 1973) and (Bell & LaPadula, Mar. 1975)

was proposed mainly considering the confidentiality of information in government and military

organizations. For instance, "Unclassified personnel cannot read data at confidential levels'' and

"Top-Secret data cannot be written into files at unclassified levels''. Chinese Wall Policy (CWP)

(Brewer & Nash, May 1989) is a hybrid policy that addresses both confidentiality and integrity

which targets the information flow policies for data owned by commercial and business entities.

The environment of an investment house is an example to CWP, "a single consultant should not

have access to information about two corporations that are in competition" because such

CHAPTER 1

-2-

information creates a conflict of interest in a consultant's analysis. However, a consultant is free

to advise corporations that are not in competition with each other.

In other situations Role Based Access Control (RBAC) (Ahn & Sandhu, 2000) suits the need of

commercial to civilian government organizations and focuses on separation of duty, integrity,

availability, confidentiality and privacy. Roles are created for various job functions in an

organization and users are assigned roles based on their responsibilities and qualifications, e.g.

doctors, nurses, patients, managers, accountants, help desk representatives. For example

"Doctors may write a prescription for any patient". There may be temporal dependencies among

roles which is addressed in RBAC extension of Temporal-RBAC (TRBAC) (Bertino, Bonatti, &

Ferrari, 2000) and (Rashid, Basit, & Anwar, 2010). For example, "Doctor-on-night-duty role is

enabled during the night".

1.2 Problems in Existing Access Control Models

There are different mechanisms for implementing the access control models and policies and are

based on views and tables (Opyrchal, Cooper, Poyar, & Le, April, 2011). Access Control Lists

(ACL) and Access Control Matrices (ACMs) are mostly used for implementing the access

control policies or it may be combined with roles by many database systems in which access

right is stored in the form of a triple <user, resource, operation>. These mechanisms provide

flexibility by attaching an ACL or ACM with each table or view which are describing the

authorized operations on them (Olson L. E., Gunter, Cook, & Winslett, 2009). For implementing

more fine grained access control policies, a separate view is created describing the portion of the

data, and the users are granted access to that view. Besides the flexibility of ACLs and views,

these models face difficulties in implementation, administration, scalability and expressiveness

-3-

for reflective policies. These issues arise particularly in the environments where data is

continually changing and more views are required (Olson, Gunter, & Madhusudan, Oct. 2008)

and (Opyrchal, Cooper, Poyar, & Le, April, 2011). Consider the policy “each employee can view

their own data”, where there is a need to create a view for each employee and then grant access

to each employee on her own view, which makes policy administration a tedious task for

administrators (Olson L. E., Gunter, Cook, & Winslett, 2009) and (Opyrchal, Cooper, Poyar, &

Le, April, 2011). Further, these types of access control models do not have a formal framework

for expressing the policies in a formal way. The same problem of creating a large number of

views and roles also arises when implementing the fine grained reflective policies in RBAC

along with ACMs. As a result, currently most of the access controls are performed at application

level instead of at the database level and the access control mechanisms provided by most of the

DBMS are not used effectively (Opyrchal, Cooper, Poyar, & Le, April, 2011). This approach

requires that application embedded queries should be written based on the views which

ultimately results in additional complexity in the application code. In such cases, the application

requires full database access rights which is mandatory for running all the queries and eventually

provides security vulnerability loop holes. Furthermore, every newly developed module of the

application needs to be thoroughly tested for the consistency of the access control policies hence

increasing the burden on quality assurance. Other issues related to these kinds of approaches

include the performance of the application and change management. To overcome these issues

the research community suggested that access control policies should be evaluated and enforced

outside of applications (Rizvi, Mendelzon, Sudarshan, & Roy, 2004).

-4-

1.3 Motivation

The issues discussed in section 1.2 were addressed in Reflective Database Access Control model

(RDBAC) (Olson, Gunter, & Madhusudan, Oct. 2008) in which policies are reflective and more

expressive and depend on data contained in the database rather than data contained in ACLs or

ACMs. In RDBAC, a database privilege is expressed as a database query itself, rather than as a

static privilege which is contained in the ACM. In this manner, we can define more flexible

policies and these policies can refer to any part of the database instead of only permissions found

in the ACM (Olson L. E., Gunter, Cook, & Winslett, 2009). In this manner, actual data in the

database is used for its own protection and any update in the data results in automatic update of

query results and ultimately policies are updated that overcome the complex task of policy

management. The benefits of this approach are that the policies are stored, implemented,

enforced and evaluated at the database level. We can implement access control policies on

database tables, entire row(s) in a database table or even at individual fields in a row which is

required by most database applications (Chaudhuri, Dutta, & Sudarshan, April 2007). The

applications don’t need to embed code for the access control, rather they only need to call

queries and get data back hence overcoming the problems of change management, performance,

consistency in access control policies to some extent (Opyrchal, Cooper, Poyar, & Le, April,

2011). Further, the issue of expressiveness of the access control policies is also addressed in

RDBAC by using Transaction Datalog (TD) (Bonner, 1998) which is an extension of classical

Datalog as a formal framework for writing policies in a formal way and these polices can be

formally analyzed (Olson, Gunter, & Madhusudan, Oct. 2008) before their implementation in a

real world environment.

-5-

1.4 Problem Definition and Contributions

We have provided a translation layer for converting TD rules into equivalent SQL queries and

have automated the process of writing the reflective policies. Moreover, we have presented the

design of some of the most well known and established policies in literature and in commercial

use together with their supporting relational schemas so that it is easy for DBAs to mold our

designs for their purposes.

The main contributions of our research work are listed below:

(1) Translation layer for converting TD rules into equivalent SQL queries.

(2) Formulation of TD rules and relational schema design of (a) CWP (b) BLP Model (c)

RBAC Model and Temporal policies in RDBAC framework.

(3) The algorithm for translating the TD to SQL queries as discussed in (Olson L. E., Gunter,

Cook, & Winslett, 2009), (Hajiyev, Verbaere, & de Moor, 2006) and (Hajiyev, Sep.

2005) has been extended by incorporating the compilation of temporal policies and SQL

update statement.

(4) Formal verification of access control policies using SPIN model checking tool and

(5) Timing analysis of realistic applications.

We have conducted experiments for calculating translation time of TD rules to SQL queries

which are translated by our proposed algorithm. Further, we have also provided the results of

evaluating performance of implemented prototype applications on the basis of translated SQL

queries on varying size data sets, which shows practicality and feasibility of RDBAC framework.

-6-

1.5 Outlines of Thesis

There are nine chapters in this thesis which are organized in a following way: Chapter 2 provides

the background and Chapter 3 provides the related work. The overall system flow model is

discussed in the Chapter 4. The Chapter 5 provides the detail discussion about the algorithms for

translating TD rules to SQL queries. In Chapter 6 the implementation is discussed in detail. The

formal verification of the proposed implementation is presented in Chapter 7. The Chapter 8

provides the evaluation details and in Chapter 9 there are concluding remarks and discussion of

future work.

-7-

BACKGROUND

In this chapter we describe what is Transactional Datalog (TD) - a high-level programming

language to specify policy rules followed by brief description of different policies that we will

design and implement throughout this paper namely the BLP, CWP, RBAC and Temporal.

2.1 Transaction Datalog (TD)

Classical Datalog was extended in syntax and semantics to TD (Bonner, 1998) which allows

Datalog rules to add and delete the data of underlying database. It was designed as a high-level

programming language to model workflows, where programmers can specify transactions

containing both queries and updates, composing them using sequential and parallel constructs.

TD also has precise mathematical semantics that includes atomic updates to databases that

prevent nontrivial interference between transactions and maintain serializability. TD rules can

be partitioned into head and body literals and are in the form:

p :- q1, q2, ..., qn (1)

where p and q are the literals. The p is called the head of the rule and is separated by (: -) from

q1, q2, ...,qn body literals. A literal is a string of the form:

pname (t1, t2, ..., tn) (2)

where pname is a predicate name with arity n and each ti for 1 ≤ i ≤ n is either a constant or a

variable. In any literal the string (t1, t2, ...,tn) is called a tuple with arity n. The tuples are

composed of variables and constants i.e. t1, t2, ...,tn may be constants and variables and the

variable assignment is a functional mapping of variables to constants. The rule is called a fact if

there are no variables in the head and the body of the rule is empty. For writing the fact we can

eliminate the colon and hyphen separator, e.g. p (t1, ...,tn).

CHAPTER 2

-8-

There are two types of predicates (1) built-in or base and (2) derived or database. The built-in

predicate is a predicate with pre-defined mapping and remains constant over every database

interpretation normally having name with a non-alphanumeric string. For instance, the equality

predicate is a built-in predicate containing the rules = (1, 1) and =(X, Z):- = (X, Y), = (Y, Z).

Those predicates which are not built-in predicates are called database predicates. When we are

describing database definitions we only list database predicates because the semantics of built-in

predicates remains the same avoiding the need to list them every time.

We define the insertion (ins.p) and retraction (del.p) predicates of arity n for each base predicates

p with arity n. The literal at the head of the rule must have either a base predicate name or a

derived predicate name i.e. not assertion or retraction predicate names. If the head predicate is a

base predicate then the rule must be a fact and its body must be empty.

As there are database update predicates in TD therefore inference system is defined for

answering the queries. The inference system of TD rules is similar to Datalog and also keeps

tracks of the sequence of database states required to reach the conclusion. The update predicates

change the state of the database while the other predicates do not and their truth values are

computed based on whether the tuple exist as a fact in the database. Whenever the ins.p or del.p

predicates are inferred, these are always true if the state of the database changed, while the

inference of derived predicates are similar to the inference in the classical Datalog.

The Extensible Access Control Markup Language (XACML) is also used for specification of

flexible policies however it is not specifically designed for database access control policies

(Olson, Gunter, & Madhusudan, Oct. 2008). Some other languages have also been used for

policy writing in specialized databases such as P3P which has the capability of writing reflective

and fine-grained control policies (Agrawal, Kiernan, Srikant, & Xu, 2002) and (Agrawal, Bird,

-9-

Grandison, Kieman, Logan, & Rjaibi, 2005). Prolog has also been used as a language for writing

the accesses control policies (Draxler, 1991). TD is used because it is naturally supporting to

SQL queries because of augment of classic Datalog and has precise mathematical semantics,

incorporating recursive definitions, transaction-based atomic updates, assuring serializable

execution of transactions and has the capability to directly map onto most of the functions of

SQL.

2.2 Bell La Padula (BLP)

The BLP (Bell & LaPadula, Mar. 1973) and (Bell & LaPadula, Mar. 1975) is a state machine

model used for enforcing access control in government and military applications. It concentrates

on confidentiality policies and describes access control rules with the sole goal of preventing

information from being leaked to those who are not privileged to access the information. In BLP,

the entities in an information system are divided into a set of subjects ‘S’, a set of objects ‘O’, a

set of access operations i.e. “A = {execute, read, append, write}“ and a set ‘L’ of security

levels with a partial ordering. Classification labels are assigned to objects and clearance labels

to subjects to implement the set of access control rules. Security labels range from the most

sensitive (e.g."Top Secret"), down to the least sensitive (e.g. "Unclassified" or "Public").

The BLP model is based on two rules “No Read Up” (NRU) also called simple security

property and “No Write Down” (NWD) also called *-property. Let L(s) be the clearance level

of subjects and L(o) is the classification level of objects:

(1) The simple security property states that a subject can read an object if the object’s

classification level is less than or equal to the subject’s clearance level i.e. “Subject s can read

object o iff, L(o) ≤ L(s) and s has permission to read o”.

-10-

(2) The *-property states that a subject can write to an object, if the subject’s clearance level is

less than or equal to the object’s classification level i.e. “Subject s can write object o iff L(s) ≤

L(o) and s has permission to write o”.

The notion of security level in BLP was extended by the inclusion of categories and the security

level is transformed to (clearance, category set) e.g. (Top Secret, {NUC, EUR, ASI}),

(Confidential, {EUR, ASI}) etc. The categories are a set of non-hierarchical attributes such as

"US", "EU" etc. In the extended security level, there may be zero or more categories. The

security level is a combination of clearance/classification and categories for example {Secret/US,

EUR} or {Top Secret/US}. The definition of simple security property and the *-property after

the inclusion of categories becomes:

(1) “Subject s can read object o iff, L(s) dom L(o) and s has permission to read o” and

(2) “Subject s can write object o iff, L(o) dom L(s) and s has permission to write o”

respectively.

Where dom operator is a partial order over the lattice. The major limitation of BLP model is the

scope of implementation i.e. it can be implemented easily in few governmental organizations

where the levels of authorization can be identified. It was originally designed for systems in

which there are no changes in the security levels. In BLP there is a need to assign security labels

to everything in the system; however it is not always possible to assign security labels to users

and data of a commercial system. Therefore, implementation of BLP is not suitable for most of

the commercial applications. Besides the flexibility issues, BLP also faces the downgrade in

performance due to checking of security clearance for each item in the system. BLP does not

consider the integrity of data only dealing with the confidentiality. The other limitation of BLP is

-11-

that, it does not address the policies for modification in access rights, and may contain covert

channels causing information to leak from a high to low security level.

2.3 Chinese Wall Policy (CWP)

The CWP provides access controls that change dynamically based on access rules and mitigates

conflicts of interests (Bell & LaPadula, Mar. 1975). It uses the concept of Conflict of Interest

(COI) classes to implement the access control system. For instance, companies which are in

competition with each other are placed in one group. For instance, Bank A, Bank B and Bank C

are in one COI class while Gasoline Company A and Gasoline Company B in another COI class.

The idea behind the CWP is that once you access any information from any company dataset you

are allowed to access that information, but you are no longer allowed to access information from

another company dataset within that conflict of interest class. In CWP Objects are known as

items of information related to a company, Company dataset (CD) contains objects related to a

single company and groups of competing companies are called COI classes. All the information

is maintained in a hierarchical order with objects at the lowest level, CD and COI respectively.

The simple security condition in the CWP can be defined as: Let PR(s) denote the set of objects

that s has already read

s can read o iff any of the conditions holds:

1) There ∃ o′ satisfying o′∈ PR(s) and CD(o′)=CD(o);

2) For all objects o, o′∈ PR(s)⇒ COI(o′)≠COI(o);

3) o is a sanitized object

Initially, PR(s) =∅, so initial read request is always granted

-12-

Formally the *-property can be defined as:

s can write to o iff both of the following hold:

1) The CW-simple condition permits s to read o

– No blind write like in BLP

2) For all unsanitized objects o′, if s can read o′, then CD(o′) = CD(o)

– All s can read are either within the same CD, or sanitized

2.4 Role Based Access Control (RBAC)

In RBAC (Ahn & Sandhu, 2000), policies are described in terms of users, subjects, roles, role

hierarchies, operations, relationships, and constraints. The users are granted membership into

roles based on their competencies and responsibilities. Roles can be defined as an organizational

job function with a clear definition of inherent responsibility and authority (permissions).

Formally the RBAC is as under:

• PA: Roles → Permissions, the permission assignment function, that assigns to roles the

permissions needed to complete their jobs;

• UA: Users → Roles, the user assignment function, that assigns users to roles;

• user: Sessions → Users, that assigns each session to a single user;

• roles: Sessions → 2
Roles

, that assign each session to a set of roles ; and

• RH Roles x Roles, a partially ordered role hierarchy

The users must be active in a role and authorized as a member of the role by a security

administrator for performing operations. RBAC provides the capability to administrators to place

constraints on role authorization, role activation, and operation execution and facilitating

administrators to control the access at a level of abstraction.

-13-

The RBAC model is quite flexible and is used in many commercial applications with slight

modifications. Besides the flexibility of RBAC, its major limitation is that it has no formal way

of expressing complex policies. It is not well suited for a highly distributed environment because

it usually needs centralized management of user-to-role and permission-to-role assignments. The

centralized management affects the flexibility of RBAC and it becomes difficult to implement

discretionary policies and separation of duty controls. For implementing the strong security,

more granular roles need to be engineered which is itself a complex task. As more attributes are

involved, the number of roles and permissions needed to encode these attributes will grow

exponentially, thereby making UA and PA difficult to manage.

2.5 Temporal Policies

Temporal polices are those policies that are based on temporal constraints as described in

(Bertino, Bonatti, & Ferrari, 2000) i.e. time periods e.g. employees in day shift can log into the

system between 8 AM to 4 PM. The temporal constraints has attained attention of the researchers

because in many organizations, functions may have limited or periodic temporal duration.

Consider the case of part-time staff in a company, and assume that part-time staff is authorized to

work within the given organization only on working days, between 9 AM and 1 PM. If part-time

staff is represented by a role, then the above requirement entails that this role should be enabled

only during the aforementioned temporal intervals. Let us take the example of “TRBAC:

Temporal Role Based Access Control” (Bertino, Bonatti, & Ferrari, 2000) which is an extension

of RBAC specifically considering the temporal constraints. Often roles are characterized by a

temporal dimension i.e. job functions may have limited or periodic time duration and there may

be activation dependencies among roles e.g. Role A should be activated only after activating

Role B. Some examples of formally written temporal policies are

-14-

– ([7/1/12,12/31/12, night-time, VH, activate, doctor-on-night-duty)

– ([7/1/12,12/31/12, day-time, VH, deactivate, doctor-on-night-duty)

-15-

RELATED WORK

In this chapter we will discuss the related work in which the concept of reflection has been

implemented in various access control models for the implementation of access control policies.

Reflective access control and access control polices at fine grained level i.e. up-to individual

fields have been studied for a long time (Griffiths & Wade, 1976), (Lunt, Denning, Schell, &

Heckman, 1990), (Stonebraker & Wong, 1974) and (Chaudhuri, Dutta, & Sudarshan, April 2007).

Some commercial DBMSs such as Oracle provide mechanisms for implementing the access

control policies at a fine grained level (Feuerstein & Pribyl, Oct. 2009) and (Oracle-Corporation,

June 2005). The policies are setup by the administrators and the data queries are rewritten

automatically by adding additional WHERE clauses based on the policies. Several other research

contributions also present the work on enforcing access control at the row level as well as at

column level (Agrawal, Kiernan, Srikant, & Xu, 2002), (Bobba, Fatemieh, Khan, & Gunter,

2006), (Goodwin, Goh, & Wu, 2002), (Rizvi, Mendelzon, Sudarshan, & Roy, 2004), (Agrawal,

Bird, Grandison, Kieman, Logan, & Rjaibi, 2005), (Jahid, Hoque, Okhravi, & Gunter, 2009) and

(De Capitani di Vimercatii, Foresti, Jajodia, Paraboschi, & Samarati, 2008). Another system

proposed in (Zhang & Mendelzon, 2005) uses authorization views in which the database query is

checked for validity and determines automatically whether it can be completely rewritten using

the authorization views. In (Jahid, Gunter, Hoque, & Okhravi, 2011) XACML polices were

compiled for database access into ACLs which are natively supported by the database. This

system was proposed keeping in view the context of reflective database access control where

attributes used in access decisions are stored in the database itself. Now we discuss the benefits

and limitations of some existing well known models which are inherently reflective, flexible and

have the ability to implement policies at fine grained level.

CHAPTER 3

-16-

3.1 An authorization mechanism for a relational database system

One of the most popular models, named Griffiths and Wade Model (Griffiths & Wade, 1976)

was proposed in 1976 and is still largely used in modern commercial databases. It is a view

based discretionary access control model which uses the ACM as a mechanism for implementing

the access control authorizations. The views provide a powerful and flexible security mechanism

by hiding parts of the database from certain users. The views are already reflective in their nature

and are widely used in database access control systems. It is conceptually a simple model for

access control: the database maintains an ACM listing about the resources provided by the

database, such as tables, views, and functions; the users that are allowed to access each resource;

and which operations each user is allowed to perform on the resource, such as read, insert,

update, or execute. If access control is needed at a fine-grained level, in which a user should

only be granted access to certain portions of a database table, then a separate view is created to

define those portions, and the user is granted access to the view. This model is flexible enough to

allow users to define access privileges for their own tables, without requiring super user

privileges. However, ACMs are limited in expressing the extent of the policy, such as “Alice can

view data for Alice” or “Bob can view data for Bob”, rather than the intent of the policy, such as

“each employee can view their own data”. This makes access control administration more

tedious in the face of changing data, such as adding new users, implementing new policies, a

large number of users or modifying the database schema.

One of the main limitations of Griffiths-Wade Model is that the complex policies can be difficult

to implement in this model e.g. “Every employee can access their own records” and “Every

employee can view the name and position of every other employee in their department”. If there

are a large number of users in the system than the policy administration is a difficult task.

-17-

Similarly if we want to implement the policies at fine-grained level then each requires their own

view, and there is no formal way to see that the views are created on the intended target table.

The other limitations are that the view re-definitions require dropping the view, redefining and

then re-issuing privileges which are most likely to introduce errors. In case of update in the

schema of the database, the updates need to be made at multiple places which also increases the

chances of errors. The administration of this model becomes increasingly difficult in an

environment where changes in the data occur frequently e.g. adding new users, deleting users

etc. and the schema of the database changes.

3.2 Hippocratic Databases

In Hippocratic database (Agrawal, Kiernan, Srikant, & Xu, 2002), privacy is a main concern and

the database supports built-in privacy controls. Hippocratic databases make a distinction between

users that own a database table and users that own the data contained in the table. Studies on this

paradigm have shown how policies for such databases might depend on data contained within a

table and invoking the idea of allowing user to define arbitrary policy logic. These databases

show how reflection is used in the implementation of privacy policies particularly in medical

databases and requires merging security policies from database owner (s) and from data owner

(s). But these studies do not further examine any security implications focusing more on using

boolean values in query optimization. Further, in (LeFevre, Agrawal, Ercegovac, Ramakrishnan,

Xu, & DeWitt, 2004) a system was presented for limiting the disclosure specifically in

Hippocratic databases but not tested for general purpose databases. It uses the query modification

technique on the basis of already stored privacy policies in the database.

-18-

3.3 Oracle Virtual Private Databases

Oracle’s Virtual Private Database (VPD) technology was provided by (Oracle-Corporation, June

2005) and (Feuerstein & Pribyl, Oct. 2009) as an additional feature of Oracle database

management system to enhance the capability of implementing access control policies in a more

flexible manner. It allows implementing the concept of reflection in access control policies. VPD

has provided a mechanism for writing logic of policies in the form of arbitrary code using the

PL/SQL statements wrapped in user defined functions (UDF). This mechanism has provided the

flexibility to policy writes for writing more expressive policies.

Every query on database table is rewritten transparently by UDFs. These UDFs return policy

conditions which are added in the SQL WHERE clause of the queries. We can attach multiple

UDFs to a table and different UDFs can be defined depending on operation (read vs. write) and

columns being accessed. The UDFs act as query filters for granting access to current users,

access to other table data (excluding current table). These UDFs are executed each time the table

is accessed. In this technology there is no formal framework for describing, evaluating and

analyzing database access control policies.

3.4 Reflective Database Access Control Model (RDBAC)

In RDBAC (Olson, Gunter, & Madhusudan, Oct. 2008) model, a database privilege is expressed

as a database query itself, rather than as a static privilege contained in an ACM. In this model

access control policy decisions can depend on data contained in other parts of the database, such

as attributes of the user, attributes of the data being queried, or relationships between the user

and the data. Hence policies can refer to any part of the database and overcoming the limitation

of stratification of access control data than the actual information in the database.

-19-

One of the main advantages of RDBAC is that it aids in improving the expressiveness of access

control policies. For example the policy “employees who are registered as managers may view

contact data for the employees they manage” illustrates the benefits of RDBAC i.e. suppose we

have a database that contains a table listing a company’s employees, along with their position in

the company and the department in which they work. We want to grant all employees having

manager role to access the data of other employees in their department. When a manager queries

this table, the policy will first check that the user is indeed a manager, then retrieve the

manager’s department, and finally return all employees in that department. The main benefits of

this approach are it uses the actual data stored in the database and thus, privileges are

automatically updated when the database is updated (for instance, when an employee receives a

promotion to manager), preventing update anomalies that leave the database in an inconsistent

state. All the existing implementations lack in expressing the policies formally and analyzing

these polices before implementing in the real world environment. One of the lacking of RDBAC

is that, there is no efficient way for formal mathematical molding of access control policies for

practical database systems. For this purpose TD language was used which provides a powerful

syntax and semantics for expressing RDBAC policies. TD provides a very concise syntax that is

capable of expressing a wide range of policies but it is not implemented and tested for large scale

environments and also lacks syntax and semantics that correspond to certain commonly used

operations in SQL.

-20-

SYSTEM FLOW MODEL

In this chapter we will describe the overall flow of our system.

4.1 System Flow Model

Figure-1: System Flow Model

The flow of system as shown in Figure-1 starts by writing access control policies in plain

language according to security requirements by team of experts from different domains of

organization e.g. database security experts, database administrators, management or expert

domain users. For instance few access control policies are: "Managers can view data of

employees working in their departments only", "Each employee can only view their own data",

"Doctors can only view contact information of patients for whom they have written

CHAPTER 4

-21-

prescriptions" and "Teachers can only view the grades of those students who they are currently

teaching".

All plain language policies written by team of experts are provided to database administrator.

The database administrator is responsible for translating plain language policies into TD rules

during the design of system as well as at later stages. The process of translating natural language

policies into TD rules is facilitated by graphical user interface of compiler.

The information about target database such as name of database and path is required by compiler

to connect to database for retrieving information about database schema. The compiler takes TD

rules and retrieved schema information as input. The compiler uses this information for variable

binding (see section 5, Algorithm 5 for details) of TD rules and translates into equivalent SQL

SELECT queries. The generated SQL queries are wrapped into User Defined Functions (UDF).

The information about current user from the user session is passed as parameters to UDFs along

with other variables. The parameters received by the UDFs are used in the SQL SELECT queries

for filtering the data. The generated SQL queries can also be wrapped into parameterized views

if the database management system allows update statement in parameterized views. The UDFs

are added to target database for further use and executed by user applications and results are

returned.

The algorithms for TD parsing, creating of assertion and retraction UDFs, variable binding, SQL

query generation which are used by the compiler for translating TD rules into SQL queries are

discussed in detail in section 5.

Whenever a new security policy is needed during the use of system or if there is a need to

modify existing policy, the same procedure of translation from plain text to SQL queries will be

-22-

applied. The generalized schemas for BLP, CWP, RBAC and temporal polices are already

provided for use by different users. These schemas can be used in any environment with slight

modifications in the tables.

-23-

ALGORITHMS FOR TRANSLATING TD RULES TO SQL QUERIES

In this Chapter, algorithms are presented which are used by the compiler for translating TD rules

into SQL SELECT queries and for generation of assertion and retraction UDFs. In order to

compile TD rules into SQL SELECT queries, we follow a similar approach as used in (Olson L.

E., Gunter, Cook, & Winslett, 2009), (Hajiyev, Verbaere, & de Moor, 2006) and (Hajiyev, Sep.

2005).

5.1 Parsing of TD Rules

The Algorithm 1 is used for parsing TD rules. It takes the TD rule as input and the output are

head predicate, body predicates, head variables and body variables. After getting input, the TD

rule is passed a function named Split_Rule () which parses the TD rule and then splits it into

head and body literals. The (:-) symbol is used as a separator between head and body literals and

are stored in arrays HL and BL. The head literal is further separated to get the head predicate and

variables, which are stored in arrays of strings for further use. The function named Get_Variables

() is used for retrieving the variables from a literal. This function first gets the head literal as

input in the form "p (t1, t2, ..., tn)" and retrieves the variables in it. The symbol ',' is used as a

separator among the variables. The function named Get_Predicate () is used for retrieving the

predicate name from a literal. This function first gets head literal as input in the form "p (t1, t2 ...,

tn)" and retrieves the predicate name i.e. p. Similarly the body literals, body predicates and

variables are retrieved, which are then stored in multi-dimensional arrays for use in further steps.

The parsing of TD Rules is shown in Algorithm 1 and an example is shown in Figure-2:

CHAPTER 5

-24-

Algorithm 1. Parsing of TD Rules

Input: TD_Rule ► It describes the policy which is compiled into SQL SELECT statement

Ensure: TD Rule is in correct format ► Input in the form "p: - q1, q2, …., qn"

1. HL, BL :- Arrays ► Arrays for Head and Body Literals

2. HV, BV:- Multidimensional Arrays ► Arrays for Head and Body predicates and variables

3. HL, BL ← Split_Rule (TD_Rule)

4. HV ← Get_Variables (HL)

5. BV ← Get_Predicate (HL)

6. for i = 0 to length of BL do

7. HL ← Get_Variables (BL)

8. BL ← Get_Predicate(BL)

9. end for

Output: HL, BL, HV, BV

Figure-2: Parsing of TD Rule

-25-

5.2 Reading Database Schema

The algorithm 2 is used for connecting to the target database. It takes information about the

target database which is used by the compiler for establishing connection. The array BV which is

the output of Algorithm 1 is also passed as input. It contains the lists of tables whose detailed

schema needs to be retrieved from the target database and is stored in multidimensional array

named DS. After establishing connection with the target database, the compiler reads the schema

of the database tables corresponding to the predicate names in the BV array. The schema of the

database tables along with its order and data types are stored in DS which are further used in the

variable binding. We assume for the implementation of this algorithm that the database imposes

a stable full ordering on table fields i.e. columns. The algorithm for Reading Database Schema is

shown in Algorithm 2:

Algorithm 2. Reading Database Schema

Input: BV, Database_Info ► BV output of Algorithm 1 and Information about the target database

Ensure: Connection with the target is established

1. DS :- Multidimensional Array

2. Connect_to_Database (Database_Info)

3. for i = 0 to length of BP do

4. DS ← Read_Database_Schema (BV)

6. end for

Output: DS

-26-

5.3 Creating UDFs for Assertion and Retraction

The algorithm 3 is used by the compiler for creating the Assertion and Retraction UDFs. It takes

the TD rule as input. It first checks the TD rule for the existence of assertion and retraction i.e.

ins and del predicates. If the assertion and retraction predicates exist in the body of rule than

corresponding UDFs for assertion and retraction are created. The algorithm for creating the

assertion and retraction UDFs is shown in Algorithm 3:

Algorithm 3. Creating UDFs for assertion and retraction

Input: TD_Rule

Ensure: TD Rule is in correct format ► Input in the form "p :- q1, q2, ..., qn"

1. AL, AV, RL, RV:- Arrays

2. HL, BL ← Split_Rule (TD_Rule)

3. for i=0 to length of BL do

4. If Exits Assertion Literal ►String "ins." is used for the identification of the assertion predicate.

5. Add assertion literal to the AL array

6. End If

7. If Exits Retraction Literal ►String "del." is used for the identification of the retraction predicate.

8. Add retraction literal to the RL array

9. End If

10. end for

11. for i=0 to length of AL do

12. AV ← Get_Variables (AL) ► Variables in assertion literals are stored in array named AV.

13. Create_Assertion_UDF (AL, AV)

14. end for

15. for i=0 to length of RL do

-27-

16. RV ← Get_Variables (RL) ► Variables in retraction literals are stored in array named RV.

17. Create_Retraction_UDF (RL, RV)

18. end for

Output: Assertion and Retraction UDFs

The UDF for assertion predicate consist of the SQL “INSERT” statement and the parameters

passed to this UDF are used for inserting the values in database. Similarly the UDF for the

retraction predicate consist of the SQL “DELETE” statement and the parameters passed to this

UDF are then used for deleting the records from the database. If the assertion or retraction

predicates exist in TD rules than a flag is set to true for each assertion or retraction, and based on

true values of flag, UDFs are called and parameters are passed to them. The function named

Create_Assertion_UDF() gets the arrays named AL and AV as input and generates the code of

T-SQL. The execution of this code results in the generation of UDF on target database. This

UDF gets the values as input parameters which need to be inserted in the database. The SQL

INSERT statement in the UDF will ultimately insert the received values in the input parameters

into the database. Similarly the function named Create_Retraction_UDF () gets the arrays

named RL and RV as input and generates the code of T-SQL. The execution of this code results

in the generation of UDF on target database. This UDF gets the values as input parameters which

need to be deleted from the database. The SQL DELTE statement in the UDF will ultimately

perform the deletion from the database.

-28-

5.4 Creation of FROM Clause

The algorithm 4 is used by compiler for creating FROM clause of SQL SELECT queries. The

SQL FROM clause is created by getting predicate names i.e. BV from Algorithm 1 of body

literals, assigns an alias to it and are saved in a string for concatenating with the SQL SELECT

clause. The algorithm for the creation of FROM clause is shown in Algorithm 4:

Algorithm 4. Creating FROM Clause

Input: BV ► Output of Algorithm 1

1. FC:- Arrays

2. FC ← Create_From_Clause (BV) ► Takes BV as input and creates the SQL "FROM"

clause by combining all the values (i.e. table names) which are placed at the index "0" of the

multidimensional array BV.

Output: FC

5.5 Variable Binding

The algorithm 5 is used by compiler for binding the variables of TD rules with database schema.

The function named Variable_Binder () simply maps the ith term in literals to ith column in

tables. The variable binder function uses the information from BV and fields from corresponding

table schema. These variables and table fields are then mapped and bind according to location of

BV and table fields. This multidimensional array named VB is used to store the binding

information among the literal variables and the columns of the database target tables. The

function named Variable_Binder() is used to bind the variables and constants of the body literals

in the TD rule with the columns of target database tables. The algorithm for Variable Binding is

shown in Algorithm 5 and an example is shown in Figure-3:

-29-

Algorithm 5. Variable Binding

Input: BL, BV ► Output of Algorithm 1

1. VB:- Arrays

2. for i=0 to length of BL

3. for j=0 to length of BV

4. VB ← Variable_Binder ()

5. end for

6. end for

Output: VB

Figure-3: Variable Binding

5.6 Creating SELECT Clause

The SELECT query will be created after performing necessary steps in Algorithm 1 - 5. The

already identified constants which are mentioned in single quotes in TD rules of the body literals

are then mapped to the corresponding fields of the tables using the “=” symbol. If some built-in

predicates exist than the corresponding conditions are imposed by using built-in predicates by

passing the BL which is output of Algorithm 1. After imposing the conditions, these are

-30-

concatenated in the SQL “WHERE” clause. The WHERE clause is then created by the use of

algorithm provided in the (Hajiyev, Verbaere, & de Moor, 2006) and (Hajiyev, Sep. 2005).

The built in predicates, constants in literals mapped with columns and variables mapped with

database columns are joined by the "=" operator i.e. joins by the use of variable binding

information from algorithm 5 and is stored in an array named WC. All the strings in WC are then

concatenated by the use of AND operator.

The SELECT clause is then created and stored in an array named SC by the use of variables in

the head literal. The information about the variables in head literal are stored HV (which is

output of Algorithm 1).

Finally, the strings SC, FC (Output of Algorithm 4) and WC are concatenated to form the final

SELECT statement.

-31-

IMPLEMENTATION OF ACCESS CONTROL POLICIES AND MODELS

IN RDBAC FRAMEWORK

In this Chapter we will implement BLP, CWP, RBAC and Temporal policies in RDBAC

framework by providing database schemas and TD rules for each policy. These TD rules are

translated into equivalent SQL queries by the compiler which uses the algorithms as discussed in

Chapter 5.

6.1 BLP

The implementation of BLP Model has used the following database schema as shown in Table 1.

Table 1. Database Schema for Implementation of BLP with Categories

No. Table Name Columns

1. Users UserID:- integer, User:-nvarchar, Clearance:-integer, UCatID:- integer

2. Data
DataID:- integer, DataCol1:-nvarchar, DataCol2:-nvarchar, Classification:-

integer, DCatID:- integer

3. Security_Level LevelID:- integer, Level:-nvarchar

4. Category CatID:- integer, Category:-nvarchar

5. Set_Categories ID:- integer, Set_Categories:-nvarchar

6. Lattice LID:- integer, CatID:- integer, ParentID:- integer

In Table 1, the database table named "Users" contains the list of users in the system along with

their clearance level. The second table named "Data" contains the data on which the BLP read

and write access is to be granted. This table also contains the classification level as well as the

category assigned to each record in the system. The third table named "Security_Level” is used

CHAPTER 6

-32-

to keep the list of available clearance and classification levels in the system. The fourth table

named "Category" is used to keep the list of categories in the system which is used for creating

the lattice on partially ordered function. The purpose of table named "Lattice" is to maintain the

information about the lattice which is used for the checking the security level in the system.

6.1.1 Simple Security Property of BLP Model

The TD rule for implementing the simple security property of BLP with categories is shown in

the Table 2:

Table 2. TD Rule of Simple Security Property of BLP Model

ReadData

(User, DataCol1, DataCol2):-

Users (Session.User, Clearance, UCatID),

Data (DataID, DataCol1, DataCol2, Classification, DCatID),

Lattice (_, DCatID, UCatID),

Classification <= Clearance

The equivalent SQL query or view which actually implements the above property of BLP Model

with Categories after compiling the above TD Rule is shown in Table 3:

Table 3. Equivalent SQL Query of Simple Security Property of BLP Model

SELECT

FROM

WHERE

Session.User, d. DataCol1, d. DataCol2, u.UCatID,

d.DCatID, u.Clearance, d.Classification

Data AS d, Lattice AS l, Users AS u

u.UCatID = l.CatSetID AND d.DCatID = l.ParentID AND

d.Classification <= u.clearance AND

u.[User] = Session.User

-33-

6.1.2 *- Property of BLP Model

The TD rule for the implementation of the *-property of BLP with categories is shown Table 4:

Table 4. TD Rule of *- Property of BLP Model with Categories

insert.Data (User, DataCol1, DataCol2):-

Users (Session.User, Clearance, UCatID),

Data (DataID, DataCol1, DataCol2, Classification, DCatID),

Lattice (_, DCatID, UCatID),

Classification <= Clearance,

del.Data (DataCol1, DataCol2),

ins.Data (DataCol1, DataCol2)

The equivalent SQL SELECT query which actually implements the *-property of BLP Model

with Categories after compiling TD Rule is shown in Table 5:

Table 5. Equivalent SQL Query of *- Property of BLP Model

SELECT u.[user], d.data1, d.data2, u.UCatID, d.DCatID, u.Clearance,

d.Classification

FROM Data AS d, Lattice AS l, Users AS u

WHERE u.UCatID = l.CatSetID AND d.DCatID = l.ParentID AND u.clearance <=

d.Classification AND u.user = @UserName AND d.DataID = @DataID;

User Defined Function is called for retraction and insertion predicate

Now we consider a simple scenario, for simulating the BLP according to our implementation.

Consider there are 3 categories in the system NUC, EUR and US. These categories are stored in

the table named Category. We have generated the complete list of sets by using the subset

operator (⊆) e.g. {NUC, US} ⊆ {NUC, EUR, US} and stored in the table named Set_Categories.

-34-

The complete lattice is stored in the table named Lattice. The generated lattice uses the list of

subsets in Set_Categories tables. The clearance and classifications are Unclassified,

Confidential, Secret and Top Secret. Now consider Mr. xyz is cleared into the security level

(Secret, {NUC, EUR}), DocA is classified as (Confidential, {NUC}), DocB is classified as

(Secret, {EUR, US}), and DocC is classified as (Secret, {EUR}). Mr. xyz tries to read the DocA,

the information about the clearance level of Mr. xyz is retrieved from the tables Users, Lattice

and information about the classification level of DocA retrieved from the tables named Data,

Lattice. After that dominates (S dom O) relationship is checked and the read access is granted to

Mr. xyz on DocA. Similarly in order to implement the *-property the dominates (O dom S) is

checked and the write access is granted.

-35-

6.2 CWP

In this subsection we will present the database schema for implementation of CWP, TD rules and

equivalent SQL queries for the implementation of Simple Security Property and *-Property of

CWP. The database schema for CWP implementation in RDBAC is shown in Table-6:

Table 6. Database Schema for Implementation of CWP

No. Table Name Columns

1. Users UserID:- integer, User:-nvarchar

2. UsersAccess
UserAccessID:- integer, UserID:- integer, CoiClassID:- integer, ClientID:-

integer, ReadAccess:- integer, WriteAccess:- integer

3. CoiClasses CoiClassID:- integer, CoiClass:-nvarchar

4. Clients ClientID:- integer, Client:-nvarchar, CoiClassID:- integer

5. ClientData
CdID:- integer, CoiClassID:- integer, ClientID:- integer, Data1:-nvarchar,
Data2:-nvarchar, Data3:-nvarchar

In Table-6, the table named "Users" contains the list of users in the system. The second table

named "UsersAccess" contains the references to conflict of interest (Coi) classes and clients.

This table also contains references to user id and the read / write access rights on the client

datasets. The ReadAccess and WriteAccess columns in this table are used for maintaining the

read and write access and are updated on each new access. The third table named "CoiClasses”

contains the list of Coi classes in the system. The table named "Clients" contains the list of

clients along with their Coi class references and data of clients will be stored in table named

"ClientData".

-36-

6.2.1 Implementation of Simple Security Property of CWP

In Table 7, TD rule for simple security condition of CWP is shown:

Table 7. TD Rule of Simple Security Property of CWP

ClientData (UserID, User, CoiClassID, CoiClass, ClientID, Client, Data1, Data2, Data3):-

Users (UserID, Session.User),

CoiClass (CoiClassID, @CoiClass),

Clients (ClientID, @Client),

UsersAccess (UserAccessID, UserID, CoiClassID, ClientID, ReadAccess, _),

ClientData (CdID, CoiClassID, ClientID, Data1, Data2, Data3)

del.UserAccess (_, UserID, CoiClassID, ClientID, _, _),

ins.UserAccess (_, UserID, CoiClassID, ClientID, 1,0)

The equivalent SQL SELECT query which actually implements the simple security property of

CWP after compiling TD Rule is shown in Table 8:

Table 8. Equivalent SELECT Query of Simple Security Property of CWP

SELECT u.User, u.UserID , cc.CoiClass, cc.CoiClassID, c.Client, c.ClientID, cd.Data1,

cd.Data2, cd.Data3

FROM Clients AS c, CoiClasses AS cc, Users AS u, UsersAccess AS ua, ClientData AS cd

WHERE cc.CoiClassID = c.CoiClassID AND ua.UserID = u.UserId AND

ua.CoiClassID = cc.CoiClassID AND ua.ClientID = c.ClientID AND

ua.ClientID = cd.ClientID AND ua.ReadAccess = 1 AND

cc.CoiClass = @CoiClass AND c.client = @Client AND

u.User = @UserName;

UDF for updating the access rights are called after this select query

-37-

6.2.2 Implementation of *-Property of CWP

For implementing the *-property the read access is granted to the user by the simple security

property, whenever the user requests for some write access the WriteAccess column is updated

by the UDF and is shown Table 9:

Table 9. TD for updating the write access rights

ClientData (UserID,User, CoiClassID, CoiClass, ClientID, Client, Data1, Data2, Data3):-

Users (UserID, Session.User),

CoiClass (CoiClassID, @CoiClass),

Clients (ClientID, @Client),

UsersAccess (UserAccessID, UserID, CoiClassID, ClientID,ReadAccess, _),

ClientData (CdID, CoiClassID, ClientID, Data1, Data2, Data3)

del.UserAccess (_, UserID, CoiClassID, ClientID, _, _),

ins.UserAccess (_, UserID, CoiClassID, ClientID, 1, 1)

The equivalent SQL SELECT query which actually implements the *-property of CWP after

compiling TD Rule is shown in Table 10.

In order to verify our implementation of CWP in RDBAC, we have discussed and executed

different scenarios related to the example of CWP presented in the Section 1. The data for the

scenarios are shown in Table-11 to Table-15.

-38-

Table 10. Equivalent SELECT Query of *-Property of CWP

SELECT u.User, u.UserID , cc.CoiClass, cc.CoiClassID, c.Client, c.ClientID, cd.Data1,

cd.Data2, cd.Data3

FROM Clients AS c, CoiClasses AS cc, Users AS u, UsersAccess AS ua, ClientData AS cd

WHERE cc.CoiClassID = c.CoiClassID AND ua.UserID = u.UserID AND

ua.CoiClassID = cc.CoiClassID AND ua.ClientID = c.ClientID AND

ua.ClientID = cd.ClientID AND ua.ReadAccess = 1 AND

cc.CoiClass = @CoiClass AND c.client = @Client AND

u.User = @UserName;

UDF for updating the access rights are called after this select query

Table 11. CoiClasses

CoiClassI

D

CoiClassNa

me

1 Bank

2 Oil

Table 12. Users

UserID User

1 a

2 b

3 c

Table 13. Clients

Coi Client

ID
Client

Coi Class

ID

1 Bank1 1

2 Bank2 1

3 Bank3 1

4 Oil1 2

5 Oil2 2

6 Oil3 2

7 Oil4 2

Table 14. ClientData

Cd ID CoiClassID CoiClientID Data1 Data2 Data3

1 1 1 Bank11 Bank12 Bank13

2 2 4 Oil11 Oil12 Oil13

3 2 5 Oil21 Oil22 Oil23

Table 15. UsersAccess

UserAccessID UserID CoiClassID CoiClientID ReadAccess WriteAccess

1 1 1 1 1 0

2 1 1 2 1 0

3 1 1 3 1 0

4 1 2 4 1 0

5 1 2 5 1 0

-39-

a) Consider the first scenario, in which a new user may freely choose any dataset i.e. Bank1,

Oil1 and Oil2 datasets from the database according to his request. Whenever a new user

came into the system it is first entered into the Users table, and as an initial setup he is given

read access on all the clients data. This is achieved by setting the ReadAccess column of table

15 to '1' for all the records related to this new user. In this way a user can initially selects any

dataset of any client from the database. But after the initial access of a dataset the access

rights are updated i.e. all the other clients of that particular conflict of interest (Coi) class are

set to '0' except the accessed client data.

b) In the second scenario, a new user accesses the Oil1 dataset first and now possesses

information about the Oil1 dataset. Later the same user requests to access to the Bank1

dataset, this is quite permissible since the Bank1 and Oil1 datasets belong to different Coi

classes. The user first selects the Oil1 dataset, the ReadAccess of this dataset is set '1' and the

ReadAccess of all the other clients of this Coi class are set to '0'. Now the user can only

access the Oil1 dataset as read access to all the other datasets in this Coi class are rejected.

But the user can access any other client which lies in any other Coi class, as the ReadAccess

column of table 15 was initially set to '1' for all the clients. It was updated after the first

access only for that particular Coi class and for the remaining Coi classes it remained

unchanged. Now the user requests to access the client data of Bank1 which lies in the Bank

Coi class. According to initial set up it is permissible and after read access is granted to

Bank1 dataset the same procedure is applied for updating the access rights of this Coi class as

after the first read access.

-40-

c) In the third scenario, the same user now requests to access the Oil2 dataset which must be

denied. Since a conflict does exist between the requested dataset Oil2 and the one which is

already possessed dataset Oil1 by the user. As discussed in the second scenario, when the

user first access the Oil1 dataset the ReadAccess of all other clients in this Coi class are set to

'0' means that read access to all clients in this Coi class are rejected. So when this user wants

to access the Oil2 dataset the access is denied automatically.

d) In the fourth scenario, a new user first accesses the dataset of Bank1 before the Oil1. This

will the same as the second scenario, the user has initially the rights to access any dataset so

he accesses Bank1 and then the same process can be applied to update the read access rights

and similarly he can access Oil1 after that because this client belong to entirely different Coi

class. So the results would be the same as expected by the simple security property of CWP.

e) In the fifth scenario, the user accesses Oil2 before the request to access Oil1 dataset and the

restrictions would be quite different. The access to Oil1 dataset would be denied and the user

would possess Oil2 and Bank1. In this case the user first accesses Oil2 so the access rights of

this user are updated for all the clients of this Coi class i.e. ReadAccess column of table 15 is

set to '0' except the Oil2 client dataset. Now if the user wants to access the Oil1 dataset the

request is denied because there would be a conflict of interest if the access is granted to the

user. The user can easily access Bank1 as there is no change in the access rights because

Bank1 belongs to a different Coi class. The access rights are updated after accessing the

Bank1 dataset. So after executing this scenario the user possesses only the datasets of Oil2

and Bank1.

-41-

f) In the sixth scenario, there are 3 clients in one Coi class the minimum number of users which

access all the clients datasets would be same as the number of clients in that Coi class.

Because a user can only be granted access to only client in one Coi class otherwise there

would be conflict of interest among the users. The updating of access rights as discussed in

the first and second scenarios automatically enforces this restriction of minimum users for a

Coi class.

g) In the seventh scenario, we discuss the *-property of the CWP. Whenever a user wants to get

the write access on client dataset, he should have the read access by following the simple

security property of CWP. After that he is granted write access to that client dataset and their

read access rights are updated accordingly. Consider a user has read access to Oil1 data after

the second scenario, now he wants to get the write access on this client dataset. The

WriteAccess column of table 15 is set to '1' for this client dataset and also the ReadAccess

column is also updated i.e. set to '0' for all the clients except Oil1. Because according to *-

property of CWP "no object can be read which is in a different company dataset to the one

for which write access is requested". By using the above discussed mechanism our proposed

system implements the *-property of CWP.

-42-

6.3 RBAC

The details of the RBAC are discussed in section 2.4 of chapter 2, for implementing this model

in RDBAC we have used the following database schema shown in table 16:

Table 16. Database Schema for Implementation of RBAC

No. Table Name Columns

1. Users
UserID:- integer, UserName:- nvarchar, PatientID:- integer, EmpID:-

integer

2. Roles RoleID:- integer, RoleName:- nvarchar, IsActive:- integer

3. Permissions PermissionID:- integer, Operation:- integer, PerName:- nvarchar

4. RolePermissions RolePerID :- integer, RoleID:- integer, PermissionID:- integer

5. UserRoles UserRoleID :- integer, UserID :- integer, RoleID :- integer

6. Employees EmpID :- integer, SSN :- nvarchar, FullName :- nvarchar

7. Patients PatientID :- integer, PatientName :- nvarchar, CaredBy :- integer

8. ContactInformation
ContactID :- integer, EmpID :- integer, PatientID :- integer, Email :-

nvarchar, CompleteAddress :- nvarchar, TelephoneNo :- nvarchar

9. Prescription

PrescriptionID :- integer, PatientID :- integer, PrescribedBy :- integer,

DatePrescribed :- datetime, DateFilled :- datetime, DrugName :-

nvarchar,

Quantity :- integer

The "Users" table contains list of users in the system. The identified roles in the system are

stored in the table named "Roles". The list of permissions are stored in table "Permissions" e.g.

read, write etc. The table "RolePermissions" contains the reference to roles and permissions

which is used to store the information about the allowed permissions to the roles i.e. assigned

-43-

permissions to roles. The table named "UserRoles" contains the reference to users and roles used

to store the information that each user is assigned to which role(s) i.e. one user may be assigned

to more than one roles. The "Employees" table contains the information about the employees in

the system. As the tables from sr. no. 1- 6 in Table-16 are used for the implementation of RBAC,

the remaining tables in table 16 are specific to an environment. For instance we have chosen the

medical database which can store the contact information of patients and the prescriptions

written by the doctors for patients. In the following section, we will discuss the implementation

of the policy "Doctors may view the contact data of the patients" in an RBAC environment.

Table 17 and 18 shows this policy written in TD and its equivalent SQL SELECT query

respectively:

Table 17. TD for Policy "Doctors may view the contact data of patients"

ContactInfo (PatientID, PatientName, Email, CompleteAddress, TelephoneNo):-

Users (UserID, @UserName, _, EmpID),

Employees (EmpID, _, _),

Patients (PatientID, PatientName, _),

Roles (RoleID, 'Doctors', 1),

Permissions (PermissionID, 1, _),

RolePermission(_, RoleID, PermissionID),

UserRoles(_, UserID, RoleID),

ContactInformation(ContactID, EmpID, PatientID, Email, CompleteAddress,

TelephoneNo)

-44-

Table 18. Equivalent SELECT Query of "Doctors may view the contact data of patients"

SELECT p.PatientID, p.PatientName, c.Email, c.CompleteAddress, c.TelephoneNo

FROM Users u, Employees e, Patients p, Roles r, Permissions pr, RolePermissionrp,

UserRolesur, ContactInformation c

WHERE u.EmpID = e.EmpID AND r.RoleID = rp.RoleID AND

pr.PermissionID = rp.PermissionID AND u.UserID = ur.UserID AND

r.RoleID = ur.RoleID AND p.PatientID = c.PatientID AND

u.UserName = @UserName AND r.RoleName = 'Doctors' ;

Another policy "Doctors may view the contents of prescription of patients for whom they have

written prescriptions" for RBAC is shown in the table 18 and 19 respectively.

Table 19. TD for Policy "Doctors may view the contents of prescription of patients for whom

they have written prescriptions"

view.Prescription (PrescriptionID, PatientID, PatientName, PrescribedBy, DatePrescribed,

DateFilled, DrugName, Quantity):-

Users (UserID, @UserName, _, EmpID),

Employees (EmpID, _, _),

Patients (PatientID, PatientName, _),

Roles (RoleID, 'Doctors', 1),

Permissions (PermissionID, 1, _),

RolePermission (_, RoleID, PermissionID),

UserRoles (_, UserID, RoleID),

Prescription (PrescriptionID, PatientID, PrescribedBy, DatePrescribed,

DateFilled, DrugName, Quantity)

-45-

Table 20. Equivalent SQL SELECT query of "Doctors may view the contents of prescription of

patients for whom they have written prescriptions"

SELECT p.PatientID, p.PatientName, u.UserName, ps.PrescriptionID, ps.DatePrescribed,

ps.DateFilled, ps.DrugName, ps.Quantity, ps.Refills

FROM Users u, Employees e, Patients p, Roles r, Permissions pr, RolePermission rp,

UserRolesur, Prescription ps

WHERE u.EmpID = e.EmpID AND r.RoleID = rp.RoleID AND

pr.PermissionID = rp.PermissionID AND u.UserID = ur.UserID AND

r.RoleID = ur.RoleID AND p.PatientID = ps.PatientID AND

u.UserID = ps.PrescribedBy AND u.UserName = @UserName AND

r.RoleName = 'Doctors'

-46-

6.4 TRBAC

In order to implement the Temporal RBAC policy, we use the same schema as shown in table 16

with one more table named TimeConstraint for storing the temporal information about the roles

as shown in table 21:

Table 21. Database Schema for Implementation of Simple TRBAC

No. Table Name Columns

1. TimeConstraint

TCID :- integer, RoleID :- integer, TCName :- nvarchar, StartDate :-

datetime, EndDate :- datetime, StartTime :- nvarchar, EndTime :-

nvarchar

The column named TCName is the name of time constraints e.g. night time, day time, part time

etc. The columns named StartDate and EndDate are used for storing the start and end date of the

time constraint. Similarly the timing information of the activation of roles are stored in columns

named StartTime and EndTime e.g. 09:00 and 17:00 respectively. In the following section, we

will discuss the implementation of the policy "Doctors on night duty may view the contact

information of patients during night time" in an TRBAC environment. Table 22 and 23 shows

this policy written in TD and its equivalent SQL SELECT query respectively:

Table 22. TD for Policy "Doctors on night duty may view the contact information of patients

during night time"

view.ContactInfo (PatientID, PatientName, Email, CompleteAddress, TelephoneNo):-

Users (UserID, @UserName, _, EmpID),

Employees (EmpID, _, _),

Patients (PatientID, PatientName, _),

Roles (RoleID, 'DoctorsOnDayDuty ', 1),

Permissions (PermissionID, 1, _),

RolePermission (_, RoleID, PermissionID),

-47-

UserRoles (_, UserID, RoleID),

ContactInformation (ContactID, EmpID, PatientID, Email,

CompleteAddress, TelephoneNo),

TimeConstraint (_, RoleID, 'Night', StartDate, EndDate, StartTime,

EndTime),

GETDATE() >= StartDate,

GETDATE() <= EndDate,

GETTIME() >= StartTime,

GETTIME() <= EndTime

Table 23. Equivalent SQL SELECT query of "Doctors on night duty may view the contact

information of patients during night time"

SELECT p.PatientID, p.PatientName, c.Email, c.CompleteAddress, c.TelephoneNo

FROM Users u, Employees e, Patients p, Roles r, Permissions pr, RolePermission rp,

UserRoles ur, ContactInformation c, TimeConstraint tc

WHERE u.EmpID = e.EmpID AND r.RoleID = rp.RoleID AND

pr.PermissionID = rp.PermissionID AND u.UserID = ur.UserID AND

r.RoleID = ur.RoleID AND p.PatientID = c.PatientID AND

tc.RoleID = r.RoleID AND

GETDATE () BETWEEN StartDate AND EndDate

AND

GETTIME () BETWEEN StartTime AND EndTime

AND

u.UserName = @UserName AND

r.RoleName = 'DoctorsOnDayDuty' ;

-48-

FORMAL VERIFICATION THOROUGH MODEL CHECKING

In this chapter we will verify our implemented BLP model (Holzmann G. , 1990) and (Holzmann

G. , April 93) using the (SPIN) model checker which uses the "Process Meta Language

PROMELA" as a modeling language. In model checking we verify models instead of actual

systems which are high level descriptions of actual systems. In order to verify the database

system, it is modeled having the same characteristics of original database using some modeling

language.

7.1 Constructing the Model

In order to model the schema of BLP in Promela which is presented in Table 1 of section 6.1.1,

every database table is defined as a typedef in the model. The BLP schema modeled in Promela

is shown in Table-24:

Table 24. BLP Schema modeled in Promela

1. typedef Category { int CatID; int category;};

2. typedef Clearance { int clearanceID; int clearance; };

3. typedef Data { int DataID; int Data1; int Data2; int Classification; int DCatID; int y; };

4. typedef Lattice { int LID; int CatSetID; int ParentID; int x; };

5. typedef SetCategories { int ID; int setCategories; };

6. typedef Users { int userID; int users1; int clearance; int UcatID; };

The arrays of these typedef are then created which models the records in the database tables

which are shown Table-25.

CHAPTER 7

-49-

Table 25. Arrays of typedef for modeling the records in tables

1. Category category [number_of_Catgories];

2. Clearance clearance [number_of_Clearance];

3. Data data [number_of_Data];

4. Lattice lattice [number_of_Lattice];

5. SetCategories setcategories [number_of_SetCategories];

6. Users users [number_of_Users];

In order to model the functionality of the SQL query for simple security property of BLP shown

in Table-3 of section 6.1.2, three loops are used for implementing the functionality of joins in the

WHERE clause. The Promela code for modeling this functionality is shown in Table-26.

Table 26. Promela code for modeling the functionality of simple security property of BLP

int i,j=0;

do

:: lattice [i].CatSetID == CUser.UcatID -> lattice[i].x =1;

if

:: i == number_of_Lattice -> break;

:: else ->; i++;

fi

od;

for (i : 0..number_of_Lattice) {

do

:: lattice [i].x == 1 && lattice[i].ParentID == data[j].DCatID

-> data[j].y =1;

:: j == number_of_Data -> break;

:: j++;

od;

}

for (i : 0..number_of_Data) {

if

:: (data[i].Classification <= CUser.clearance) && (data[i].y

== 1) -> {

ResultData.Data1 = data[i].Data1;

ResultData.Data2 = data[i].Data2;

ResultData.Classification = data[i].Classification;

}

fi

}

-50-

7.2 Verification through SPIN model checker

After molding the query for simple security property of BLP, the created schema in Table-24

needs to be populated with data. Similarly, another array named ExpectedResult is created that

contains manually calculated expected results of simple security property. The model of simple

security property query as shown in Table-26 is executed on test data and the results are saved in

ResultData array.

In order to verify the generated results, Assert statement of Promela is used. This statement is

always executable and takes any valid Promela expression as its argument. The expression is

evaluated each time the statement is executed. If the expression evaluates to false (or,

equivalently, to the integer value zero), an assertion violation is reported during verifications

with SPIN. The expected results are compared with generated results of model by the use of

following Assert statement:

Assert (ExpectedResult.Data1 = ResultData.Data1)

Assert (ExpectedResult.Data2 = ResultData.Data2)

The results of this model shows that it is valid and does not violates simple security property of

BLP. The model generated results are according to expected results and we tested for positive

and negative results also no violation in accordance with the BLP security property found.

-51-

PERFORMANCE EVALUATION

In this chapter we will evaluate the performance of our implementation of the translation

algorithm for translating TD policies into equivalent SQL SELECT queries by calculating the

translating time. We also evaluated the performance of implementation of BLP, CWP, RABC

and temporal policies by calculating their execution time of running equivalent SQL SELECT

queries generated by our algorithm implementation.

In order to calculate execution time of translated SQL queries we used Microsoft’s SQL Server

2008 Express R2 database management system (DBMS) running on a 2.4 GHz Intel Core i5

machine with Windows 7 Home Premium 64-bit operating system. The calculation of execution

time was performed by using external applications written in C# and compiled by Microsoft’s

Visual C# 2008 compiler version 3.5. Both the test applications and the DBMS were run locally

on the same machine and the network latency is not included for the execution time.

The performance of translating algorithm discussed in section 4.1 is evaluated on the basis of

number of literals in the head and body of TD rules. This algorithm was implemented in C#.Net

CHAPTER 8

Figure-4 : Performance of TD to SQL Compiler

145

160

175

190

3 4 5 6

T
ra

n
sl

a
ti

o
n

 T
im

e

(m
s)

No of Literals

-52-

which reads the database schema directly from the target database given the target database name

and location. The tests were performed by providing TD rules having different number of

literals. The time taken for translating the TD rules to SQL queries was calculated in

milliseconds and is shown in Figure-4. Each test was performed 20 times to get the stable values

of execution times, and an average calculated for translation times for each 3,4,5 and 6 number

of literals in TD rules. Our tests show that the translation time slightly increases with the increase

in number of literals in the TD rules. Further, the increase in number of variables and constants

in each literal of TD rule also effects the translation time because it depends upon the number of

columns in the target database tables.

In order to evaluate the performance of generated SQL SELECT queries for each of the polices

we developed prototype applications which call the queries wrapped in UDFs as discussed in

section 4.1. For each implemented policy the tests were performed on separate datasets because

the database schemas are implementation specific. The arrangement of the datasets for BLP is

shown in Table-27.

Table 27. Datasets for BLP

No. of Records in

Users Lattice Data (No. of Records)

10 12 (3 categories and 4 clearance)

100, 1000, 2000, 10,000,

20,000, 50,000, 100,000
50 43 (4 categories and 5 clearance)

100 162 (5 categories and 6 clearance)

We calculated the execution time of queries by using varying number of users, categories,

clearance levels and number of data records. The size of lattice depends upon number of

-53-

categories and clearance levels. For instance if there are 3 categories and 4 clearance levels than

the size of Lattice tables will be 12 records, the subset operator has been used for creating the

lattice. We use combinations such as {Users = 10, Lattice Size = 12 and Data = 100 records},

{Users = 10, Lattice Size = 12 and Data = 1000 records} and {Users = 10, Lattice Size = 12 and

Data = 2000 records} and so on. The execution time of all the combinations are shown in Figure-

5 to Figure-7 for simple security property of BLP and Figure-8 to Figure-10 for *- property of

BLP. Each test was performed 20 times and then average values are taken for plotting the graphs.

It was observed in our implementation the number of users and the size of the lattice has

reasonably small impact on the execution time of queries. However, the execution time is linear

in the size of the database (number of the records) which is typical of database systems.

-54-

In order to evaluate the execution time of CWP, the arrangement of datasets is shown in Table-

28.

We use different combinations of number of Users, CoiClasses, Clients size and number of

records for calculating the execution time of both properties of CWP e.g. {Users = 10,

CoiClasses = 10, Clients = 100 and Data = 100 records}, { Users = 10, CoiClasses = 10, Clients

Figure-7: Simple Security Property of BLP (100 Users)

0

100

200

300

400

500

600

700

800

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 100

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

Figure-10: *-Property of BLP (50 Users)

0

100

200

300

400

500

600

700

800

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 50

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

Figure-9: *-Property of BLP (100 Users)

0

100

200

300

400

500

600

700

800

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 100

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

Figure-6: Simple Security Property of BLP (10 Users)

0

100

200

300

400

500

600

700

800

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 10

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

Figure-5: Simple Security Property of BLP (50 Users)

0

100

200

300

400

500

600

700

800

900

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 50

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

Figure-8: *-Property of BLP (10 Users)

0

100

200

300

400

500

600

700

800

100 1000 2000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

No. of Users = 10

Lattice Size (12)

Lattice Size (43)

Lattice Size (162)

-55-

= 100 and Data = 1000 records } and { Users = 10, CoiClasses = 10, Clients = 500 and Data =

100 records } and so on. The execution time of all the combinations are shown in Figure-11 to

Figure-16 for simple security property of CWP and Figure-17 to Figure-22 for *- property of

CWP. Each test was performed 20 times and then average values are taken for plotting the

graphs. It was observed in our implementation the number of users, CoiClasses and Clients has

reasonably small impact on the execution time of queries. However, execution time depends

upon the number of records in database which majorly affects execution time and typical to

database systems.

Table 28. Datasets for CWP

No. of Records in

Users CoiClasses Clients Data (For each dataset)

10 50 100

100, 1000, 10,000,

20,000, 50,000, 100,000
10 50 100

50 500 1000

Figure-12: Simple Security Property of CWP (100 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 100 and CoiClasses = 10

100 Clients

500 Clients

1000 Clients

Figure-11: Simple Security Property of CWP (100 Users)

0

2000

4000

6000

8000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 100 and CoiClasses = 50

100 Clients

500 Clients

1000 Clients

Figure-13: Simple Security Property of CWP (100 Users)

0

500

1000

1500

2000

2500

3000

3500

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 500 and CoiClasses = 10

100 Clients

500 Clients

1000 Clients

Figure-14: Simple Security Property of CWP (100 Users)

0

2000

4000

6000

8000

10000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 100 and CoiClasses = 100

100 Clients

500 Clients

1000 Clients

-56-

Figure-16: Simple Security Property of CWP (500 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 500 and CoiClasses = 50

100 Clients

500 Clients

1000 Clients

Figure-15: Simple Security Property of CWP (500 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

Users = 500 and CoiClasses = 100

100 Clients

500 Clients

1000 Clients

Figure-18: *- Property of CWP (100 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 100 and CoiClasses = 10

100 Clients

500 Clients

1000 Clients

Figure-17: *- Property of CWP (100 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 100 and CoiClasses = 50

100 Clients

500 Clients

1000 Clients

Figure-20: *- Property of CWP (100 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 100 and CoiClasses = 100

100 Clients

500 Clients

1000 Clients

Figure-19: *- Property of CWP (500 Users)

0

500

1000

1500

2000

2500

3000

3500

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 500 and CoiClasses = 10

100 Clients

500 Clients

1000 Clients

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 500 and CoiClasses = 50

100 Clients

500 Clients

1000 Clients

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 500 and CoiClasses = 100

100 Clients

500 Clients

1000 Clients

Figure-22: *- Property of CWP (500 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 500 and CoiClasses = 50

100 Clients

500 Clients

1000 Clients

Figure-21: *- Property of CWP (500 Users)

0

1000

2000

3000

4000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Records

*-Property - Users = 500 and CoiClasses = 100

100 Clients

500 Clients

1000 Clients

-57-

Table 29. Datasets for RBAC

No. of Records in

Users Roles Patients ContactInfo.

10 10 100, 1000, 10,000,

20,000, 50,000,

100,000

100, 1000, 10,000,

20,000, 50,000,

100,000

50 20

100 30

The same strategy of different combinations of data for calculating the execution time of RBAC

and TRBAC policy is used as in BLP and CWP and the dataset is shown in Table-29. Some of

combinations of Users, Roles and number of patients records for calculating execution time are

{Users = 10, Roles = 10, Patients and ContactInfo = 100 records}, {Users = 10, Roles = 10,

Patients and ContactInfo = 1000 records} and {Users = 10, Roles = 10, Patients and ContactInfo

= 10,000 records} and so on. The calculated execution time is shown in Figure-23 to Figure-25

for RBAC policy and Figure-26 for TRBAC. The same criteria of 20 tests were used for plotting

the graphs. It was observed in our implementation the number of users and roles and grouping of

users in different roles does not put significant effect on the execution time. However, the

number of the records in the data is the major factor effecting execution time.

-58-

Figure-23: RBAC (10 Roles)

0

2000

4000

6000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Patients Records

Roles = 10

10 Users

100 Users

500 Users

Figure-24: RBAC (20 Roles)

0

2000

4000

6000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Patients Records

Roles = 20

10 Users

100 Users

500 Users

Figure-25: RBAC (30 Roles)

0

2000

4000

6000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Patients Records

Roles = 30

10 Users

100 Users

500 Users

Figure-26: TRBAC (30 Roles)

0

2000

4000

6000

100 1000 10,000 20,000 50,000 100,000

m
il

li
se

c
o

n
d

s
(m

s)

No. of Patients Records

TRBAC (Roles = 30)

10 Users

100 Users

500 Users

-59-

CONCLUSIONS AND FUTURE WORK

In our research work we have implemented BLP, CWP, RBAC and TRBAC in the RDBAC

framework. For this purpose we have provided the database schemas for each implemented

policy and TD rules which are based on these schemas. We have implemented the TD to SQL

query translation algorithm with inclusion of new feature of translating the insertion and deletion

predicates into SQL UPDATE statement. The evaluation of generated SQL queries is performed

by developing external prototype applications for each policy. It has been observed during the

implementation that some initial setup may be required for some type of policies to be

implemented in RABAC framework e.g. CWP simple security property discussed in section

6.2.1. The complete functionality of SQL can be mapped on TD by the inclusion of semantics for

the negation in TD rules i.e. TD rules only provide the positive authorizations and no semantics

for the denying logic is available. The inclusion of negation semantics provides more flexibility

in writing policies and also improves the performance of the policies. Similarly the inclusion of

semantics of the SQL sub queries will improve the performance significantly and in this way we

can bypass the recursion in some policies.

There is a need of a mechanism or visual aided tool that helps the administrators to aid in writing

TD rules from plain English language policies. The formal analysis of the security policies

provided in the (Olson, Gunter, & Madhusudan, Oct. 2008) does not cover all type of the

policies. The read and append only policies can be formally analyzed but the policies which have

side effects cannot be analyzed so a formal analysis mechanism needs to be developed which

analyze each policy for its safeness before compiling into the SQL queries.

CHAPTER 9

-60-

REFERENCES

Agrawal, R., Bird, P., Grandison, T., Kieman, J., Logan, S., & Rjaibi, W. (2005). Extending relational

database systems to automatically enforce privacy policies. In Proceedings of 21st International

Conference on Data Engineering (ICDE' 05) (pp. 1013-1022). Washington, DC, USA: IEEE Computer

Society.

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2002). Hippocratic databases. In Proceedings of the 28th

international conference on Very Large Data Bases (VLDN’02), (pp. pp. 143–154.).

Ahn, G., & Sandhu, R. (2000). Role-based authorization constraints specification. ACMTrans. Inf. Syst. ,

Sec. 3, 4 (Nov.).

Bell, D., & LaPadula, L. (Mar. 1973). Secure Computer Systems: Mathematical Foundation. Technical

Report MTR-2547, Vol. I MITRE Corporation, Bedford, MA.

Bell, D., & LaPadula, L. (Mar. 1975). Secure Computer Systems: Unified Exposition and Multics

Interpretation. Bedford, MA: Technical Report MTR-2997 Rev. 1, MIRTE Corporation.

Bertino, E., & Sandhu, R. (Jan-Mar 2005). In Proceedings of the IEEE Transactions on Dependable and

secure computing, vol. 2, No. 1 .

Bertino, E., Bonatti, P., & Ferrari, E. (2000). TRBAC: A temporal role-based access control model. In

Proceedings of the Fifth ACM Workshop on Role Based Access Control, (pp. pp 21–30).

Bobba, R., Fatemieh, O., Khan, F., & Gunter, C. K. (2006). Using attribute-based access control to enable

attribute-based messaging. In Proceedings of the 22nd Annual Computer Security Applications

Conference (ACSAC’06) (pp. pp. 403–413.). IEEE Computer Society.

Bonner, A. J. (1998). Transaction datalog: A compositional language for transaction programming.

Lecture Notes in Computer Science, 1369:373–395 .

Brewer, D. D., & Nash, D. M. (May 1989). The chinese wall security policy. . In IEEE Symposium on

Security and Privacy, (pp. pp. 206–214). Oakland, CA.

Chaudhuri, S., Dutta, T., & Sudarshan, S. (April 2007). Fine grained authorization through predicated

grants. ICDE 2007. IEEE 23rd International Conference on Data Engineering (pp. pp. 1174–1183).

IEEE.

De Capitani di Vimercatii, S., Foresti, S., Jajodia, S., Paraboschi, S., & Samarati, P. (2008). Assessing

query privileges via safe and efficient permission composition. In Proceedings of the 15th ACM

conference on Computer and communications Security (CCS’08) (pp. pp. 311-322.). New York, NY,

USA: ACM.

Feuerstein, S., & Pribyl, B. (Oct. 2009). Oracle PL/SQL Programming. O’Reilly Media, 5th ed.

-61-

Goodwin, R., Goh, S., & Wu, F. (2002). Instance-level access control for business-to-business electronic

commerce. IBM Systems Journal 41(2) , 303–321.

Griffiths, P. P., & Wade, B. W. (1976). An authorization mechanism for a relational data base system. .

In: SIGMOD ’76: Proceedings of the 1976 ACM SIGMOD international conference on Management of

data (pp. pp. 51–51). New York, NY, USA : ACM.

Hajiyev, E. (Sep. 2005). CodeQuest: Source Code Quering with Datalog. MSc Thesis, Oxford University

Computing Laboratory . Available at http://progtools.comlab.ox.ac.uk/projects/codequest/.

Hajiyev, E., Verbaere, M., & de Moor, O. (2006). Codequest: Scalable source code queries with datalog.

Thomas, D. (ed.) ECOOP 2006. LNCS vol. 4067 , pp. 2-27.

Holzmann, G. (1990). Design and validation of computer protocols. , ISBN:0-13-539925-4. Prentice Hall

Inc.

Holzmann, G. (April 93). Design and validation of protocols: a tutorial. Special issue on specification,

testing and verification, In Computer Networks and ISDN Systems, Volume 25, Issue 9 , pages 981-1017.

Jahid, S., Gunter, C. A., Hoque, I., & Okhravi, H. (2011). MyABDAC: Compiling XACML Policies for

Attribute-Based Database Access Control. In Proceedings of the first ACM conference on Data and

Application Security and Provacy (pp. pp. 97-108). ACM.

Jahid, S., Hoque, I., Okhravi, H., & Gunter, C. A. (2009). Enhancing Database Access Control with

XACML policy.

LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., & DeWitt, D. (2004). Limiting

disclosure in Hippocratic databases. In proceedings of 13th internatinal conference on very large data

bases (VLDB Endowment), (pp. pp. 108-119).

Lunt, T. F., Denning, D. E., Schell, R. R., & Heckman. (1990). The seaview security model. IEEE Trans.

Softw. Eng. 16(6) , 593–607.

Olson, L. E., Gunter, C. A., & Madhusudan, P. (Oct. 2008). A formal framework for reflective database

access control policies. In Proceedings of CCS’08. Alexandria, VA.

Olson, L. E., Gunter, C. A., Cook, W. R., & Winslett, M. (2009). Implementing reflective access control

in SQL. In proceedings of DBSec’09. Montreal, QC.

Opyrchal, L., Cooper, J., Poyar, R., & Le, B. (April, 2011). Bouncer: Policy-Based Fine Grained Access

Control in Large Databases. International Journal of Security and Its Applications , Vol. 5 No. 2.

Oracle-Corporation. (June 2005). Oracle Virtual Private Database. Oracle Corporation.

Rashid, Z., Basit, A., & Anwar, Z. (2010). TRDBAC: Temporal Reflective Database Access Control. In

Procedings of ICET. Islamabad, PAK: IEEE.

-62-

Rizvi, S., Mendelzon, A., Sudarshan, S., & Roy, P. (2004). Extending query rewriting techniques for fine-

grained access control. In Proceedings of the 2004 ACM SIGMOD international conference on

Management of data (pp. pp. 551–562). New York, NY, USA: ACM.

SPIN. (n.d.). http://www.spinroot.com. SPINs basic manual can be found at the following address:

http://www.spinroot.com/spin/Man/Manual.html. Retrieved from SPIN: http://www.spinroot.com

Stonebraker, M., & Wong, E. (1974). Access control in a relational data base management system by

query modification. . In Proceedings of the 1974 annual conference (pp. pp. 180–186.). New York, NY,

USA : ACM.

Zhang, Z., & Mendelzon, A. O. (2005). Authorization views and conditional query containment. In 10th

International Conference on Databaase Theory (ICDT 2005), (pp. pp. 259-273).

