
IMPROVING ANOMALY DETECTION PERFORMANCE USING
INFORMATION THEORETIC AND MACHINE LEARNING TOOLS

by

Ayesha Binte Ashfaq

A dissertation submitted to the faculty of
The School of Electrical Engineering and Computer Science (SEECS, NUST)

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Department of Computing

2014

Approved by:

Dr. Syed Ali Khayam

Dr. Zahid Anwar

Dr. Awais Shibli

Dr. Hayder Radha

ii

c©2014
Ayesha Binte Ashfaq

ALL RIGHTS RESERVED

iii

ABSTRACT

AYESHA BINTE ASHFAQ. Improving Anomaly Detection Performance Using
Information Theoretic and Machine Learning Tools. (Under the direction of DR.

SYED ALI KHAYAM)

Anomaly detection systems (ADSs) were proposed more than two decades ago and

since then considerable research efforts have been vested in designing and evaluating

these systems. However, accuracy in terms of detection and false alarm rates, has

been a major limiting factor in the widespread deployment of these systems. Hence,

in this thesis we (i) Propose and evaluate information theoretic techniques to improve

the performance of existing general-purpose anomaly detection systems; (ii) Design

and evaluate a novel and specific-purpose machine learning-based anomaly detec-

tion solution for bot detection; (iii) Stochastically model general-purpose anomaly

detection systems and show that these systems are inherently susceptible to param-

eter estimation attacks; and (iv) Propose novel design philosophies to combat these

attacks.

To improve the performance of current general-purpose anomaly detection systems,

we propose (i) a feature space slicing framework; and (ii) a multi-classifier ADS. The

feature space slicing framework operates as a pre-processor, that segregates the feature

instances at the input of an ADS. We provide statistical analysis of mixed traffic

highlighting that there are two factors that limit the performance of current ADSs:

high volume of benign features; and attack instances that exhibit strong similarity

with benign feature instances. To mitigate these accuracy limiting factors, we propose

a statistical information theoretic framework that segregates the ADS feature space

iv

into multiple subspaces before anomaly detection. Thorough evaluations on real-world

traffic datasets show that considerable performance improvements can be achieved

by judiciously segregating feature instances at the input of a general-purpose ADS.

The multi-classifier ADS, on the other hand, defines a standard deviation normalized

entropy-of-accuracy based post-processor that judiciously combines outputs of diverse

general-purpose anomaly detection classifiers, thus building on their strengths and

mitigating their weaknesses. Evaluations on diverse datasets show that the proposed

technique provides significant improvements over existing techniques.

During the course of this research, the threat landscape changed considerably

with botnets emerging as the most potent threat. However, existing general-purpose

anomaly detection systems are largely ineffective in detecting this evolving threat be-

cause botnets are distinctively different from their predecessors. Since botnets follow

a somewhat invariant lifecycle, instead of pure behavior-based solutions, current bot

detection tools employ the bot lifecycle for detection. However, these specific-purpose

tools use rigid rule-based detection logic that falls short of providing acceptable ac-

curacy with evolving botnet behavior [1]. Extending the design philosophy of this

thesis, we propose a post-processing detection logic, for specific-purpose bot detec-

tion. The proposed post-processor models the high level bot lifecycle as a Bayesian

network. Experimental evaluations on diverse real-world botnet traffic datasets show

that the use of Bayesian inference based post-processor provides considerable perfor-

mance improvements over existing approaches.

Lastly, we stochastically model a few existing general-purpose anomaly detection

systems and demonstrate that these systems are highly susceptible to parameter es-

v

timation attacks. Since current day malware is becoming increasingly stealthy and

difficult to mine in overwhelming volumes of benign traffic, we argue that anomaly

detection systems need to be significantly redesigned to cope with the evolving threat

landscape. To this end, we propose cryptographically-inspired and moving target

based ADS design philosophies. The crypto-inspired ADS design aims at randomiz-

ing the learnt normal network profile while the moving target-based ADS design ran-

domizes the feature space employed by an ADS for anomaly detection. We provide

some preliminary evaluations that show that randomizing ADS parameters greatly

improves the robustness of anomaly detection systems against parameter estimation

attacks.

vi

To my parents for letting me pursue my dreams for so long,

to Dr. Khayam for being an amazing mentor

&

to my son Aly

ACKNOWLEDGEMENTS

”All the praises and thanks be to Allah, Who has guided us to this, never could we

have found guidance, were it not that Allah had guided us!” Al-A’raf (7:43)

I thank Almighty Allah for keeping me steadfast all these years. This thesis has

been possible because of His blessings.

I would also like to thank my parents for always believing in me and supporting

me, even though sometimes I was more ambitious than I should have been. Thank

you for taking such great care of Aly so that I could work. You’re the world’s best

grandparents and we love you.

I would also like to offer my gratitude to Qasim Ali for being a wonderful friend in

one of the most testing times of my life. Thank you for being you.

Finally and most importantly I would like to thank my advisor, Dr. Syed Ali

Khayam. I consider myself extremely fortunate to have had the chance to work under

his supervision. He is one of the most inspiring people I’ve come across in my life and

I’ve learnt a lot from him. His guidance and supervision provided me understanding

of not only how to do great research but also of work-ethics, morality and the value

of family. I find myself at a lack of words to offer my gratitude. He was a father when

I needed support, a brother when I needed comfort, a friend when I needed a break,

a mentor when I needed guidance and a critic when I needed correction. Thank you

for being such a wonderful person and such an amazing advisor.

i

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES xiii

CHAPTER 1: INTRODUCTION 1

1.1 Thesis Statement 3

1.2 Motivation 3

1.3 Overview of Contributions 4

1.4 Thesis Organization 8

CHAPTER 2: BACKGROUND, ANOMALY DETECTION SYSTEMS, DATASETS

& PRELIMINARY EVALUATIONS 10

2.1 IDS Detection Methods 10

2.1.1 Taxonomy of Anomaly Detection Systems 12

2.2 Anomaly Detection Systems 13

2.2.1 Rate Limiting 14

2.2.2 Threshold Random Walk (TRW) Algorithm 14

2.2.3 TRW with Credit-based Rate Limiting (TRW-CB) 15

2.2.4 Maximum Entropy Method 15

2.2.5 Packet Header Anomaly Detection (PHAD) 16

2.2.6 Network Traffic Anomaly Detection (NETAD) 16

2.2.7 PCA-based Subspace Method 17

2.2.8 Kalman Filter based Detection 18

2.2.9 Next-Generation Intrusion Detection Expert System 18

ii

2.2.10 KL Detector 18

2.2.11 Support Vector Machine (SVM) on Bags of System Calls 19

2.2.12 Host-based KL Detector 19

2.2.13 BotHunter 19

2.2.14 BotFlex 20

2.3 Datasets 21

2.3.1 The ISP Dataset 21

2.3.2 SysNet Lab Dataset 24

2.3.3 The LBNL Dataset 25

2.3.4 Endpoint Dataset 27

2.3.5 Host-based System Calls Datasets 30

2.4 Preliminary Evaluations 31

2.4.1 Averaged ROCs for the Endpoint Dataset 31

2.4.2 Averaged ROCs for the LBNL Dataset 35

2.4.3 Delay Comparison 36

2.4.4 Averaged ROCs for the Nayatel Dataset 37

2.5 Chapter Summary 38

CHAPTER 3: A FEATURE SPACE SLICING BASED PRE-PROCESSOR

TO IMPROVE THE ACCURACY OF EXISTING GENERAL-PURPOSE ANOMALY

DETECTION SYSTEMS 39

3.1 Motivation 40

3.2 Challenges 41

iii

3.3 Dataset and ADS 42

3.4 Technical Approach 42

3.5 Terminology 44

3.6 Preliminary Analysis 45

3.6.1 What are the fundamental accuracy limiting factors in sta-

tistical ADS design? 47

3.6.2 How can the accuracy limiting factors be mitigated by slicing

an ADS’s feature space? 53

3.7 Information Theoretic Feature Space Slicing 58

3.7.1 System-Level Design of a Feature Space Slicer 58

3.7.2 How should statistical similarity be defined? 61

3.7.3 How many subspaces should a feature space be sliced into? 66

3.8 Performance Evaluation 71

3.8.1 Accuracy Evaluation 71

3.8.2 Evaluation of the Computational Resources Utilization 74

3.9 Limitations 75

3.9.1 Higher Computation Resource Requirement 75

3.9.2 Accuracy 75

3.9.3 Evasion 75

3.9.4 Non-Statistical ADSs 76

3.9.5 ADSs with dependence across feature classes 76

3.10 Chapter Summary 76

iv

CHAPTER 4: A MULTI-CLASSIFIER BASED POST-PROCESSOR TO

IMPROVE THE ACCURACY OF EXISTING GENERAL-PURPOSE ANOMALY

DETECTION SYSTEMS 78

4.1 Motivation 79

4.2 Challenges 80

4.3 Technical Approach 81

4.4 Dataset and ADSs 82

4.5 Performance Evaluation of Existing Combining Techniques 82

4.5.1 Existing Combining Schemes 82

4.5.2 Experimental Results 86

4.5.3 Deductions 87

4.6 An Information-Theoretic Combining Method 88

4.6.1 Combining Model 88

4.6.2 Performance Evaluation 89

4.7 Chapter Summary 91

CHAPTER 5: BAYESIAN INFERENCE BASED POST-PROCESSOR FOR

A SPECIFIC-PURPOSE ANOMALY DETECTION SYSTEM 92

5.1 Motivation 93

5.2 Challenges 94

5.3 Technical Approach 96

5.4 Bottleneck: A Bayesian Framework to Infer a Bot Infection 98

5.4.1 Bot Lifecycle 98

v

5.4.2 Why Bayesian inference for Bot detection? 100

5.4.3 Bayesian Networks 102

5.4.4 Architecture of the Bottleneck System 109

5.5 Bottleneck Performance Evaluation 112

5.5.1 Existing Bot Detectors 112

5.5.2 Accuracy Evaluation 113

5.5.3 Accuracy under changing bot behavior 117

5.5.4 Real-Time Evaluation of Bottleneck 119

5.5.5 Detection Delay 120

5.5.6 Learning Bayesian Network from Data 122

5.6 Discussion of Blind Spots and Future work 123

5.7 Chapter Summary 125

CHAPTER 6: RETHINKING THE ADS DESIGN PHILOSOPHY 126

6.1 Motivation 127

6.2 Challenges 127

6.3 Statistical Anomaly Detection 128

6.4 Stochastically Estimating the Evasion Margin 129

6.4.1 Breaking the Maximum Entropy ADS 130

6.4.2 Sequential Hypothesis Testing based TRW ADSs 136

6.4.3 Dataset Formation 141

6.4.4 Preliminary Experimental Results for the Proposed Attack 142

6.4.5 Discussion 143

vi

6.5 Cryptographically-Inspired Anomaly Detection System Design 144

6.5.1 Modeling ADS detection as a Information Channel Coding

problem 146

6.5.2 Modeling ADS detection as an Information Source Coding

problem 149

6.5.3 Anomaly Detection 152

6.6 Moving Target-based Randomized Feature Space 154

6.6.1 Vertical Correlation - Multiple Feature Perturbations Ob-

served for a Single Attack Class 157

6.6.2 Horizontal Correlation - Effect of Features on Detecting Dif-

ferent Types of Attacks 162

6.6.3 ADS Features Space 165

6.6.4 Traffic-aware Mutation 167

6.7 Chapter Summary 169

CHAPTER 7: CONCLUSION 170

REFERENCES 173

vii

LIST OF FIGURES

FIGURE 1: IDS Classification. 11

FIGURE 2: Taxonomy of the anomaly detection systems listing the detectors

used in this work [2]. 13

FIGURE 3: ROC analysis on the endpoint dataset; each ROC is averaged

over 13 endpoints with 12 attacks per endpoint and 100 instances per attack. 32

FIGURE 4: Comparison of the Maximum Entropy, TRW and TRW-CB

algorithms. 32

FIGURE 5: Detection and false alarm rates for the subspace method [3]. 33

FIGURE 6: ROC curves for the lowest and highest rate attack in the endpoint

dataset; results averaged over 12 endpoints with 100 instances of each attack. 35

FIGURE 7: ROC analysis on the LBNL dataset. 35

FIGURE 8: Accuracy evaluation of BotHunter and BotFlex on the Nayatel

ISP dataset. 37

FIGURE 9: Example of averaging out: Probability distributions of source

ports on aggregate, TCP only, and UDP only traffic; traffic comprises a home

user’s 20 second traffic window infected by Witty worm’s UDP-based portscans

with a fixed source port of 4000. 48

viii

FIGURE 10: (a) Probability distribution of destination ports in the baseline

distribution; (b) Runtime probability distribution for a 20 seconds time window;

traffic comprises a home computer infected by Blaster which is generating

outgoing portscans on port 135; (c) Re-normalized conditional distribution of

the feature subspace constituting the attack port. 49

FIGURE 11: Example of noise: Probability distributions of benign and mali-

cious (aggregate and sliced) system call traces; malicious system calls comprise

sendmail traces. 51

FIGURE 12: Example of noise– Malware portscans evaluated by reverse hy-

pothesis testing; F and S on x-axis represent failed and successful connection

requests, respectively. 52

FIGURE 13: Accuracy of the Maximum Entropy detector with varying number

of subspaces; results are generated for the Endpoint dataset and are averaged

over all endpoints and attacks. 54

FIGURE 14: Accuracy of the PCA-based subspace method with varying num-

ber of principal components; results are generated for the Endpoint dataset and

are averaged over all endpoints and attacks. 55

FIGURE 15: System-level diagram of an ADS employing the proposed feature

space slicing principle. 59

FIGURE 16: Expectation-Maximization clustering applied to probability, in-

formation gain, and information content based feature quantifications in the

LBNL dataset; each cluster represents one feature subspace. 63

ix

FIGURE 17: Feature space clustering based on information content (IC) of

the feature values in the LBNL portscan dataset; each cluster represents one

feature class. 65

FIGURE 18: Detection rates of the ADSs with increasing number of classes. 66

FIGURE 19: False alarm rates of the ADSs with increasing number of classes. 67

FIGURE 20: Probability distribution of the aggregate feature space. 69

FIGURE 21: Conditional Entropy based probabilistic analysis of a feature;

maximum number of subspaces, within the user-defined computational resource

budget should be chosen. 70

FIGURE 22: Accuracies of existing combining methods on the LBNL and

Endpoint datasets. 85

FIGURE 23: Variance in the detection and false alarm rates of the classifiers

on Blaster and RBOT.CCC worms. 87

FIGURE 24: SDnEA and ENCORE accuracy comparison on the LBNL and

Endpoint datasets. 90

FIGURE 25: A time-invariant signature of a bot comprising its lifecycle events. 97

FIGURE 26: A Bayesian Network. 102

FIGURE 27: Bottleneck’s architecture, also showing the Bayesian network

(based on bot lifecycle) used to infer bot infections. 111

FIGURE 28: Accuracy evaluation of BotHunter, BotFlex and Bottleneck on

Nayatel ISP dataset. Bottleneck is trained and tested on the trace using 10 fold

cross validation. 113

x

FIGURE 29: Bottleneck, BotHunter and BotFlex evaluated on the Sysnet

trace. Bottleneck is first trained on the ISP dataset and then tested on the

Sysnet trace. 117

FIGURE 30: TPR and FPR for 5-minute windows compared to no windowing 120

FIGURE 31: Bot detection delay incurred by Bottleneck. 121

FIGURE 32: Learnt Bayesian Network. 122

FIGURE 33: Conditional entropy calculation for threshold estimation. 134

FIGURE 34: TRW and TRW-CB SHT. 138

FIGURE 35: Attack scenario for evading TRW detection. 140

FIGURE 36: ROC analysis of TRW-based ADS classifiers under configuration

estimation attack. 142

FIGURE 37: Partitioning the ADS detection process. 145

FIGURE 38: Discrete memoryless Symmetric channel. 146

FIGURE 39: Dependence of information measures on crossover probability. 148

FIGURE 40: Partitioning the ADS Transformation process. 152

FIGURE 41: Transformation of the baseline distribution. 154

FIGURE 42: Kullback Leibler divergence based attack detection on destina-

tion port & protocol features. 157

FIGURE 43: KL divergence exceeding the threshold in multiple time windows. 159

FIGURE 44: Kullback Leibler divergence based attack detection on destina-

tion port feature. 160

xi

FIGURE 45: Kullback Leibler divergence based attack detection on ’Packet

Length’ feature. 161

FIGURE 46: Different types of attacks detected by different feature classes. 163

FIGURE 47: Accuracy of the Maximum Entropy detector with varying number

of subspaces; results are generated for the Endpoint dataset and are averaged

over all endpoints and attacks. 166

xii

LIST OF TABLES

TABLE 1: Description of bot families in Nayatel dataset and number of

machines in the trace infected by each. 23

TABLE 2: Description of bot binaries in SysNet Lab dataset. 25

TABLE 3: Background Traffic Information for the LBNL Dataset 26

TABLE 4: Background Traffic Information for Four Endpoints with High and

Low Rates 28

TABLE 5: Endpoint Attack Traffic for Two High- and Two Low-rate Worms 30

TABLE 6: UNM Intrusion Instances 30

TABLE 7: Detection Delay of the Anomaly Detectors 37

TABLE 8: Accuracy Comparison of Elbow Method, QT testing and Con-

ditional Entropy Feature Space Slicing of Network-based ADSs on the LBNL

Dataset 72

TABLE 9: Accuracy Comparison of Elbow Method, QT testing and Con-

ditional Entropy Feature Space Slicing of Network-based ADSs on Endpoint

Dataset 72

TABLE 10: Accuracy Comparison of Conditional Entropy Feature Space Slic-

ing of Host-based ADSs 73

TABLE 11: Computational Resources Utilization of the Intrusion Detection

Algorithms and the Proposed Feature Slicer 74

TABLE 12: Investigating false positive and false negatives of Bottleneck,

Botflex and BotHunter on the Nayatel dataset 114
xiii

TABLE 13: Accuracy Evaluation of the Bayesian network Learnt from Data 122

xiv

CHAPTER 1: INTRODUCTION

Malware, botnets, spam, phishing and denial of service attacks have become con-

tinuous and imminent threats for today’s networks and hosts [4], [5], and are growing

in their number and sophistication. Financial losses due to these malware attacks

are in the orders of billions of dollars. For example, the economic losses to recover

from the CodeRed worm alone were estimated at $2.6 Billion [6], [7], while that for

Conficker are estimated to be as high as $9.1 Billion [8] with 15 million infected ma-

chines worldwide [9]. Moreover, self-propagation and/or intelligent social engineering

methods (e.g., social networks, blogs, websites, etc.) allow malware to spread at as-

tonishing rates [9], [10], [11], [12], [13], [14]; the slammer worm covered the Internet in

minutes [11] infecting 1 million hosts in less than 1 second [15]. Moreover, according

to recent study [16], there was a soaring 392% increase in the number of malware infec-

tions experienced by commercial organizations in 2012 as compared to 2011. Hence,

as the detection methodologies have refined over the years, so have the attackers

with stealthy malware propagation [13]. Thus, in addition to the exponentially in-

creasing volume and impact of these new malicious code threats, the stealthiness,

sophistication and impact of malware attacks are increasing at an alarming pace.

While the original models for intrusion detection system were proposed more than

two decades ago [17], intrusion detection still remains an active area of research as

the attacks continue to adapt, and evade intrusion detection solutions [18]. Intrusion

detection systems comprise two types of detection methods: signature-based detec-

tion and anomaly detection. Signature-based detection or misuse detection detects

anomalies/malware based on predefined signatures that need to be constantly up-

dated [19], [20]. These detectors, while are valuable in detecting known malware, have

an inherent limitation of not being able to detect zero-day attacks (i.e. attacks for

which no signatures have yet been established [21].). It might take days before a zero-

day attack is identified and a signature is developed and distributed [22]. According

to a recent research [23], network breaches go undetected for around 140 days before

they are detected and consequently defenses are put in place. Anomaly detectors, on

the other hand, learn the normal behavior of the network. Any significant variations

from this learnt normal behavior is termed anomalous. Hence, these systems are

able to detect zero-day attacks by flagging deviations from normality. These anomaly

detection systems, however, suffer from low accuracies [24], [25], [26] (low detection

rates and high false alarms) and susceptibility to evasion attacks [27], [28] (dissemi-

nating malicious traffic in the network while staying below the threshold and hence

go undetected). Thus there is always a tradeoff between zero-day attack detection

(i.e. anomaly detection) and incurring low false positive rates (i.e. signature-based

detection). An ideal anomaly detection system would have both these characteristics.

In this thesis we treat an ADS as a black box and hence do not propose or make any

changes to its detection methodology. Rather in this research we propose pre- and

post-processing methods that operate on the input/output parameters of an ADS with

the aim to improve the performance of current general- and specific-purpose anomaly
2

detection systems. Towards the end of this thesis, we briefly touch upon the design

philosophy of existing general-purpose anomaly detection systems to demonstrate

that these systems are inherently susceptible to evasion attacks.

1.1 Thesis Statement

The thesis of this dissertation is that The accuracy of current anomaly detec-

tion systems (ADSs) can be significantly improved by designing intelligent

pre/post ADS processors using information theoretic and machine learn-

ing tools, such that the ADSs continue to operate as a black box.

1.2 Motivation

The last decade has witnessed an unprecedented increase in the volume of new

or zero-day network attacks [4], [29]. As the economic size of the network security

black market – currently estimated at hundreds of billions of dollars per annum [30]–

[31] – continues to grow, attacks are becoming alarmingly stealthy and sophisticated.

Numerous general- and specific-purpose anomaly detection systems (ADSs) [32]– [33]

have been proposed in the last few years to combat these rapidly evolving attacks.

However, existing anomaly detection systems still fall short of achieving acceptable

performance for commercial deployments. Hence, signature-based detection systems

remain the de facto tools for detecting malware.

This motivated us to analyze and identify the accuracy limiting factors in existing

general- and specific-purpose anomaly detection systems and subsequently propose
3

pre- and post-processing methods for accuracy improvements in current ADSs.

1.3 Overview of Contributions

Our aim in this thesis is to:

Objective 1 - Propose pre- and post-processing techniques to improve accuracies of

existing general-purpose ADSs;

Objective 2 - Propose a novel specific-purpose ADS post-processor for bot detection;

and finally

Objective 3 - Identify new guidelines to redesign general-purpose ADSs.

To achieve Objective-1, we propose techniques to improve the performance of cur-

rent general-purpose anomaly detection systems. It is pertinent to state that in this

work performance refers to the accuracy of an ADS. Hence the terms performance

and accuracy are used synonymously throughout the thesis.

We first present thorough evaluations of representative ADSs to identify their

strengths and weaknesses. We then propose two information theoretic techniques

to improve the accuracy of current general-purpose ADSs: (i) a feature space slicing

framework; and (ii) a multi-classifier ADS. These techniques can be used by any exist-

ing general-purpose ADS as a pre- or post- processing module respectively to achieve

higher accuracies. It is pertinent to reiterate that our proposed methods do not alter

the main functioning and methodology used by the ADS for anomaly detection. Our

proposed methods work on the input and output parameters of an ADS, while the

detector continues to operate as a black box.

4

The feature space slicing framework is used as a pre-processor to a general-purpose

ADS. It slices the incoming traffic based on a similarity measure to mitigate the

accuracy limiting factors of averaging-out (overwhelming volumes of benign features)

and noise (attack features similar to benign features). Extensive evaluations on real-

world traffic datasets shows that feature space slicing provides an improvement of up

to 75% in detection rates and a decrease of up to 99% in false alarms.

The multi-classifier ADS employs a standard deviation normalized entropy-of-

accuracy model to combine the outputs of diverse general-purpose anomaly detectors.

It is employed as a post-processing module to current ADSs. We argue that it is inpor-

tant to consider not only the accuracies of individual ADSs but also the variations in

their accuracies during combining. Comparison with other combining schemes shows

that multi-classifier ADS provides approximately 12% increase in detection rates and

a 3-40% decrease in false alarms.

To achieve Objective-2 we propose a novel ADS post-processor to detect the botnet

malware. Botnets evolved as an imminent threat during the course of this research.

With the immense resources acquired by these botnets over the last few years (in the

form of millions of infected machines worldwide), there has been an unprecedented

increase in targeted attacks launched from these botnets [34]. However, considering

the havoc that these botnets have caused over the years, there have been very few

deployable solutions for the detection of this evolving threat.

General-purpose anomaly detection systems are not well-suited to detect this evolv-

ing malware, as these systems are inherently designed to accumulate evidence which

is then used to detect deviations with reference to a specific feature space. Botnets,
5

however, exhibit behavior that transits from one state space (e.g. inbound scan,

exploit etc.) to another (bot binary download, attack etc.) and the use of a single

feature space cannot ensure bot detection. Though an anomaly detection system may

be able to detect a bot in some specific state(s) (i.e. detection of deviation across a

specific feature space), more information is required to confirm bot infection/activity.

To overcome this shortcoming in pure behavior based detection, current bot detec-

tors employ the bot life cycle for bot detection. The anomaly detector now learns

the malicious behavior rather than the normal behavior of the network. Since the

detector still operates on the behavior of the malware, which is non-variant across

all classes of the malware, hence, we classify these detectors under the umbrella of

anomaly detection. Employing the bot behavior for detection reduces the false alarms

of the ADS as well. However, current bot detection tools still fall short of providing

acceptable accuracies with changing bot behavior.

We identify the key shortcomings in existing bot detectors and mitigate these short-

comings in a Bayesian network-based post-processor for bot detection. We propose

Bottleneck, a system that models the lifecycle behavior of the bot as a Bayesian

network, which is then used as a signature for bot detection. This has the following

significant advantages: (i) bot lifecycle is a high level signature and hence can be used

to detect current and evolving botnets; (ii) would yield better accuracy as compared

to pure behavior-based detection; and (iii) Bayesian networks are self learning and

hence would be able to adapt with changing bot behavior.

We collect diverse real-world traffic datasets to perform comparative analysis of

existing bot detectors with Bottleneck. Bottleneck provides comparable performance
6

to existing rule-based detectors when trained and tested on similar datasets. However,

when evaluated on changing bot behavior, Bottleneck provides significantly better

performance as compared to existing detectors. For example, the detection rate

improved from 30% (provided by a leading bot detector, BotHunter [35]) to 90%

(provided by Bottleneck) with only 1 additional false positive, when evaluated on the

same set of events.

Finally, we observed that the security of existing general-purpose ADSs rely on the

secrecy of their design and/or the features employed for detection. If the features

and/or the design principle is known, these systems can be easily by-passed by an

intelligent attacker employing stealthy malware. In cryptographic systems, security

relies in the secret key and not the algorithm itself. This results in systems that are

robust against evasion attacks due to the randomness introduced by the secret key

having a large sample space. We argue that if we can incorporate similar randomness

in anomaly detection design, the resultant solution would be robust against parame-

ter estimation attacks. Hence to achieve Objective-3, we stochastically model current

general-purpose ADSs and highlight that the design of these systems are susceptible

to evasion attacks. We propose to redesign general-purpose ADSs and provide some

novel ADS design philosophies. We first stochastically model a few representative

ADSs and experimentally show that an attacker can estimate the network traffic fea-

tures and detection thresholds. The attacker can hence induce stealthy malware traffic

while staying below the detection threshold and hence passing undetected through

an ADS. We propose a cryptographically-inspired ADS design that randomizes the

benign distribution to ensure that the attacker cannot correctly estimate the baseline
7

distribution and hence cannot develop reliable estimates of the network parameters

required for successful evasion. We also propose a moving target-based ADS design

that randomizes the feature space of an ADS across time. We provide some prelimi-

nary evaluations showing that it becomes computationally infeasible for the attacker

to launch evasion attacks when the ADS parameters are randomized.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2. provides a brief background and taxonomy of anomaly detection sys-

tems. It also provides detailed description of current general-purpose ADSs and

datasets used in this thesis. It also presents some preliminary Receiver Operating

Curve(ROC)-based evaluations for understanding existing general-purpose ADSs and

highlighting their strengths and weaknesses.

Chapter 3. presents a feature space slicing framework that is proposed as a pre-

processing method to improve the accuracy of current general-purpose ADSs. The

proposed method is evaluated on diverse general-purpose ADSs and datasets.

Chapter 4. provides another information theoretic technique, the multi-classifier

ADS design, to improve the accuracy of existing general-purpose ADSs. It also pro-

vides comparative evaluation of the multi-classifier ADS with existing combining tech-

niques. Thorough evaluations on multiple diverse datasets are also presented.

Chapter 5. presents our proposed Bayesian network-based bot detection frame-

work. It provides a detailed comparison with existing bot detection tools and shows

8

that our proposed post-processing bot detection method induces considerable perfor-

mance improvements with changing bot behavior.

Chapter 6. stochastically models general-purpose anomaly detection systems and

list the future directions of our work.

Chapter 7. summarizes the key conclusions of this thesis.

9

CHAPTER 2: BACKGROUND, ANOMALY DETECTION SYSTEMS,

DATASETS & PRELIMINARY EVALUATIONS

In this chapter we give an overview of (a) intrusion detection methods; (b) general-

purpose and specific-purpose anomaly detection systems and datasets used through-

out this thesis; and (c) some preliminary ROC evaluations.

2.1 IDS Detection Methods

In broad terms, the field of intrusion detection comprises two types of detection

methods: misuse detection (also known as signature detection) and anomaly detec-

tion. Misuse detection, the predominant detection method employed in today’s anti-

virus software, requires a signature of an attack to be known before the attack can be

detected. While such signature-based detectors can provide 100% detection rates for

known attacks, they have an inherent limitation of not being able to detect new or

previously-unseen attacks; a 468% increase in previously-unseen attacks was reported

over just a six month period in 2007 [4]. Moreover, development and dissemination

of attack signatures require human intervention and therefore misuse detectors are

finding it difficult to cope with rapidly-evolving network intrusions. On the other

end of the intrusion detection spectrum are Network-based Anomaly Detection Sys-

Network−based

Intrusion Detection

Anomaly Detection Signature Detection

Host−based

Perimeter−basedEndpoint−based

Figure 1: IDS Classification.

tems1 (ADSs) which model the benign or normal traffic behavior of a network or host

and detect significant deviations from this model to identify anomalies in network

traffic. Since these ADSs rely on normal traffic behavior for attack detection, they

have the capability to detect previously-unknown attacks. Consequently, significant

research effort has been focused on development of network-based ADSs in the past

few years [36]2.

Anomaly detection systems can further be categorized into either host based sys-

tems or network based systems [39]:

• Network-based ADS: Network based systems detect anomalies by analyzing un-

usual network traffic patterns

• Host-based ADS: Host-based systems detect anomalies by monitoring an end-

points operating system (OS) behavior, for instance by tracking OS audit logs,

processes, command-lines or keystrokes

1This thesis explicitly deals with only network-based ADSs. Hence, ADS refers to network-based
ADS throughout this thesis.

2Interestingly, the promise and advantages of anomaly detectors over signature detectors were
identified by the seminal DARPA-funded IDS evaluation studies much before the CodeRed worm
[37], [38].

11

This Intrusion detection classification is shown in Figure 1. These network-based

IDSs can be either endpoint or perimeter based depending on the traffic analyzed for

anomaly identification. In this research work we mainly focus on network-based

anomaly detection systems, however we do briefly touch upon a few interesting

host based systems as well in Chapter 3. Hence, throughout this thesis, we refer to

the network-based anomaly detection systems as merely anomaly detection systems.

2.1.1 Taxonomy of Anomaly Detection Systems

Figure 2 presents the taxonomy based on [2], which subdivides the evaluated

anomaly detection algorithms into different categories based on detection principles

employed by the ADS. The taxonomy also clearly lists (and highlights in blue) all

anomaly detection systems that we have implemented and used throughout this thesis.

Clearly, the ADSs used in this study are quite diverse in their detection frameworks

and span across all branches of the ADS taxonomy proposed in [2]. These ADSs

range from very simple rule modeling systems like PHAD [40] to very complex and

theoretically-inclined self-learning systems like the PCA-based subspace method [3]

and the sequential hypothesis testing technique [41]. Other than general-purpose

ADSs, the taxonomy also includes specific-purpose anomaly detectors namely BotH-

unter [35] and BotFlex [42]. These are the only publically-available bot detection

techniques.

We have also highlighted (in red), our proposed anomaly detection system Bottle-

neck that we propose for bot detection. It can be observed that it is a self-learning

system that learns the normal behavior of a bot for anomaly detection.
12

Support Vector
Machines

[SVM]

Bayesian Networks

[Bottleneck]

Anomaly Detection

Programmed

Machine
Learning−based

Descriptive Statistics

[Kalman Filter,
Maximum Entropy,

NIDES, PCA−based
Subspace Method, KL]

Time Series Non−Time Series

Self Learning

[Packet Header
Anomaly Detection

(PHAD), Network−Traffic
Anomaly Detection

(NETAD)]

Rule Modeling

[Threshold Random
Walk (TRW),

Credit−based TRW]

Simple Statistics Threshold

[Rate Limiting]

Descriptive Statistics

Simple Rule−based

[BotHunter. BotFlex]

Artificial Neural
Networks

Figure 2: Taxonomy of the anomaly detection systems listing the detectors used in
this work [2].

The following sections describe in detail the ADSs that we have used as well as the

datasets used for evaluations throughout this thesis.

2.2 Anomaly Detection Systems

We provide brief descriptions of the evaluated algorithms. Primarily we will focus

on the algorithm adaptation and parameter tuning for the datasets under considera-

tion. For more details, readers are referred to the original papers: [32], [41], [43], [40],

[44], [3], [45], [46], [47], [48], [33], [49], [42] and [35].

Parameters not mentioned in this section are the same as those described in the

algorithms’ respective papers. Implementations of the anomaly detection systems are

available at [50].

13

2.2.1 Rate Limiting

Rate limiting [32], [51] detects anomalous connection behavior by relying on the

premise that an infected host will try to connect to many different machines in a short

period of time. Rate limiting detects portscans by putting new connections exceeding

a certain threshold in a queue. An alarm is raised when the queue length, ηq, exceeds

a threshold. ROCs for endpoints are generated by varying ηq = µ + kσ, where µ

and σ represent the sample mean and sample standard deviation of the connection

rates in the training set, and k = 0, 1, 2, . . . is a positive integer. Large values of k

will provide low false alarm and detection rates, while small values will render high

false alarm and detection rates. In the LBNL dataset, connection rate variance in

the background traffic is more than the variance in the attack traffic. Therefore, to

obtain a range of detection and false alarm rates for the LBNL dataset, we use a

threshold of ηq = wµ, with a varying parameter 0 ≥ w ≤ 1, and the queue is varied

between 5 and 100 sessions.

2.2.2 Threshold Random Walk (TRW) Algorithm

The TRW algorithm [41] detects incoming portscans by noting that the probability

of a connection attempt being a success should be much higher for a benign host than

for a scanner. To leverage this observation, TRW uses sequential hypothesis testing

(i.e., a likelihood ratio test) to classify whether or not a remote host is a scanner. We

plot ROCs for this algorithm by setting different values of false alarm and detection

rates and computing the likelihood ratio thresholds, η0 and η1, using the method

14

described in [41].

2.2.3 TRW with Credit-based Rate Limiting (TRW-CB)

A hybrid solution to leverage the complementary strengths of Rate Limiting and

TRW was proposed by Schechter et al. [43]. Reverse TRW is an anomaly detector

that limits the rate at which new connections are initiated by applying the sequential

hypothesis testing in a reverse chronological order. A credit increase/decrease algo-

rithm is used to slow down hosts that are experiencing unsuccessful connections. We

plot ROCs for this technique for varying η0 and η1 as in the TRW case.

2.2.4 Maximum Entropy Method

This detector estimates the benign traffic distribution using maximum entropy es-

timation [47]. Training traffic is divided into 2, 348 packet classes and maximum

entropy estimation is then used to develop a baseline benign distribution for each

packet class. Packet class distributions observed in real-time windows are then com-

pared with the baseline distribution using the Kullback-Leibler (KL) divergence mea-

sure. An alarm is raised if a packet class’ KL divergence exceeds a threshold, ηk, more

than h times in the last W windows of t seconds each. Thus the Maximum Entropy

method incurs a detection delay of at least h × t seconds. ROCs are generated by

varying ηk.

15

2.2.5 Packet Header Anomaly Detection (PHAD)

PHAD learns the normal range of values for all 33 fields in the Ethernet, IP, TCP,

UDP and ICMP headers [40]. A score is assigned to each packet header field in

the testing phase and the fields’ scores are summed to obtain a packet’s aggregate

anomaly score. We evaluate PHAD-C32 [40] using the following packet header fields:

source IP, destination IP, source port, destination port, protocol type and TCP flags.

Normal intervals for the six fields are learned from 5 days of training data. In the test

data, fields’ values not falling in the learned intervals are flagged as suspect. Then

the top n packet score values are termed as anomalous. The value of n is varied over

a range to obtain ROC curves.

2.2.6 Network Traffic Anomaly Detection (NETAD)

NETAD detects anomalies in network packets [44]. It filters out all outgoing traffic

and considers only the first few packets of the incoming server requests. For each

packet, NETAD models the first 48 bytes starting with the IP header. Each byte

is considered as a nominal attribute with 256 possible values. For packets with less

than 48 bytes, the missing attributes are set to 0.

The packets are modeled into 9 different subsets based on 9 IP and TCP packet

types such that a packet can belong to more then one subset. For each packet,

NETAD computes the following score:
∑

tna
(1− r

256
)

r
+ ti

fi+
r

256
where t is the time when

the attribute was last anomalous, na is the number of training packets from the last

anomaly to the end of the training period, r is the number of allowed values (i.e.

16

256), ti is the time since the value i was last observed and fi is the frequency of value

i. And summation is performed over 9× 4 = 432 combinations.

2.2.7 PCA-based Subspace Method

The subspace method uses Principal Component Analysis (PCA) to separate a

link’s traffic measurement space into useful subspaces for analysis, with each subspace

representing either benign or anomalous traffic behavior [3]. The authors proposed

to apply PCA for domain reduction of the Origin-Destination (OD) flows in three

dimensions: number of bytes, packets, IP-level OD flows. The top k eigenvectors

represent normal subspaces. It has been shown that most of the variance in a link’s

traffic is generally captured by 5 principal components [3]. A recent study showed that

the detection rate of PCA varies with the level and method of aggregation [52]. It was

also concluded in [52] that it may be impractical to run a PCA-based anomaly detector

over data aggregated at the level of OD flows. We evaluate the subspace method

using the number of TCP flows aggregated in 10 minutes intervals. To generate ROC

results, we changed the number of normal subspace as k = 1, 2, . . . , 15. Since the

principal components capture maximum variance of the data, as we increase k, the

dimension of the residual subspace reduces and fewer observations are available for

detection. In other words, as more and more principal components are selected as

normal subspaces, the detection and false alarm rates decrease proportionally. Since

there is no clear detection threshold, we could not obtain the whole range of ROC

values for the subspace method. Nevertheless, we evaluate and report the subspace

method’s accuracy results for varying number of principal components.
17

2.2.8 Kalman Filter based Detection

The Kalman filter based detector of [46] first filters out the normal traffic from the

aggregate traffic, and then examines the residue for anomalies. In [46], the Kalman

Filter operated on SNMP data to detect anomalies traversing multiple links. Since

SNMP data was not available to us in either dataset, we model the traffic as a 2-D

vector Xt. The first element of Xt is the total number of sessions (in the endpoint

dataset) or packets (in the LBNL dataset), while the second element is the total

number of distinct remote ports observed in the traffic. We defined a threshold, ηf

on the residue value r to obtain ROC curves. Thresholding of r is identical to the

rate limiting case. An alarm is raised, if r < −ηf or r > ηf .

2.2.9 Next-Generation Intrusion Detection Expert System

NIDES [48] is a statistical anomaly detector that detects anomalies by comparing

a long-term traffic rate profile against a short-term, real-time profile. An anomaly is

reported if the Q distribution of the real-time profile deviates considerably from the

long-term values. After specific intervals, new value of Q are generated by monitoring

the new rates and compared against a predefined threshold, ηs. If Pr(Q > q) < ηs,

an alarm is raised. We vary ηs over a range of values for ROC evaluation.

2.2.10 KL Detector

The KL detector [45] maps the feature space into different classes based on their

numbers to obtain a benign distribution pX . This distribution is then compared

with run-time distribution qX using the KL divergence. The KL divergence measure
18

quantifies the extent of dissimilarity between two probability distribution. If the KL

score exceeds a fixed threshold, it is classified as anomalous.

2.2.11 Support Vector Machine (SVM) on Bags of System Calls

Kang et al. propose a bag of system calls representation for detection of intrusive

system call sequences [33]. During a conversion, the ordering information between

system calls is lost and only the frequency of each input sequence is preserved. A

feature is defined as an ordered list of the frequency of all the system calls in a given

sequence. SVMs are then used for classification [53].

2.2.12 Host-based KL Detector

The KL detector [49] maps system calls into different classes based on their numbers

to obtain a benign distribution pX . This distribution is then compared with run-time

distributions qX using the KL divergence. The KL divergence measure quantifies the

extent of dissimilarity between two probability distribution. If the KL score is more

than a fixed threshold, it is classified as anomalous.

2.2.13 BotHunter

BotHunter [35] is a decision engine built over the Snort IDS. It modifies the Snort

ruleset to detect events possibly indicative of a bot infection, and implements a rule-

based correlation layer to evaluate whether a given host is infected. BotHunter is a

closed source tool which is built on the model of a typical bot lifecycle to detect bot

infections. It monitors the two-way communication between hosts in the monitored

19

network and the internet. All host activities are mapped against the bot lifecycle

model. When enough evidence is acquired such that any one of the BotHunter de-

fined conditions for bot declaration are met, the host is flagged as a bot. Following

are the three conditions defined by Bothunter for bot declaration:

Condition 1: Evidence of a local host infection, and evidence of outward malware

coordination or attack propagation.

Condition 2: At least two distinct signs of outward bot coordination, attack

propagation, or attacker preparation sequences are observed.

Condition 3: Evidence that a local host has attempted to establish communi-

cation with a confirmed malware control host or drop site.

BotHunter does not provide any provision for threshold tuning.

2.2.14 BotFlex

BotFlex [42] implements a rule-based decision engine over the Bro IDS. It is built

over the bot lifecycle model comprising scanning, host exploit, malicious binary down-

load, Command and Control (C&C) communication and attack phases. BotFlex

intercepts host input about various network activities from Bro and correlates the

received information to declare botnet infection. The activity of each host is mapped

against the defined conditions for bot declaration. The conditions are listed below:

Condition 1: Direct C&C/RBN blacklist match.

Condition 2: (Exploit OR Egg download) AND (C&C OR Attack)

Condition 3: (Egg download AND C&C) OR (C&C AND Attack) OR (Egg

Download AND Attack)
20

Unlike BotHunter, BotFlex is an open source tool for bot detection. However, it

also does not provide any provision for threshold tuning.

2.3 Datasets

We wanted to use real, labeled and public background and attack datasets. Real

and labeled data allow realistic and repeatable quantification of an anomaly detector’s

accuracy, which is a main objective of this work.

The following datasets have been used in this work: a) LBNL dataset has been

collected at the edge router of the Lawrence Berkeley National Laboratory (LBNL);

b) Endpoint-based WiSNet lab dataset has been collected at network endpoints by our

research lab; c) an ISP traffic dataset collected at the B-RAS of a leading Pakistani

ISP, Nayatel [54]; d)SysNet lab dataset comprises network traffic collected from a

well administered lab network; and e) Host-based system call dataset [55] collected at

The University of New Mexico (UNM). The LBNL, Endpoint and UNM datasets are

used for evaluations in Chapter 3 and 5 while the ISP and the SysNet lab datasets

are bot traffic datasets and used for evaluations in Chapter 4.

The following sections provide some description of these datasets.

2.3.1 The ISP Dataset

Pakistan represents an effective botnet traffic source, as increased Internet penetra-

tion and low computer security awareness have resulted in Pakistan becoming one of

the most infected countries worldwide [56]. The dataset constitutes 500 GB trace col-

21

lected at the B-RAS of a leading Pakistani ISP, Nayatel [54]. This data was collected

at a link with an average data rate of 19 MB per second (≈ 28K packets per second),

and with 80/tcp being the most common port, followed by 443/tcp. The trace con-

tained 48,606 unique IP addresses of which 381 IP addresses represented Nayatel’s

local network, that is they were statically assigned to mid-to-small size enterprises.

While we assume that an IP address represents a single machine, we acknowledge

that the ISP customers are likely using their public IPs to represent multiple private

(NATed) hosts.

We obtained the groundtruth for this dataset using a one-time sample of a reputa-

tion list maintained by Team Cymru [57], which maintains sensors distributed around

the globe to monitor active C&C servers. We synchronized our data collection for 7

hours on September 18, 2012, to this hourly updated list of active C&C servers. We

flag as bots all the hosts in the trace that perform bidirectional communication with

an IP in that C&C list.

The trace consists of traffic from 381 static IP addresses, of which 108 we declare

as bots according to the groundtruth, while we declare the remaining 273 as benign.

As already mentioned, many of these static IP users are hosting multiple machines

behind a NAT server. Hence each IP may in fact represent multiple hosts.

The groundtruth provided also tells us the bot family that each C&C server is

associated with; Table 1 presents a brief description of each of these families along

with the number of hosts infected by each family. It can be seen that the trace

contains at least 12 known malware families, comprising both IRC- and HTTP-based

botnets, serving a wide range of criminal purposes ranging from data stealing to large
22

Table 1: Description of bot families in Nayatel dataset and number of machines in
the trace infected by each.

Bot Family Infected
IPs

Possible infection vectors C&C Type Description

blackenergy 8 Distributed via drive by down-
load or spam (no self propaga-
tion)

HTTP-
based
centralized

DDoS, information stealing
and malware distribution capa-
bility

dirtjumper 3 Wide variety – exploit, drive
by download or distributed by
malware

HTTP-
based

DDoS toolkit with large num-
ber of variants (e.g. Pandora
and Di botnet spawned from
it)

graybird 2 Various Windows exploits
depending on version; e.g.
Hupigon uses IE vulnerability
when compromised website
accessed

IRC-based
or custom
protocol;
centralized

Spyware Trojan

gumblar 59 Various exploits, especially Ac-
robat or Flash from websites
hosting infected Javascript;

Centralized Information stealing and de-
livering other malware; uses
stolen FTP credentials to in-
fect websites

haxdoor 8 Bundled download through
other applications, or various
browser exploits triggered
from spam or blog links

IRC-based Keylogging Trojan to steal
banking information

hitpop 1 Often downloaded by Trojans
as payload bundled with other
malware

HTTP-
based

DDoS

mpack 15 Varies widely Varies
widely

Malicious toolkit from which a
variety of botnets are spawned
(e.g. Srizbi botnet; generally
hosted on infected websites

optima 4 Drive by download among
other possibilities

Centralized
and
HTTP-
based

DDoS

pincher 21 Trojan possibly distributed as
bundled download

Runs C&C
server on
TCP port
81

Information stealing; also pos-
sibly used as malware dropper
(installs other malicious files)

torpig 1 Drive by download; exploits
Adobe/Java vulnerabilities
and installs Mebroot rootkit

Centralized
HTTP-
based

Man in the browser phishing
attacks for financial data steal-
ing

tsunami 4 Not associated with any partic-
ular infection vector

IRC based Trojan with DDoS capability

zonebac 27 No particular vector; drive by
download possible

Nothing
known

Backdoor Trojan; lowers
browser security settings;
uploads sensitive information
about host; could install
additional malware

scale DDoS attacks. This dataset therefore represents a comprehensive sample of

botnet traffic, covering a variety of infection and attack vectors, merged with benign

traffic.

23

2.3.2 SysNet Lab Dataset

We acknowledge that evaluation on the Nayatel dataset is inherently reliant on the

accuracy of the groundtruth. This is an unavoidable limitation on any data that is

collected in an uncontrolled environment. To ensure that this limitation does not

bias our performance evaluation, we also collected a controlled dataset where we had

complete confidence in the groundtruth.

Moreover, the Nayatel trace while large in terms of traffic volume and number of

hosts, is temporally rather limited, covering only 8 hrs of traffic. Bot behavior often

shows temporal variations which might affect detection accuracy as bots spread out

their activity over time to remain inconspicuous. To overcome this limitation, we

collected another dataset at SysNet lab with captured traffic spanning over a period

of 24 hours. We captured benign user traffic from a small, well-administered lab

network over the 24 hour period. This trace was collected at the network edge over

the course of a regular working day with 22 users present in the lab and comprised

complete incoming and outgoing packets as well as local network traffic.

To generate malicious traffic, we use the following 10 bot binaries shared by ICIR

at UC Berkeley [58]: four variants of Pushdo, two variants of Sality, Kolabc, Virut,

Dorkbot, and Bobax. The trace, hence, includes HTTP-based, IRC-based and P2P

based bots, covering a range of malicious purposes such as spam, DDoS and informa-

tion stealing. Therefore the dataset makes for a representative sample of bot traffic.

A description of each of these bots is given in Table 2. We ran each of the binaries in

a separate virtual environment (Windows XP VM) and allowed the infected virtual

24

Table 2: Description of bot binaries in SysNet Lab dataset.

Bot Infection vector C&C type Purpose

Dorkbot Spreads via links on social net-
works/IM, or self-propagates
through copying itself to re-
movable drives or sending
Skype messages to contacts

IRC-based
C&C

Password stealing; limited
DDoS ability

Kolabc Propagates via vulnerability
exploit on Windows

Centralized
IRC-based

unknown

Virut Spreads by copying itself to ex-
ecutable files

Centralized;
IRC-based;
might use
DGA for
locating C&C

Used for a wide variety of crim-
inal activities:DDoS, spam, in-
formation theft etc.

Pushdo Spam email links lead to drive
by download

Centralized
employing fast
flux

Spam, phishing attacks and in-
formation stealing

Sality Replicates itself across network
shares by infecting executable
files

P2P-based Used for spam, proxying and
distributing intensive tasks like
password cracking

Bobax Spreads via sending spam links
to itself to victim’s contacts
and outbound scanning for vul-
nerable ports

Centralized;
HTTP-based

Spam

machines to communicate with their C&C servers. The traffic from the VMs was

captured by running Wireshark in the host machine. The benign and the malicious

traces were then merged and synchronized to generate a single 24hr dataset containing

22 benign and 10 malicious hosts.

2.3.3 The LBNL Dataset

This dataset was obtained from two international network locations at the Lawrence

Berkeley National Laboratory (LBNL) in USA. Traffic in this dataset comprises

packet-level incoming, outgoing and internally-routed traffic streams at the LBNL

edge routers. Traffic was anonymized using the tcpmkpub tool; refer to [59] for de-

tails of anonymization.

25

Table 3: Background Traffic Information for the LBNL Dataset

Date Duration(mins) LBNL Hosts Remote Hosts Backgnd Rate(pkt/sec) Attack Rate(pkt/sec)
10/4/04 10min 4,767 4,342 8.47 0.41
12/15/04 60min 5,761 10,478 3.5 0.061
12/16/04 60min 5,210 7,138 243.83 72

2.3.3.1 LBNL Background Traffic:

LBNL data used in this study is collected during three distinct time periods. Some

pertinent statistics of the background traffic are given in Table 3. The average remote

session rate (i.e., sessions from distinct non-LBNL hosts) is approximately 4 sessions

per second. The total TCP and UDP background traffic rate in packets per second is

shown in column 5 of the table. A large variance can be observed in the background

traffic rate at different dates. This variance will have an impact on the performance of

volumetric anomaly detectors that rely on detecting bursts of normal and malicious

traffic.

The main applications observed in internal and external traffic are Web (HTTP),

Email and Name Services. Some other applications like Windows Services, Network

File Services and Backup were being used by internal hosts; details of each service,

information of each service’s packets and other relevant description are provided in

[60].

2.3.3.2 LBNL Attack Traffic:

Attack traffic was isolated by identifying scans in the aggregate traffic traces. Scans

were identified by flagging those hosts which unsuccessfully probed more than 20

hosts, out of which 16 hosts were probed in ascending or descending order [59]. Mali-

26

cious traffic mostly comprises failed incoming TCP SYN requests; i.e., TCP portscans

targeted towards LBNL hosts. However, there are also some outgoing TCP scans in

the dataset. Most of the UDP traffic observed in the data (incoming and outgoing)

comprises successful connections; i.e., host replies are received for the UDP flows.

Table 3 [column 6] shows the attack rate observed in the LBNL dataset. Clearly, the

attack rate is significantly lower than the background traffic rate. Thus these attacks

can be considered low rate relative to the background traffic rate. (We show later

that background and attack traffic at endpoints exhibit the opposite characteristics.)

Since most of the anomaly detectors used in this study operate on TCP, UDP

and/or IP packet features, to maintain fairness we filtered the background data to

retain only TCP and UDP traffic. Moreover, since most of the scanners were located

outside the LBNL network, to remove any bias we filter out internally-routed traffic.

After filtering the datasets, we merged all the background traffic data at different

days and ports. Synchronized malicious data chunks were then inserted in the merged

background traffic.

2.3.4 Endpoint Dataset

Since no publicly-available endpoint traffic set was available, we spent up to 14

months in collecting our own dataset on a diverse set of 13 endpoints. Complexity and

privacy were two main reservations of the participants of the endpoint data collection

study. To address these reservations, we developed a custom tool for endpoint data

collection. This tool was a multi-threaded MS Windows application developed using

the Winpcap API [61]. (Implementation of the tool is available at [50].) To reduce
27

Table 4: Background Traffic Information for Four Endpoints with High and Low
Rates

Endpoint ID Endpoint Type Duration(months) Total Sessions Mean Session Rate(/sec)
3 Home 3 373, 009 1.92
4 Home 2 444, 345 5.28
6 Univ 9 60, 979 0.19
10 Univ 13 152, 048 0.21

the packet logging complexity at the endpoints, we only logged some very elementary

session-level information of TCP and UDP packets. Here a session corresponds to a

bidirectional communication between two IP addresses; communication between the

same IP address on different ports is considered part of the same network session. To

ensure user privacy, the source IP address (which was fixed/static for a given host)

is not logged, and each session entry is indexed by a one-way hash of the destination

IP with the hostname. Most of the detectors evaluated in this work can operate with

this level of data granularity.

Statistics of the two highest rate and the two lowest rate endpoints are listed in

Table 43. As can be intuitively argued, the traffic rates observed at the endpoints are

much lower than those at the LBNL router. In the endpoint context, we observed

that home computers generate significantly higher traffic volumes than office and

university computers because: 1) they are generally shared between multiple users,

and 2) they run peer-to-peer and multimedia applications. The large traffic volumes

of home computers are also evident from their high mean number of sessions per

second. For this study, we use 6 weeks of endpoint traffic data for training and

testing. Results for longer time periods were qualitatively similar.

3The mean session rates in Table 4 are computed using time-windows containing one or more
new sessions. Therefore, dividing total sessions by the duration does not yield the session rate of
column 5.

28

To generate attack traffic, we infected VMs on the endpoints by the following

malware: Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY, SoBig.E@mm, MyDoom.A@mm,

Blaster, Rbot-AQJ, and RBOT.CCC; details of the malware can be found at [62]. These

malware have diverse scanning rates and attack ports/applications. Table 5 shows

statistics of the highest and lowest scan rate worms; Dloader-NY has the highest scan

rate of 46.84 scans per second (sps), while MyDoom-A has the lowest scan rate of 0.14

sps, respectively. For completeness, we also simulated three additional worms that

are somewhat different from the ones described above, namely Witty, CodeRedv2 and

a fictitious TCP worm with a fixed and unusual source port. Witty and CodeRedv2

were simulated using the scan rates, pseudocode and parameters given in research

and commercial literature [62], [63].

2.3.4.1 Endpoint Background Traffic:

The users of these endpoints included home users, research students, and techni-

cal/administrative staff. Some endpoints, in particular home computers, were shared

among multiple users. The endpoints used in this study were running different types

of applications, including peer-to-peer file sharing software, online multimedia appli-

cations, network games, SQL/SAS clients etc.

2.3.4.2 Endpoint Attack Traffic:

The attack traffic logged at the endpoints mostly comprises outgoing portscans.

Note that this is the opposite of the LBNL dataset, in which most of the attack

traffic is inbound. Moreover, the attack traffic rates (Table 5) in the endpoint case are

29

Table 5: Endpoint Attack Traffic for Two High- and Two Low-rate Worms

Malware Release Date Avg. Scan Rate(/sec) Port(s) Used
Dloader-NY Jul 2005 46.84 sps TCP 135,139
Forbot-FU Sept 2005 32.53 sps TCP 445
MyDoom-A Jan 2006 0.14 sps TCP 3127 − 3198
Rbot-AQJ Oct 2005 0.68 sps TCP 139,769

Table 6: UNM Intrusion Instances

sunsendmailcp (sscp) decode forwarding loops

3 2 5

generally much higher than the background traffic rates (Table 4). This characteristic

is also the opposite of what was observed in the LBNL dataset. This diversity in

attack direction and rates provides us a sound basis for performance comparison of

the anomaly detectors evaluated in this study [41], [43].

For each malware, attack traffic of 15 minutes duration was inserted in the back-

ground traffic of each endpoint at a random time instance. This operation was re-

peated to insert 100 non-overlapping attacks of each worm inside each endpoint’s

background traffic.

2.3.5 Host-based System Calls Datasets

The University of New Mexico (UNM) dataset [55] provides system call traces for

various processes. Forrest et al. [64] argue that monitoring the behavior of a process

might not cover the full spectrum of normal behavior as some processes behave in quite

a varied manner. Therefore, they artificially generated system call sequences. We used

the synthetic sendmail traces for our experiments. These traces were generated by

enumerating potential sources of variation for normal sendmail operations. Trace files

contained process IDs and their respective system calls. Table 6 shows the intrusions

30

and their instances used; see [55] for details.

2.4 Preliminary Evaluations

In this section, we provide some preliminary evaluations of general- and specific-

purpose anomaly detectors described in Section 2.2 on the Endpoint, Router and ISP

datasets.

2.4.1 Averaged ROCs for the Endpoint Dataset

Figure 3 provides the averaged ROC analysis of numerous anomaly detection

schemes used extensively in research literature. Clearly, the Maximum Entropy de-

tector provides the highest accuracy by achieving near 100% detection rate at a very

low false alarm rate of approximately 5 alarms/day. The Maximum Entropy detec-

tor is followed closely by the credit-based TRW approach. TRW-CB achieves nearly

90% detection rate at a reasonable false alarm rate of approximately 5 alarms/day.

The original TRW algorithm, however, provides very low detection rates for the end-

point dataset. Results of these three schemes are shown more clearly in Figure 4(a).

Based on these results, the Maximum Entropy algorithm provides the best accuracy

on endpoints, while TRW provides the best detection on LBNL dataset.

The Kalman Filter approach is also quite accurate as it provides up to 85% de-

tection rates at a reasonably low false alarm cost. Rate Limiting, although designed

to detect outgoing scanning attacks, provides very poor performance. This result

substantiates the results of [24] where very high false positive rates for high detec-

31

0 50 100 150 200
0

20

40

60

80

100

↑ TRW

↑ TRW−CB
← Kalman Filter

← Max−Entropy

← Rate Limiting

↑ PHAD

↑ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

Figure 3: ROC analysis on the endpoint dataset; each ROC is averaged over 13
endpoints with 12 attacks per endpoint and 100 instances per attack.

0 5 10 15 20 25
0

20

40

60

80

100

← TRW

← TRW−CB

← Max−Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Endpoint dataset

0 50 100 150
0

20

40

60

80

100

← TRW

↓ TRW−CB

↑ Max−Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) LBNL dataset

Figure 4: Comparison of the Maximum Entropy, TRW and TRW-CB algorithms.

tion rates were reported for classical rate limiting. Hence, we also deduce that rate

limiting is ineffective for portscan detection at endpoints.

PHAD does not perform well on the endpoint data set. The detection is accom-

panied with very high false alarm rates. NIDES achieve reasonable detection rates

at very low false alarm rates, but is unable to substantially improve its detection

rates afterwards. PHAD relies on previously seen values in the training dataset for

anomaly detection. Therefore, if a scanner attacks a commonly-used port/IP then

PHAD is unable to detect it. On similar grounds, if the malicious traffic is not bursty
32

0 5 10 15
19

19.5

20

20.5

21

21.5

22

principal components

de
te

ct
io

n
ra

te
 (

%
)

(a) Detection rate

0 5 10 15
12

14

16

18

20

22

24

principal components

fa
ls

e
al

ar
m

 r
at

e
(%

)

(b) False alarm rate

Figure 5: Detection and false alarm rates for the subspace method [3].

enough as compared to background traffic then NIDES will not detect it, irrespective

of how much the detection threshold is tuned.

Due to the thresholding difficulties for the subspace method explained in Section

2.2, in Figure 14 we report results for this technique for varying values of selected

principal components. The highest detection rate of 22% is observed at k = 2 prin-

cipal components. This already low detection rate decreases further at k = 5 and

drops to 0% at k = 15. False alarm rates show the opposite trend. Thus the subspace

method fails to give acceptable accuracy on the endpoint dataset.

The ROC results for the endpoint dataset are somewhat surprising because two of

the top three detectors are general-purpose anomaly detectors (Maximum Entropy

and Kalman Filter), but still outperform other detectors designed specifically for

portscan detection, such as the TRW and the Rate Limiting detectors. We, however,

note that this analysis is not entirely fair to the TRW algorithm because TRW was

designed to detect incoming portscans, whereas our endpoint attack traffic contains

mostly outgoing scan packets. The credit-based variant of TRW achieves high ac-

33

curacy because it leverages outgoing scans for portscan detection. Thus TRW-CB

combines the complementary strengths of rate limiting and TRW to provide a prac-

tical and accurate portscan detector for endpoints. This result agrees with earlier

results in [24].

2.4.1.1 ROCs for Low- and High-Rate Endpoint Attacks

To evaluate the scalability of the ADSs under high- and low-rate attack scenarios,

Figure 6 plots the ROCs for the highest rate (Dloader-NY) and lowest rate (MyDoom-A)

attacks in the endpoint dataset. It can be observed that for the high-rate attack [Fig-

ure 6(a)] Maximum Entropy, TRW, TRW-CB and Kalman Filter techniques provide

excellent accuracy by achieving 100% or near-100% detection rates with few false

alarms. NIDES’ performance also improves as it achieves approximately 90% detec-

tion rate at very low false alarm rates. This is because the high-rate attack packets

form bursts of malicious traffic that NIDES is tuned to detect. Rate Limiting and

PHAD do not perform well even under high attack rate scenarios.

Figure 6(b) shows that the accuracies of all detectors except PHAD and Maximum

Entropy degrade under a low-rate attack scenario. Maximum Entropy achieves 100%

detection rate with false alarm rate of 4-5 alarms/day. TRW-CB recovers quickly and

achieves a near-100% detection rate for a daily false alarm rate around 10 alarms/day.

NIDES, however, shows the biggest degradation in accuracy as its detection rate

drops by approximately 90%. This is because low-rate attack traffic when mixed

with normal traffic does not result in long attack bursts. TRW’s accuracy is also

affected significantly as its detection rate drops by about 35% as compared to the
34

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

← TRW

← TRW−CB

← Kalman Filter

← Max−Entropy

← Rate Limiting

← PHAD

↑ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Dloader-NY, high scan rate

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

↑ TRW

← TRW−CB ↓ Kalman Filter
← Max−Entropy

← Rate Limiting

↑ PHAD

↓ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) MyDoom-A, low scan rate

Figure 6: ROC curves for the lowest and highest rate attack in the endpoint
dataset; results averaged over 12 endpoints with 100 instances of each attack.

0 50 100 150 200
0

20

40

60

80

100
← TRW

↓ TRW−CB

↓ Kalman Filter

← Max−Entropy ← NIDES

↑ Rate Limiting

← PHAD

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

Figure 7: ROC analysis on the LBNL dataset.

high-rate attack. PHAD does not rely on traffic rate for detection, and hence its

accuracy is only dependent on the header values observed during training.

2.4.2 Averaged ROCs for the LBNL Dataset

Figure 7 shows the ROCs for the LBNL dataset. Comparison with Figure 4 (a)

and (b) reveals that the Maximum Entropy detector is unable to maintain its high

accuracy on the LBNL dataset; i.e., the Maximum Entropy algorithm cannot scale to

different points of network deployment. TRW’s performance improves significantly

as it provides a 100% detection rate at a negligible false alarm cost. TRW-CB, on
35

the other hand, achieves a detection rate of approximately 70%. Thus contrary to

the endpoint dataset, the original TRW algorithm easily outperforms the TRW-CB

algorithm on LBNL traces. As explained in Section 2.3, the LBNL attack traffic

mostly comprises failed incoming TCP connection requests. TRW’s forward sequen-

tial hypothesis based portscan detection algorithm is designed to detect such failed

incoming connections, and therefore it provides high detection rates. Thus on an edge

router, TRW represents a viable deployment option.

Kalman Filter detector’s accuracy drops as it is unable to achieve a detection rate

above 60%. PHAD provides very high detection rates, albeit at an unacceptable false

alarm rate. Other detectors’ results are similar to the endpoint case. (Results for the

subspace method were similar to those reported earlier and are skipped for brevity.)

It can be observed from Figure 7 that all algorithms except TRW fail to achieve 100%

detection rates on the LBNL dataset. This is because these algorithms inherently rely

on the high burstiness and volumes of attack traffic. In the LBNL dataset, the attack

traffic rate is much lower than the background traffic rate. Consequently, the attack

traffic is distributed across multiple time windows, with each window containing very

few attack packets. Such low density of attack traffic in the evaluated time-windows

remains undetected regardless of how much the detection thresholds are decreased.

2.4.3 Delay Comparison

Table 7 provides the detection delay for each anomaly detector. On the endpoint

dataset, delay is reported for the highest and the lowest rate attacks, while on the

LBNL dataset this delay is computed for the first attack that is detected by an
36

Table 7: Detection Delay of the Anomaly Detectors

Rate TRW TRW-CB Max NIDES PHAD Subspace Kalman
Limiting Entropy Method Filter

MyDoom (msec) 310 510 40 215000 ∞ 900 79 377
Dloader-NY (msec) 140 320 20 56000 0.086 990 23 417

LBNL (msec) 660 660 290 86000 330 330 ∞ 800

0 0.05 0.10 0.15 0.20 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
po

si
tiv

e
R

at
e

BotFlex

BotHunter

Figure 8: Accuracy evaluation of BotHunter and BotFlex on the Nayatel ISP
dataset.

anomaly detector. A delay value of ∞ is listed if an attack is not detected altogether.

It can be observed that detection delay is reasonable (less than 1 second) for all the

anomaly detectors except the Maximum Entropy detector which incurs very high de-

tection delays. High delays are observed for the Maximum Entropy detector because

it waits for perturbations in multiple time windows before raising an alarm. Among

other viable alternatives, TRW-CB provides the lowest detection delays for all three

experiments. Detection delay for the TRW is also reasonably low.

2.4.4 Averaged ROCs for the Nayatel Dataset

We evaluate the overall accuracy of BotHunter and BotFlex over the Nayatel

dataset. Figure 8 provides ROC-based accuracy evaluation. Since BotHunter and

BotFlex do not provide any provision for threshold tuning, accuracy results of these

37

rule-based systems are points in the ROC space. It can be observed that BotHunter

and Botflex provide good accuracies (> 75% TP and 5−6.5% FP) on the ISP dataset.

This is mainly because the bot traffic in the dataset triggered a large number of bot

lifecycle events, which facilitated the decision engines of BotHunter and BotFlex.

2.5 Chapter Summary

So far, we have provided a detailed taxonomy and description of the general- and

specific-purpose anomaly detection systems and datasets used throughout this work.

The ADS taxonomy highlighted the diversity of the anomaly detection systems eval-

uated in this research. We also provided ROC-based performance evaluations of

the ADSs, used throughout this thesis, to develop a better understanding of their

strengths and weaknesses. The evaluations showed that general-purpose Maximum

Entropy and Kalman Filter ADSs provide acceptable accuracies on the endpoint

dataset, while TRW provides good accuracy on the router dataset. Moreover, under

changing attack rates, PHAD and Maximum Entropy ADSs are able to maintain

good accuracies. The evaluations of specific-purpose ADSs showed both BotHunter

and BotFlex provide good accuracies on the ISP dataset.

In the next chapter we present an information theoretic pre-processing method to

segregate features at the input of general-purpose ADSs. We present evaluations on a

diverse set of five network-based and two host-based ADSs. We will show that slicing

features at the input of an ADS not only improves accuracy, but also has immense

impact on the space and time requirement of the ADS as well.

38

CHAPTER 3: A FEATURE SPACE SLICING BASED

PRE-PROCESSOR TO IMPROVE THE ACCURACY OF EXISTING

GENERAL-PURPOSE ANOMALY DETECTION SYSTEMS

In 2003, Gartner Inc. reported Anomaly Detection Systems (ADSs) as a market

failure and predicted that “ADSs will be obsolete by 2005” [65,66]. Ten years later, we

know this prediction to be overly pessimistic. Nevertheless, there is widespread con-

sensus that ADS technology has not been as disruptive as was originally anticipated.

Despite its pessimistic projections, Gartner did rightly predict that the following

reasons (among others) will limit ADSs’ commercial appeal: a) low accuracies (low

detection rates, high false alarm rates), and b) inability to monitor high-speed traffic.

These two factors represent an interesting tradeoff because a general-purpose ADS

is supposed to build a highly robust traffic model (to achieve high accuracy), but is

expected to do so at an extremely low computational cost (to allow real-time deploy-

ment). Commercial general-purpose ADSs try to find the right balance of accuracy

and computational complexity, but generally end up leaning too heavily towards one

end of this spectrum.4

In this work, we ask and address the following question: Can the accuracy of a

general-purpose ADS be improved if we slice ADS feature space at the cost of higher

4For instance, some ADSs run offline but claim to have near 0% false alarm rates [67], while other
products run at wirespeeds but do not provide accuracy guarantees [68–70].

computational resource utilization? We first observe that existing ADSs are not de-

signed to exploit better computational platforms to achieve higher accuracies. To

mitigate this problem, we identify the fundamental accuracy limiting factors for sta-

tistical network and host-based ADSs. We then show that these bottlenecks can be

alleviated by our proposed feature space slicing framework. Our framework, operating

as a pre-processor, slices a statistical ADS’ feature space into multiple disjoint sub-

spaces and then performs anomaly detection separately on each subspace by utilizing

more computational resources. We propose generic information theoretic methods

for feature space slicing and for determining the appropriate number of subspaces

for any statistical ADS. Performance evaluation on three independently-collected at-

tack datasets and multiple ID algorithms shows that the enhanced ADSs are able to

achieve dramatic improvements in detection (up to 75%) and false alarm (up to 99%)

rates.

3.1 Motivation

Intrusion detection accuracy has been a serious limitation in commercial ADS de-

ployments. A main reason for this limitation is the expectation that an ADS should

achieve very high accuracy while having extremely low computational complexity.

The constraint of low computational cost has recently been relaxed with the emer-

gence of cheap high-performance platforms (e.g., multi-core, GPU, SCC, etc.). More-

over, current ADSs perform anomaly detection on aggregate feature spaces, with large

volumes of benign and close-to-benign feature instances that overwhelm the feature

40

space and hence yield low accuracies. However, if the feature space at the input of

an ADS is sliced such that similar features are aggregated into the same subspace,

this would result in anomalous feature instances falling into only a few subspaces.

Hence since the attack instances are no longer scattered across the feature space, the

resultant anomaly classifier would detect the anomaly.

3.2 Challenges

Many cheap high-performance platforms–ranging from low-end multi-core proces-

sors [71, 72] to massively parallel Graphical Processing Units (GPUs) [73, 74] and

Single-chip Cloud Computers (SCCs) [75]–have emerged to cater for the speed and

power requirements of compute-intensive applications. These high-performance plat-

forms are now being proposed to speed up network security devices [76–79]. As

these off-the-shelf high-performance platforms become pervasive, the computational

resource constraint on ADSs is becoming increasingly less critical. However, the in-

herent design of current ADSs does not allow them to exploit the parallelism available

in emerging hardware.

If multiple instances of an ADS (treated as a black box) are deployed on multiple

processing cores (one ADS per core) for anomaly detection, it can in turn enable ADSs

to exploit the strengths of off-the-shelf high performance platforms. Consequently,

an important question arises: Can the accuracy of an existing ADS be improved if

more computational resources are available for its deployment? If the answer to this

question is in affirmative then a subsequent question follows: Can ageneric method

41

be developed that can allow an existing statistical ADS to enhance its accuracy at

the expense of more computational resources?

In this work, we address the above questions in the context of statistical ADSs.

Hence, we identify and mitigate accuracy limiting factors in statistical ADSs at the

expense of higher computational resources.

3.3 Dataset and ADS

For the evaluation of the current problem, we used the endpoint-based WiSNetlab

dataset [80], the router-based LBNL dataset [81]; and the host-based system call

dataset [55] (see Chapter 2 for details). Moreover, we evaluated our proposed feature-

space slicing technique on five network-based statistical ID algorithms [3, 43, 45–48]

and two host-based ID algorithms [33, 49] (see Chapter 2 for details). The main

rationales for choosing these ADSs were: 1) Acceptability in Community; 2) Diversity

in Accuracies; and 3) Diversity in Detection Principles and Features. Description

pertaining to the datasets used in this study and the ADS threshold tuning is given

in Chapter 2.

3.4 Technical Approach

A statistical ADS flags traffic anomalies by measuring perturbations in a probabilis-

tic model of network or host traffic. Our performance evaluation in [25] (reiterated in

Chapter 2) showed that statistical ADSs offer the most promising accuracies among

existing research ADSs e.g rule-based ADSs, volumetric ADSs etc. We identify two
42

fundamental factors that limit the accuracy of a statistical ADS: 1) Averaging out: in

which high volumes of benign feature instances inundate malicious perturbations; and

2) Noise: which is introduced by close-to-benign malicious feature instances (e.g., suc-

cessful portscans, attacks on common ports/servers, etc.) To mitigate these factors,

we propose that an ADS slices statistically similar feature instances into disjoint sub-

spaces at its input and then performs anomaly detection on each subspace separately.

Such a method localizes the averaging out and noise artifacts to a few subspaces while

ADS accuracy is enhanced in the remaining subspaces, albeit at the cost of higher

computational resources.

To achieve accurate feature slicing, we propose a novel method which quantifies

each feature instance based on its information content. We also propose a condi-

tional entropy based method to determine the appropriate number of subspaces that

a feature space should be sliced into. Quantified feature instances and number of sub-

spaces are input to an unsupervised clustering algorithm which assigns a subspace to

each feature instance. Intrusion detection algorithms are then applied separately to

each subspace.

We demonstrate accuracy improvements by incorporating the proposed feature

space slicer as a pre-processing module into five network-based ADSs, namely Maxi-

mum Entropy [47], TRW-CB [43], NIDES [48], Kullback-Leibler (K-L) detector [45],

and Kalman Filter (KF) detector [46]) and two host-based ADSs, SVM [33] and host-

KL [49]. It is important to note that each ADS is evaluated on its own defined set

of feature(s) employed by the ADS for detection of traffic anomalies. For instance,

Maximum Entropy ADS [47] uses destination ports and transport protocol features
43

for detection of anomalies and hence these features will be used by the feature space

slicer to slice traffic for Maximum Entropy. For any other ADS, the traffic will be

sliced according to the feature(s) employed by that ADS for detection. We do not

judge or propose any changes to the ADSs statistical feature space.

We also compare the accuracy dividends and computational requirements of our

proposed method with an existing ADS which uses principal component analysis to

define traffic subspaces [3, 82, 83]. These ADSs are evaluated on public, labeled and

independently collected attack datasets. Our experiments show that significant and

consistent accuracy improvements of 1-75% in detection rate and a dramatic decrease

of up to 40-99% in false alarms can be achieved by slicing the input feature space into

multiple subspaces.

Among the evaluated detectors, Maximum Entropy [47] and PCA-based Sub-

space [3, 82, 83] methods are of particular relevance to this work because they also

segregate the feature space into multiple subspaces before anomaly detection. To

maintain a logical flow of thought, detailed empirical insights into the performance

and limitations of these methods will be provided in the following sections.

3.5 Terminology

Before presenting the core concepts of this work, we deem it necessary to define a

few terms for developing a better understanding of concepts presented henceforth.

Feature space: It constitutes the features that the ADS uses for anomaly detection.

A feature space can comprise a single feature class e.g. connection status in TRW

44

and connection rate in ratelimiting or it can comprise multiple feature classes e.g.

Maximum Entropy comprises 2348 feature classes in its feature space. Each feature

class is a random variable.

Feature subspace: Our proposed feature space slicer, slices the overall feature space

into multiple slices that we call feature subspaces. These feature subspace are then

re-normalized to convert them to a valid conditional distribution.

Feature instance: Each feature class, being a random variable, has an associated

probability distribution of the values in the image of the feature. These values are

the feature instances.

3.6 Preliminary Analysis

Many well-designed systems offer a performance-complexity tradeoff to cater for

diverse system deployments. These systems have the provision to improve key per-

formance metrics at the cost of higher complexity. The key performance metric for

an ADS is accuracy which is defined in terms of two competing parameters: detec-

tion rate and false alarm rate. Contemporary ADSs do not provide any provision to

improve detection or false alarm rates at the cost of higher computational complexity.

Accuracy in an ADS is generally controlled through a thresholding parameter;

lower threshold values improve detection rate at the cost of higher false alarm rates,

and vice versa. This thresholding logic is applied after an ADS’ processing has been

completed, therefore thresholding does not provide better (worse) accuracy if more

(less) computational resources are available for system deployment. This lack of con-

45

trol over an ADS’ accuracy becomes increasingly constraining as ADSs are now being

deployed on parallelized high-performance hardware, such as GPUs and multi-core

processors. It is thus important to understand the factors that limit the accuracies

of statistical anomaly detectors and, subsequently, investigate whether these factors

can be alleviated at the cost of higher computational complexity.

In this section, we introduce a notion of accuracy scalability in statistical anomaly

detection. This section performs analyses on statistical ADSs with an aim to un-

derstand their accuracy limitations and explore potential solutions to mitigate these

limitations. It is important to mention here that the analysis pertains to tweaking

only the input parameters of an ADS, which is treated as a black box, while the

main functioning and methodology used by the detector for anomaly detection, is not

altered. For example we do not make/propose any changes to the features used by

the ADS for detection and the detection principles employed. Specifically, we raise

the following question: Is it possible to improve (or scale) the accuracy of a statistical

ADS if we slice the ADS’s feature space so as to utilize the additional complexity

available for ADS deployment? Answering this question requires one to address the

following two questions sequentially: 1) What are the fundamental accuracy limit-

ing factors in statistical ADS design? 2) How can the accuracy limiting factors be

mitigated by slicing an ADS’s feature space? To address this second question, we

only tweak the number of classes the feature space is segregated into for Maximum

Entropy ADS, the number of benign vectors for PCA-based subspace method and

observe the resultant ADS accuracy.

The rest of this section performs analyses on statistical ADSs to answer these
46

questions.

3.6.1 What are the fundamental accuracy limiting factors in statistical

ADS design?

3.6.1.1 Averaging Out

Based on our empirical observations with different ADSs and attack datasets, we

argue that the foremost accuracy limiting factor in statistical ADS design is a dis-

parity in the rates of benign and malicious feature instances. Due to the unprece-

dented volumes and diversity of networked applications and services, traffic observed

at endpoints and downstream routers is a mix of many different types of end-user

applications and OS programs/processes. Attacks, on the other hand, are becoming

increasingly stealthy having rates that are considerably lower than those of benign

(p2p, multimedia, gaming, etc.) applications [84, 85].5

Due to the disparity between rates of benign and malicious feature instances, intru-

sions in a statistical feature distribution get averaged out by overwhelming volumes of

benign feature instances. This causes the feature distributions to be biased towards

the frequently-occurring benign feature instances thereby suppressing perturbations

caused by malicious feature instances. As a consequence of this averaging out effect,

the attack is not detected by an ADS.

Figure 9 provides an illustrative example of this accuracy limiting factor on the

endpoint attack traffic dataset. In this figure, a home user’s traffic is merged with

5While high-rate attacks (e.g., DOS attacks) are also prevalent, these attacks can be easily de-
tected using volumetric approaches and the problem shifts from attack detection to attack prevention
and mitigation.

47

(a) Aggregate traffic

0 1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

source ports

p
ro

b
a

b
ili

ty

benign traffic
mix (benign+malicious) traffic

(b) Sliced TCP only traffic

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

source ports

pr
ob

ab
ili

ty

benign traffic

mix (benign+malicious) traffic

(c) Sliced UDP only traffic

Figure 9: Example of averaging out: Probability distributions of source ports on
aggregate, TCP only, and UDP only traffic; traffic comprises a home user’s 20

second traffic window infected by Witty worm’s UDP-based portscans with a fixed
source port of 4000.

traffic from the Witty worm. Since Witty used a fixed source port 4000 for infection,

source port distributions derived from a 20 second time-window pertaining to the TCP

and UDP traffic in the aggregate are shown in Figure 9(a). It can be seen that, despite

the high average portscan rate (357 scans per sec) of the Witty worm, the probability

of attack port 4000 does not stand out in the distribution. The main reason for this

is that the user regularly generated and downloaded p2p content and the frequency

of packets generated by the p2p application were significantly higher than the worm’s

traffic rate. As a consequence of averaging out, the normalized frequency of the

attack port does not stand out in the aggregate distribution, and ADSs are unable

to achieve good accuracy on the aggregate distribution. On the other hand, if we

slice the traffic into TCP and UDP streams [Figures 9(b) and (c)] and then generate

separate distributions for the two streams, pronounced perturbations are observed

in the UDP traffic distribution. Such perturbations can be easily detected by an

anomaly detector.

Fig. 10 shows normalized probability plots that provide yet another example of this

48

 22 80 135 161 443 30787 35395 60419 63555
0

0.1

0.2

0.3

destination ports

p
ro

b
a

b
il
it
y

(a) Baseline distribution

 22 80 135 161 443 30787 35395 60419 63555
0

0.1

0.2

0.3

destination ports

p
ro

b
a

b
il
it
y

(b) Runtime distribution

53 135
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

destination ports

p
ro

b
a

b
il
it
y

Re−normalized baseline
Re−normalized runtime

(c) Re-normalized condi-
tional distribution

Figure 10: (a) Probability distribution of destination ports in the baseline
distribution; (b) Runtime probability distribution for a 20 seconds time window;

traffic comprises a home computer infected by Blaster which is generating outgoing
portscans on port 135; (c) Re-normalized conditional distribution of the feature

subspace constituting the attack port.

accuracy limiting factor on the endpoint attack traffic dataset. In this figure, a home

user’s traffic is mixed with traffic from the Blaster worm which propagates on desti-

nation port 135. Fig. 10 (a) presents the aggregate benign distribution learnt during

ADS training and used as a baseline for malware detection. Fig. 10 (b) presents

the infected runtime distribution for a 20 seconds window. While Blaster’s average

attack rate in this example is reasonably high (10.5 scans per sec), the probability of

attack port 135 is suppressed by huge volumes of benign feature instances. This is

primarily due to the huge volumes of benign content generated by endpoints today.

As a consequence, the normalized frequency of the attack port was averaged out in

the feature distribution (Fig. 10 (b)). It is difficult for an ADS to mine and flag an

attack from such an averaged out statistical feature distribution.

When ADSs design feature spaces, the attack class is not known in advance6. Hence

ADS decision logics operate by summing up feature instances and thresholding the

6We consider statistical ADSs in which there is no interdependence between feature classes (Sec-
tion 3.9).

49

resultant aggregate. Hence attack perturbations as shown in Fig. 10 (b) get summed

up and averaged out by huge volumes of benign feature instances in the feature space.

Averaging out can be mitigated if we can somehow slice the traffic in such a way

that the high rate benign feature instances are analyzed separately from the aggregate

traffic. In this case, we can generate a re-normalized distribution for the remaining

feature instances which should characterize the attack-induced perturbations. Hence,

the subtle attack perturbations get pronounced in the re-normalized conditional dis-

tribution. Fig. 10(c) shows that slicing the aggregate feature space by aggregating

similar looking7 feature instances together mitigates averaging out by making the

probability of attack port 135 stand out.

3.6.1.2 Noise

In addition to the averaging-out effect, another accuracy limiting factor in statis-

tical ADSs is introduced by malicious feature instances which are similar to benign

feature ones, e.g., successful portscans, common system calls etc. These close-to-

benign feature instances also need to be separated from the purely malicious feature

instances since they act as noise during the anomaly detection process (Section 3.7.2).

Figures 11(a) and (b) show the purely benign probability distribution and purely

malicious probability distribution for the sendmail intrusion instances, respectively.

Note that a large portion of the host-based feature trace generated by the malware

overlaps with the benign feature instances. For instance, a system call trace issued

by a benign process might be: {exit, fork, open, read, write, close, wait4, creat,

7We evaluate multiple similarity measures in the paper and details are provided in Section 3.7.2.

50

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

system calls

pr
ob

ab
ili

ty

(a) Benign

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

system calls

pr
ob

ab
ili

ty

(b) Aggregate Malicious only

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

system calls

pr
ob

ab
ili

ty

(c) Sliced Malicious only

Figure 11: Example of noise: Probability distributions of benign and malicious
(aggregate and sliced) system call traces; malicious system calls comprise sendmail

traces.

link, execv, chdir, time, . . . }. An infected process inevitably issues many common

system calls resembling the benign trace; e.g., open, close, exit, read, write etc.

Figure 11(b) shows that these overlapping malicious feature values act as noise due to

their statistical similarity with the benign feature instances and consequently prevent

the detection of an intrusion. If, however, the feature space is intelligently sliced with

instances having a higher malicious index grouped together, the resultant distribution

tends to vary significantly from the benign distribution, as shown in Figure 11(c); the

exact slicing method used here will be described in the following section. Similar

noise trends (e.g., noise from successful portscans in a worm attack, from p2p traffic

during a DoS attack, etc.) are also observed in network anomaly detectors.

Figure 12 provides another example of noise. It shows output of TRW-CB [43]

for detecting portscans. This method applies a likelihood ratio test to successful (S)

and failed (F) connection attempts to determine if local hosts are scanners. Detec-

tion relies on the premise that benign hosts tend to communicate with known hosts

and, hence, their probability of connection failure should be lower as compared to a

51

F S F F F F F F F F F F F F F F F F S S

1

2

3

4

5

6

7

8

9

10

11

12

malicious session trace

an
om

al
y

sc
or

e

not detected by IDS
completely reduced noise effect
partially reduced noise effect

Threshold

Figure 12: Example of noise– Malware portscans evaluated by reverse hypothesis
testing; F and S on x-axis represent failed and successful connection requests,

respectively.

portscanner.

As the number of failed connection attempts of a host increases, the likelihood

ratio test increases towards the detection threshold as shown in Figure 12. However,

successful scans from the scanner makes the likelihood score move away from the

threshold. Figure 12 shows that these close-to-benign malicious feature instances

act as noise due to their statistical similarity with the benign feature instances and

consequently prevent the detection of an intrusion. If, however, the feature space is

intelligently sliced with close-to-benign feature instances removed completely [circular

markers in Figure 12] or partially [triangular markers in Figure 12] from the local-host

feature trace, the anomaly score crosses the threshold and the attack is detected.

3.6.1.3 Discussion

Both the accuracy limiting factors described in this section can be mitigated if we

slice traffic so as to aggregate similar features together in the same subspace. We

provide detailed analyses of similarity measures in Section 3.7.2. Such slicing will

ensure that similar feature instances get aggregated together and anomaly detection

52

is performed separately on each subspace. While this method will require more com-

putational resources, we hypothesize that it will be able to provide good accuracy.

The following section ascertains whether or not averaging out and noise artifacts can

be mitigated by feature space slicing.

3.6.2 How can the accuracy limiting factors be mitigated by slicing an

ADS’s feature space?

As a preliminary attempt to tradeoff computational resources in favor of higher

ADS accuracy, this section evaluates two existing feature slicing techniques: a naive

method used by the Maximum Entropy detector [47], and the PCA-based method

proposed in [82], [3].

3.6.2.1 Maximum Entropy Detector’s Feature Slicer

The Maximum Entropy detector’s feature space is defined using destination ports

(65536 feature values) and transport protocol features (TCP/UDP, SYN/FIN). While

the full feature space of the detector contains 65536× 4 = 262, 144 feature instances,

a method is proposed in [47] to slice this feature space into 2348 packet classes by

aggregating less-known ports together, while keeping well-known ports in separate

classes. To maintain consistency in notation, henceforth we will refer to these classes

as subspaces. Each packet subspace is represented by a random variable Xi, i =

1, 2, 3, . . . , 2348. An associated baseline Probability Mass Function (PMF), pXi
, is

estimated from benign training data using maximum entropy estimation [47]; the

image of pXi
comprises a set ωi of all possible destination port values in subspace i.

53

2 4 8 12 424 2348
70

80

90

100

number of subspaces

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Detection rate

2 4 8 12 424 2348
0.3

0.4

0.5

0.6

0.7

0.8

number of subspaces

A
ve

ra
ge

 fa
ls

e
al

ar
m

s
pe

r
da

y

(b) False alarm rate

Figure 13: Accuracy of the Maximum Entropy detector with varying number of
subspaces; results are generated for the Endpoint dataset and are averaged over all

endpoints and attacks.

At run-time, a real-time PMF qXi
is computed by generating a normalized histogram

of port usage in subspace i in the last time-window. Difference between the baseline

and real-time PMFs of each subspace is quantified using the information theoretic

Kullback-Leibler divergence measure [86]:

D(qXi
||pXi

) =
∑

j∈ωi

qXi=j log2

(
qXi=j

pXi=j

)
. (1)

Significant perturbations–i.e., divergence values exceeding a threshold–are flagged as

anomalous.

Figure 13 shows the accuracy gain on the endpoint dataset achieved by the Max-

imum Entropy ADS as the feature subspaces are increased from 2 to 2348 using the

detector’s slicing technique progressively. Figure 13(a) shows that detection rate im-

provements of up to 15% can be achieved as we increase the number of subspaces from

1 to 12. While the detection rate reduction saturates at 12 subspaces, the false posi-
54

0 5 10 15
18

20

22

number of principal components

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Detection rate

0 5 10 15
10

12

14

16

18

20

22

number of principal components

A
ve

ra
ge

 fa
ls

e
al

ar
m

 r
at

e
(%

)

(b) False alarm rate

Figure 14: Accuracy of the PCA-based subspace method with varying number of
principal components; results are generated for the Endpoint dataset and are

averaged over all endpoints and attacks.

tive rate decreases by about 57% as we go from 2 subspaces to 424 subspaces. After

this point, the accuracy of this naive slicing method starts degrading. Hence, instead

of slicing the traffic into 2348 static subspaces, the method could have achieved higher

detection rates with 8 subpaces or could have considerably lowered false alarms by

operating on 424 subspaces. Reducing the number of subspaces (from 2348 to 8, or

even 424) would obviously also lower the memory and runtime resource requirements

of the ADS.

3.6.2.2 PCA-based Subspace Method’s Feature Slicer

Similar to what is being proposed in our present work, the method of [82], [83]

divides the feature space into two disjoint subspaces: a normal subspace S and an

anomalous subspace S̃. These subspaces are defined based on typical variations in the

aggregate correlated feature space. Let m denote the feature under analysis by the

ADS, which can be a flow-, packet- or byte-level feature, and let t denote the number

55

of successive time intervals of interest. Lakhina’s method formulates a t × m mea-

surement matrix Y and uses Principal Component Analysis (PCA) [82] to transform

Y into m eigenvectors that point in the direction of maximum variance. These m

principal components are then separated into two disjoint subspaces that correspond

to normal and anomalous variations in the feature space. Once the aggregate space is

divided into two subspaces, statistical tests like Q-statistic [82] can be used to detect

abnormal changes in each constituent feature of S̃.

Figure 14 shows the accuracy of the PCA-based subspace method on the End-

point dataset using varying number of principal axes for the normal subspace S.

Surprisingly, rather than yielding accuracy improvements, an increase in the number

of principle components induces a proportional decrease in the detection accuracy

of the system. This is because as more and more components from Y are added to

the normal subspace S (some of which might be anomalous feature instances), less

and less components remain in S̃ for detection of anomalies. Similarly, adding low

variance components into S causes the false alarm rates to increase. This is because

the low-variance components might present anomalies and adding these components

to S can cause the benign components in the residual subspace to be classified as

anomalous. This also results in an increase in the false alarm rate, which has also

been characterized by other independent studies [52].

3.6.2.3 Discussion

The preliminary results of this section suggest that using feature space slicing for

accuracy improvements is a double edged sword. The right slicer can potentially
56

mitigate averaging out and noise, but accuracy improvements are intricately and

sensitively dependent on three factors: a) the feature that the ADS is operating

upon; b) the feature slicing method; and c) the number of subspaces into which the

feature is sliced. As shown by Figures 13 and 14, an inaccurate choice of any of these

factors can in fact lead to a decrease in accuracy.

In the context of the above three factors, we argue that a practical feature slicing

technique should be general enough to be deployable with any statistical ADS. To

achieve such generality it is pertinent that the feature space slicer be agnostic to the

features used by an ADS for detection since the feature set varies from one ADS to

another. The main reasoning behind this argument is that the coverage of a feature-

specific slicer is very limited; for instance, the maximum entropy slicing method is

specific to the ADS’ feature set and cannot be adapted to improve the accuracies of

other statistical ADSs. Thus we do not judge or propose any changes to an ADS’

statistical feature space. Instead, in the following section we focus on devising methods

to cater for the other two factors and our aim is to devise generic methods to identify

the right number and type of subspaces.

We understand that accuracy improvements provided by such a general feature

space slicer would not equal the accuracy improvements that a feature-specific slicer

would be able to achieve. We show in the following section that even such a general

feature slicer is able to achieve considerable accuracy improvements in a diverse set

of ADSs.

57

3.7 Information Theoretic Feature Space Slicing

We advocate that, in order to separate the malicious feature instances from large

volumes of benign and close-to-benign feature instances, the feature space of a sta-

tistical ADS should be sliced into multiple subspaces before anomaly detection is

performed. The main premise of our proposed feature slicing framework is the follow-

ing: If an ADS can slice statistically similar feature instances into different subspaces

and then perform detection on each subspace separately, then averaging-out and noise

artifacts can be localized to a few subspaces while higher accuracies can be achieved

in the remaining subspaces.

In this section, we first outline the design constraints and high-level system blocks

of the proposed slicing methodology. We then propose information theoretic methods

that can address open questions in the design of a feature slicer.

3.7.1 System-Level Design of a Feature Space Slicer

We enforce the following constraints on a practical feature space slicer:

• Accuracy : The slicer should localize averaging out and noise artifacts to improve

the accuracy of an ADS.

• Generality : It should be generic so that it can be incorporated into any statistical

ADS.

• Adaptability : It should be able to automatically adapt the subspaces in accordance

with the feature distribution observed in a particular deployment.

58

Figure 15: System-level diagram of an ADS employing the proposed feature space
slicing principle.

• Automation8: A practical technique should be fully automated with very few,

preferably only one (computational resource budget), user-defined parameters. The

number and composition of sliced feature subspaces should be determined automat-

ically in accordance with the computational resource budget and feature distribu-

tion.

• Low Complexity : While trading off computational resources for higher accuracies,

the slicing technique itself should not have very high complexity.

It can be observed that the slicing techniques used by existing Maximum Entropy

and PCA-based subspace methods fall short of fulfilling the above constraints. Maxi-

mum Entropy detector’s slicing technique lacks generality and adaptability, while ful-

filling the automation and low-complexity criteria. The PCA-based subspace method,

on the other hand, fulfills the generality constraint but fails to provide acceptable ac-

8Gartner also rightly predicted that lack of automation will have serious adverse implications in
commercial ADS deployments [65].

59

curacy improvements and has very high complexity.

It is also important to highlight that our proposed feature space slicing framework

is different from ensemble based approaches that employ multi-class classifiers for

anomaly detection [87]- [88]. Our proposed framework employs multiple instances of

the same ADS for anomaly detection on disjoint subspaces. Moreover, similar attack

instances perturb similar features and hence are clustered in the same subspace;

nullifying the need for cross correlation for dimensionality reduction. This is explained

in detail in the subsequent sections. It is also important to mention that the proposed

feature space slicer when operating with an ADS, takes the feature space of the ADS

as input. This feature space can comprise of a single feature class or multiple classes.

The slicer, slices the traffic in accordance with the features used by the ADS.

Figure 15 gives a system-level view of our proposed ADS employing the feature

space slicing principle. The ADS first defines the statistical similarity between fea-

ture instances in the feature space. Statistically similar feature instances are then

clustered together in the same feature subspace, where the number of subspaces is

chosen within a user-specified computational resource budget hence fulfilling the au-

tomation constraint. Intrusion detection is then performed on each subspace sepa-

rately. In this accuracy enhancing design, the ADS continues to operate as a black

box without any modifications, thereby satisfying the generality constraint imposed

above. Moreover, an accurate feature space slicer will cluster and localize the mis-

leading feature instances to a few subspaces, while allowing accurate detection in

the remaining subspaces hence fulfilling the accuracy constraint (Table 8, 9, 10).

This statistical similarity will obviously be defined based on the feature probabil-
60

ity distribution, thereby satisfying the adaptability constraint. Hence, the proposed

accuracy-scalability framework can be viewed as an intermediate layer between the

ADS and the transport layer. We also show that the proposed slicing technique incurs

very low additional complexity (Table 11).

The remainder of this chapter answers two related questions:

1. How should statistical similarity between feature instances be defined?

2. How many subspaces should a statistical feature’s space be sliced into?

In the following, we try to answer these questions using empirical results from the

ADSs under consideration.

3.7.2 How should statistical similarity be defined?

We argue that instead of using a static distribution-oblivious slicer (like the Max-

imum Entropy one used in the last section), statistical similarity of different feature

instances should be based on the probability values observed in a distribution. Let

X denote the random variable representing the feature being used by a statistical

ADS. Let ω be the set of all possible values that the feature X can take, generally

known as the image of X . Let pXi
represent the probability of value i in the image of

X . For instance, in the case of Maximum Entropy method of [47], X will represent

the destination port feature with ω = 0, 1, ...65535. The probability of each port

pXi
, i ∈ ω is assigned by generating a frequency histogram of port usage in a time

window and then normalizing the histogram. The objective of a feature space slicer

is to group similar pXi
together in a subspace.

61

In this section, we evaluate and compare three methods to quantify statistical

similarity. Before proceeding, we acknowledge that similarity measures other than

the ones used in this work can be tailored to the present problem. However, we

observed that the simple measures used here are sufficient to quantify the feature

similarities of the ADSs used in this study.

3.7.2.1 Probability and Information Gain-based Feature Space Slicing

(PFS, IGFS)

A straightforward measure of distribution-based statistical similarity between val-

ues in the image of a feature is the probability, pXi
. Comparing pXi

with pXj
can

provide a measure of the similarity between the occurrence probabilities of values i

and j of a feature X . We, however, observed that a clustering algorithm operating

on probability values directly is unable to provide good demarcation of feature sub-

space boundaries because it looks at the relative values of probabilities and creates

multiple subspaces even in the low probability regions. This scattered clustering is

shown pictorially in Figure 16(a) for the source port feature on the LBNL traces.

To mitigate the clustering spread in probability-based clustering, statistical simi-

larity can also be defined on a relative scale. Information gain is a divergence measure

that estimates the degree of similarity between the values in the image of a random

variable. The information gain [89] between two feature instances i and j of a random

variable X can be represented as:

I(pXi
||pXj

) = pXi
log2

(
pXj

pXi

)
, (2)

62

Clusters

P
ro

ba
bi

lit
y

of
 fe

at
ur

e
in

st
an

ce
s

(P
F

S
)

(a) PFS

Clusters

In
fo

rm
at

io
n

G
ai

n
of

 fe
at

ur
e

in
st

an
ce

s
(I

G
F

S
)

(b) IGFS

Clusters

In
fo

rm
at

io
n

C
on

te
nt

 o
f f

ea
tu

re

in
st

an
ce

s
(I

C
F

S
)

(c) ICFS

Figure 16: Expectation-Maximization clustering applied to probability, information
gain, and information content based feature quantifications in the LBNL dataset;

each cluster represents one feature subspace.

where the similarity is measured relative to feature i.

Figure 16(b) shows the IGFS feature space slicing. It can be seen that IGFS takes

care of the ‘scattering’ problem encountered in PFS. However, we noticed that IGFS

clusters do not span the entire range of available clusters. For example, in Figure

16(b) clusters 2 and 3 contain only 1% of the feature instances (not visible in the

plot). Moreover, IGFS uses a preconfigured threshold to define similarity between

subspaces which is against the automation objective that we set for a practical accu-

racy improvement framework.

3.7.2.2 Information Content based Feature Space Slicing (ICFS)

To mitigate the limitations of relative information theoretic measures for the present

problem, instead of IGFS, we can compare the information content of individual val-

ues in the image of a feature. Information Content (IC) of value i of a feature X is

defined as [86]:

H(pXi
) = k log2

(
1

pXi

)
, (3)

63

where k is a constant which is generally set equal to 1. IC quantifies the amount of

information present in a symbol of a distribution. Specifically, with a base-2 loga-

rithm, IC represents the minimum number of bits that can be used to source encode

a symbol of a probability distribution. Highly likely symbols are more predictable

and therefore have low information content. Less likely symbols, on the other hand,

have higher information content.

Hence, for the present problem, information content of low and high probabilities

will be close to each other and therefore clustering will be more accurate. For instance,

where probability-based clustering will assign two separate subspaces to pXi
= 0.001

and pXj
= 0.0001 because of their relative scales, IC-based clustering will map these

probabilities to 13.36 and 9.96, respectively, and group them in a single subspace.

Moreover, lower the probability of occurrence of a feature instance, higher is the

information content, which results in the clearly demarcated clusters shown in Figure

16(c).

3.7.2.3 Discussion

Once an appropriate quantification of the feature space is achieved, we can slice

varying feature instances into disjoint subspaces. This can be achieved by apply-

ing an unsupervised clustering algorithm to the quantified probability values; i.e.,

information content values in the present context. We experimented with four promi-

nent unsupervised clustering algorithms: Expectation-Maximization (EM), Simple

k-Means, X-Means and Farthest First algorithms. Figure 17 illustrates IC-based

clustering on the LBNL dataset using the clustering algorithm implementations in
64

Clusters
In

fo
rm

at
io

n
C

on
te

nt
 (

IC
)

(a) EM

Clusters

In
fo

rm
at

io
n

C
on

te
nt

 (
IC

)

(b) Farthest First

Clusters

In
fo

rm
at

io
n

C
on

te
nt

 (
IC

)

(c) Simple k-Means

Clusters
In

fo
rm

at
io

n
C

on
te

nt
 (

IC
)

(d) X-Means

Figure 17: Feature space clustering based on information content (IC) of the feature
values in the LBNL portscan dataset; each cluster represents one feature class.

the WEKA library [90]. We observed that all of the clustering algorithms perform rea-

sonably well in clustering similar feature instances9. We hence deduce that the choice

of clustering algorithm does not have a significant impact on the accuracy of feature

space slicing; rather, the choice of similarity measure is the main accuracy boosting

factor. Overall, the EM algorithm provides the best performance in clustering similar

IC values.

A limitation of unsupervised clustering algorithms is that they classify feature in-

stances into a user-defined subspaces. This is against our automation and accuracy

objectives which require that the appropriate number of subspaces within a compu-

9Similar clustering results were observed for the Endpoint and the UNM datasets as well

65

1 2 4 8 16
0

10

20

30

40

50

60

70

80

number of classes

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

) NIDES

TRW−CB

(a) LBNL dataset

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

number of classes

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

TRW−CB

NIDES

(b) Endpoint dataset

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

number of classes

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

KL

(c) UNM dataset

Figure 18: Detection rates of the ADSs with increasing number of classes.

tational resource budget are identified automatically. Moreover, the choice of the

number of subspaces is critical because it can degrade ADS accuracy. The follow-

ing section discusses different approaches to automatically determine the number of

subspaces that a feature distribution should be sliced into.

3.7.3 How many subspaces should a feature space be sliced into?

As mentioned earlier, to account for time- and deployment-dependent behavior of

ADS features in a usable manner, we treat automation and accuracy as important

factors in ADS design. To satisfy the automation and the accuracy constraints, the

number of subspaces that a feature space should be segregated into should be deter-

mined at deployment time based on a computational resource budget and the learned

feature distribution, without actually running the ADS. The number of subspaces

should then be periodically updated to cater for time-varying characteristics of a

feature distribution.

Figures 18 and 19 illustrate the accuracy variations observed for the network- and

host-based ADSs. Figure 18 shows the ADS’ detection rate trends as the number

of classes is increased. Note that, for most ADSs, the detection rate increases with

66

1 2 4 8 16
0

20

40

60

80

100

120

140

160

number of classes

A
ve

ra
g

e
 f

a
ls

e
 a

la
rm

s
p

e
r

d
a

y

NIDES

TRW−CB

(a) LBNL dataset

1 2 4 8 16
0

10

20

30

40

50

60

number of classes

A
ve

ra
g

e
 f

a
ls

e
 a

la
rm

s
p

e
r

d
a

y

 NIDES

TRW−CB

(b) Endpoint dataset

 1 2 4 8 16
0.37

0.38

0.39

0.4

number of classes

A
ve

ra
g

e
 f

a
ls

e
 a

la
rm

 r
a

te
 (

%
)

KL

(c) UNM dataset

Figure 19: False alarm rates of the ADSs with increasing number of classes.

the number of classes, reaches its maximum accuracy, and then starts to decrease.

This reiterates the fact that increasing the number of sliced feature classes does not

necessarily induce an increase in accuracy. Similar trends are also observed for all

the ADSs on the Endpoint and the UNM datasets as illustrated in Figures 18(b) and

(c).

Figure 19 demonstrates the ADS trends on the LBNL, Endpoint and UNM datasets

in terms of the number of false alarms per day. False alarms tend to show a pattern

for most of the ADSs. For example, on the LBNL dataset, the TRW-CB false alarms

first decrease with an increase in the number of classes and then increase slightly.

Similar false alarm trends can be observed for NIDES and TRW-CB on endpoint

dataset. However, for the remaining ADSs (NIDES on LBNL and KL on UNM), no

specific false alarm trends can be observed. Thus, while the proposed IC based clus-

tering tends to improve ADS performance in terms of increase in the detection rates,

in many cases a proportional decrease in false alarms is also observed. These false

alarm variations depend on the traffic characteristics and on the detection method-

ology employed by the ADS. Hence, it is important for the ADSs to first identify

the number of classes that provides acceptable accuracy dividends before the ADS
67

detection process.

3.7.3.1 Existing Methods

The problem of slicing an aggregate feature space into disjoint subspaces is com-

monly encountered in data clustering. We evaluated two existing techniques to deter-

mine an appropriate number of disjoint feature subspaces before actual clustering is

performed: 1) An experimental Elbow method [91] which uses variance as a function

of the number of clusters, and 2) Quality Threshold (QT) testing algorithm [92] which

was proposed for the analysis and clustering of co-compressed genes. We observed

serious practical limitations in employing either of these methods in a real system.

For instance, the experimental Elbow method requires rigorous evaluation of data on

all possible number of clusters to define a variance pattern. QT is computationally

exhaustive since each feature instance is evaluated for correlation.

In view of these limitations, we resorted to developing our own method to ascertain

the number of subspaces that a feature space should be clustered into. This method,

detailed in the rest of this section, overcomes the shortcomings of the existing schemes

as it operates on the aggregate feature distribution instead of standalone feature

instances. Nevertheless, we also report results for the Elbow and QT methods in

order to benchmark the performance of our proposed method.

3.7.3.2 Conditional Entropy based Method

Conditional entropy [86], H(Y |X), of two random variables X and Y character-

izes the information remaining in Y when X is already known. Phrased differently,

68

0 10 20 30 40 50
0

0.1

0.2

Feature instances

P
ro

ba
bi

lit
y

1
0

0.5

1

Feature instances

P
ro

ba
bi

lit
y

 1 2
0

0.5

1

Feature instances

P
ro

ba
bi

lit
y

aggregate benign feature space

p(x) p(y/x)

YX

Figure 20: Probability distribution of the aggregate feature space.

conditional entropy is information about Y not given by X . If X and Y are highly

correlated, most of the information about Y is communicated throughX andH(Y |X)

is small. On the other hand, if pX and pY (which respectively represent the proba-

bility mass functions of X and Y) are quite different then H(Y |X) assumes a high

value.10

Let us have a sorted probability distribution of the aggregate benign feature space

denoted by pZ . An illustration of pZ is shown in Figure 20. From this aggregate

distribution, let us define two distributions: a) pX representing the re-normalized

distribution of the most probable feature value in the aggregate feature space dis-

tribution; and b) pY representing the re-normalized distribution of the union of X

and the second most probable feature in the aggregate feature distribution. Here,

conditional entropy H(Y |X), which is the amount of information about Y , not given

10In the limiting cases, H(Y |X) = 0 when X = Y , while H(Y |X) = H(Y) when X and Y are
independent.

69

destination ports by rank

C
on

di
tio

na
l E

nt
ro

py

10 20 30 40 50

0.4

0.3

0.2

0.1

Potential Disjoint Subspaces

Figure 21: Conditional Entropy based probabilistic analysis of a feature; maximum
number of subspaces, within the user-defined computational resource budget should

be chosen.

by X is given by:

H(Y |X) = −
∑

∀x,∀y

pX=x,Y=y log2
(
pY=y|X=x

)
, (4)

where pX=x,Y=y is the joint probability distribution for X and Y . This can also be

represented as pX=xpY |X=x. Hence,

H(Y |X) = −
∑

∀x,∀y

pX=xpY=y|X=x log2
(
pY=y|X=x

)
. (5)

The conditional entropy [86] value from (5) provides the information gap between

distributions X and Y . After noting this gap, the next feature’s gap is calculated by

setting X = Y , and the distribution of Y is re-computed after adding the next most

probable feature instance to it. This process is recursively repeated by progressively

adding a new feature to Y and noting the information gap. This process is shown

in Figure 20. Figure 21 illustrates the gaps in the conditional entropy (CE) values

70

for the LBNL benign feature instances. Note that larger CE values correspond to a

wider information gap and and vice versa. Hence, in order to cluster data judiciously

within the computational resource budget, an appropriate value of clusters k, can be

chosen from the distribution in Figure 21 and an appropriate number of subspaces is

k + 2 (k + 1 benign subspaces and a subspace for malicious feature instances).

3.8 Performance Evaluation

In this section we evaluate the accuracy as well as the resource utilization of the

proposed feature space slicing technique. For all the three datasets, we sliced the

traffic into varying number of classes (as described above) using the WEKA implemen-

tation [90] of the EM algorithm. Feature distributions used to define clusters are:

a) destination port distribution for the Maximum Entropy; number of classes were

proportionally divided between TCP and UDP; b) distribution of remote IPs with

unsuccessful connections for TRW-CB; c) distribution of packet rates for NIDES; and

d) system call frequency distribution for KL and SVM detectors.

3.8.1 Accuracy Evaluation

We evaluate the ADSs on the number of disjoint subspaces obtained from the

method discussed above (Elbow, QT and CE). Each method outputs the number of

subspaces that the aggregate feature space should be clustered into for a specific ADS;

for example, for Maximum Entropy feature space, Elbow method output 8 clusters,

QT 3 clusters and CE 10 clusters on the Endpoint dataset. These number of subspaces

71

Table 8: Accuracy Comparison of Elbow Method, QT testing and Conditional
Entropy Feature Space Slicing of Network-based ADSs on the LBNL Dataset

Maximum Entropy TRW-CB NIDES K-L Kalman Filter
No Clustering 85%, 144 FPs/day 15%, 80 FPs/day 60%, 140 FPs/day 100%, 11 FPs/day 56%, 10 FPs/day
Elbow Method 87%, 1 FPs/day 68%, 7 FPs/day 60%, 50 FPs/day 100%, 0 FPs/day 48%, 0 FPs/day
QT Testing 80%, 1 FPs/day 68%, 14 FPs/day 80%, 158 FPs/day 100%, 0 FPs/day 57%, 0 FPs/day
CE-based slicing 86%, 1 FPs/day 90%, 10 FPs/day 98%, 4 FPs/day 100%, 0 FPs/day 60%, 0 FPs/day

Table 9: Accuracy Comparison of Elbow Method, QT testing and Conditional
Entropy Feature Space Slicing of Network-based ADSs on Endpoint Dataset

Maximum Entropy TRW-CB NIDES K-L Kalman Filter
No Clustering 98%, 5 FPs/day 89%, 15 FPs/day 10%, 58 FPs/day 80%, 3 FPs/day 82%, 21 FPs/day
Elbow Method 83%, 7 FPs/day 98%, 15 FPs/day 40%, 4 FPs/day 84.%, 0 FPs/day 80%, 10 FPs/day
QT Testing 95%, 12 FPs/day 98%, 15 FPs/day 50%, 6 FPs/day 81%, 0 FPs/day 80%, 11 FPs/day
CE-based slicing 100%, 3 FPs/day 98%, 11 FPs/day 70%, 4 FPs/day 85%, 0 FPs/day 92%, 1 FPs/day

(for each ADS on each dataset) are then input to the Expectation Maximization

clustering algorithm, which assigns each feature instance to one of the k+2 subspaces.

Table 8 and 911 show the accuracy (detection rate and false alarms per day) of

the evaluated network ADSs on the LBNL and the Endpoint datasets respectively.

From Table 8 and 9, it is clear that feature space slicing yields considerable false

alarm reductions. Both Elbow method and QT testing based EM clustering results

show significant reduction in false alarms of the evaluated ADSs. These techniques,

however, do not have a substantial impact on detection rates of the ADSs. On

the other hand, our proposed Conditional Entropy based method provides dramatic

improvements in both false alarm and detection rates.

For the Maximum Entropy detector, the Conditional Entropy method remarkably

reduces the number of false alarms/day from 144 to 1 on the LBNL dataset, while

increasing the detection rate by 1%. On the Endpoint dataset, Maximum Entropy

detection rate is increased by 2%, accompanied by a 40% reduction in false alarms

(reducing from 5 to 3). For the TRW-CB detector, a dramatic 75% increase in

11The accuracy results for the PCA-based method have already been presented in Section. 3.6.2
72

Table 10: Accuracy Comparison of Conditional Entropy Feature Space Slicing of
Host-based ADSs

host-KL SVM
No Clustering 60%, 50 FPs/day 80%, 10 FPs/day
CE-based slicing 90%, 2 FPs/day 84%, 9 FPs/day

detection rate and an 8 times decrease in false alarm rate is observed on the LBNL

dataset. On the Endpoint dataset, TRW-CB experiences a 9% increase in detection

rate and a 26% decrease in false alarms. NIDES detection rate on LBNL dataset

improves by 38% while the false alarms/day decrease from 140 to 4. On the Endpoint

dataset, NIDES has an outstanding improvement of 60% on the detection rate and

a 93% decrease in false alarm rate. Similar accuracy improvements are observed for

KL and Kalman Filter detectors as well.

On the UNM system call dataset as well, significant performance improvements

are observed. Feature sliced host-based KL detector’s accuracy is improved from

approximately 60% detection rate with 50 false alarms/day to approximately 90%

detection rate with 2 false alarms/day; a 30% improvement in detection rate and

95–96% reduction in false alarms. Traffic-sliced SVM detector provided excellent

performance with up to 84% detection rate. However, in high detection rate regions,

there was a false alarm degradation for feature sliced SVM detector. This is because

slicing of a process’ system calls causes a loss of the temporal correlation (context)

between calls. This correlation loss introduces some degradations in high accuracy

regions.

73

Table 11: Computational Resources Utilization of the Intrusion Detection
Algorithms and the Proposed Feature Slicer

Training Runtime Training Runtime
Time (sec) (sec) Memory(MB) Memory(MB)

TRW-CB 23185.11 18226.38 25.1 67.54
Max Entropy 50.06 22.79 57.22 66.93
NIDES 2.01 5.4 35.9 40.13
KL detector 22.74 28.33 12.85 13
Kalman Filter 16.59 12.58 34.5 60.3
PCA-based Method 34111.89 15939.27 68.8 16.68
Host-based KL 19.95 22.96 4997 5203
SVM 407.26 797.5 2628.96 2637.82
Feature Slicer 487.92 5.1 0.51 70.26

3.8.2 Evaluation of the Computational Resources Utilization

While we can afford complexity during anomaly detection, we would like the com-

plexity of the slicing technique to be reasonably low. Table 11 lists the training and

classification times taken by the anomaly detectors as well as their training and run-

time memory requirements. The memory and run-time computational complexity for

the clustering module is also listed in the table.12 Note that the training complexity

incurred by the feature space slicing module is somewhat higher than the Maximum

Entropy and NIDES algorithms. However, this complexity is incurred only once at

the time of training and therefore is not critical. The run-time complexity of the

slicing algorithm is 1 to 4 orders of magnitude lesser than all ADS algorithms, ex-

cept NIDES which has a comparable runtime complexity. For the relatively complex,

yet accurate, ADSs (e.g., Maximum Entropy and TRW), the complexity of the slicing

module is negligible as compared to the complexity of the underlying ADS algorithms.

Memory requirements of the slicing algorithm are comparable to the anomaly detec-

tors. Thus the proposed feature space slicing technique, while being generic, accurate

12These numbers are computed using the hprof and VMPerformance Analyzer tools on a dual-
core 2.2GHz Intel machine by running the algorithms over one endpoint’s entire traffic dataset.

74

and automated, is also real-time deployable.

3.9 Limitations

In this section, we enumerate some limitations of the proposed feature space slicing

framework and propose countermeasures to mitigate these limitations.

3.9.1 Higher Computation Resource Requirement

An obvious limitation of the proposed method is the additional resources required

for running multiple simultaneous instances of the ADSs. However, the proposed fea-

ture slicing framework is very amenable for deployment on high performance platforms

because the disjoint subspaces identified by the proposed method can be evaluated

independently on each processor.

3.9.2 Accuracy

Feature space slicing, if not performed accurately, may spread the attack feature in-

stances over multiple subspaces, thereby allowing the attack to go undetected. In such

a case, feature slicing may introduce accuracy degradations instead of improvements.

Therefore, care must be exercised in designing an accurate slicer which understands

and leverages the inherent properties of the feature space.

3.9.3 Evasion

If the accuracy scalability method is known to an attacker, he/she may evade it

by tuning the feature rates such that they are similar to benign traffic. While such

75

evasion is possible in theory, we argue that it is quite difficult to realize in practice. To

evade the detector, the attacker should first know the dynamics of the benign traffic

feature instances observed in the network. Even if the benign feature distributions

are known, the attacker would have to match the rates of his/her attack features with

benign low rate feature instances which would severely limit the efficacy of the attack.

3.9.4 Non-Statistical ADSs

Since we only developed an accuracy scalability framework for statistical ADSs,

rule-based systems will not be able to benefit from it. We are currently investigating

accuracy scalability methods for non-statistical ADSs.

3.9.5 ADSs with dependence across feature classes

The proposed slicer operates by slicing across the feature space of the ADS. Hence

ADSs in which the feature space exhibit dependence across the feature classes for

anomaly detection, are not suited for use with the slicer. Since the slicer slices across

the feature space, it might not preserve the dependence between feature classes and

hence might not yield optimal results.

3.10 Chapter Summary

In this chapter, we proposed an information theoretic technique to improve the

performance of current general-purpose anomaly detection systems.

We presented our feature space slicing framework to show that the accuracy of

existing statistical ADSs can definitely be improved if more computational resources
76

are available for their deployment. The key idea is to segregate benign and malicious

instances into separate subspaces to mitigate averaging out and noise artifacts. We

tested our pre-processing feature space slicing framework on a diverse set of network

and host-based ADSs. Our experimental evaluation shows that, if feature quantifi-

cation and number of subspaces is determined judiciously, an ADS operating simul-

taneously on the reduced subspaces can achieve dramatic improvements in detection

and false alarm rates.

In the next chapter, we present another information theoretic combining method.

However, unlike the method presented, it is a post-processing multi-classifier ADS

design. It combines the outputs of multiple diverse ADSs to exploit their strengths

and mitigate their weaknesses. We also provide comparative evaluations with other

existing combining techniques and show that our proposed method outperforms other

techniques on diverse datasets.

77

CHAPTER 4: A MULTI-CLASSIFIER BASED POST-PROCESSOR TO

IMPROVE THE ACCURACY OF EXISTING GENERAL-PURPOSE

ANOMALY DETECTION SYSTEMS

The seminal DARPA IDS evaluation of 1999 emphasized and catalyzed a shift

in focus from signature-based intrusion detection to anomaly detection which can

detect zero-day (previously-unknown) attacks [37]. After more than a decade of

sustained research in the anomaly detection domain, contemporary general-purpose

Anomaly Detection Systems (ADSs) still fall short of achieving acceptable accuracies

at different deployment points and under different types/rates of attacks [25], [24].

The root cause of this problem is that contemporary anomaly detectors-especially

non-proprietary ones available in research literature13 are designed for specific traffic

features which are classified using an algorithm customized for these features. Con-

sequently, an anomaly classifier which is highly accurate for certain attacks and/or

deployments fails miserably as benign or attack traffic conditions change as was high-

lighted in Chapter 2 (Section 2.4).

In this work, we propose a novel information-theoretic combining method operating

as a post-processor, which caters for the individual classifiers accuracies in a multi-

classifier ADS. We first show that existing combining schemes designed for or adapted

13Commercial NADSs without exception use multiple simultaneously-operating anomaly classi-
fiers.

to the problem of multi-classifier ADS combining do not provide good accuracies

because they do not use individual classifiers detection and false alarm rates in the

combining process. Furthermore, we reveal that an accurate multi-classifier ADS, in

addition to catering for the mean accuracy rates, must also consider the classifiers

variances during combining. Therefore, we propose a Standard Deviation normalized

Entropy of Accuracy (SDnEA) method for classifier combining. Using 9 prominent

classifiers operating on two publicly-available traffic datasets, we show that around

3%-10% increase in detection rate and a 40% decrease in false alarm rate over existing

combining techniques can be provided by the proposed information-theoretic ADS

combining technique.

4.1 Motivation

Originally anomaly detection systems constituted standalone anomaly classifiers

due to their inherent computational complexity. However, with the advent of mul-

ticore processors and high-end machines, this constraint has been lifted. More-

over, recent studies have shown that standalone anomaly classifiers used by network

anomaly detectors are unable to provide acceptable accuracies in real-world deploy-

ments. Hence, now an ADS can constitute multiple classifiers. These classifiers are

designed to detect a particular class of attacks. Combining multiple diverse classi-

fiers into a single ADS enables the detector to detect a wide variety of these attack

classes. Hence, recently a trend of combining classifiers has been witnessed. However,

judicious methods of combining these classifiers outputs are largely unexplored.

79

To achieve higher accuracies, ADSs now use multiple classifiers whose outputs are

combined to formulate an aggregate anomaly score. However, current combining

techniques do not take into account the individual accuracies and the variance in

accuracies of the constituent classifiers. We propose an information theoretic com-

bining technique (SDnEA) that combines multiple diverse classifiers into an ADS. An

ROC-based comparative performance evaluation shows that SDnEA outperforms all

other techniques and yields very high accuracy.

4.2 Challenges

It is now well-accepted that an ADS should use multiple anomaly classifiers to

improve its accuracy (for assorted attacks) and scalability (at different deployment

points and under varying traffic volumes). However, accurate and judicious methods

that can be used to combine the outputs of multiple anomaly classifiers in an ADS

have received little attention in research literature [93, 94] 14. The limited literature

on ADS combining is either host-based [94] or relies on learning separate classifiers for

different traffic classes [93]. Generic combining techniques that can combine outputs

of any given set of ADSs are not well investigated. Hence, the main challenge is to

devise a generic mechanism that can combine any existing set of classifier outputs,

hence improving the overall accuracy of the resultant ADS.

14Some prior research efforts [95], [96], [97] have, however, proposed combining methods for sig-
nature detectors.

80

4.3 Technical Approach

We first adapt and evaluate existing techniques that can generically combine multi-

ple ADSs’ anomaly scores. These generic techniques include: 1) Simple voting-based

combining (single instance, all instances, majority vote) [97]; 2) two variants (sum and

median rules) of the Bayesian pattern recognition combining method [98]; and 3) the

ENCORE fusion logic from the character recognition domain [99, 100]. To quantify

the improvements provided by these combining methods, we evaluate progressive com-

binations of prominent NADS classifiers [48], [47], [41], [82], [40], [44], [43], [46], [32]

on two publicly-available portscan attack datasets [25].

Our experimental evaluation shows that the accuracies of existing combining tech-

niques have a significant room for improvement. We also reveal that, in addition to

mean accuracies (detection and false alarm rates) of the ADSs, we must cater for

the variance of each detector during ADS combining. Using mean and variance of

accuracy values from the initial supervised learning phase of a ADS, we propose a

novel information-theoretic ADS combining logic referred to as the Standard Devi-

ation normalized Entropy of Accuracy (SDnEA) method. We show that SDnEA’s

performance consistently and considerably surpasses the the accuracy of the best

(ENCORE) existing combining technique. Specifically, SDnEA provides a 3%-10%

increase in detection rates and a 40% decrease in false alarm rates over ENCORE. We

also show that an increase in the number of anomaly classifiers does not always in-

duce a proportional increase in system accuracy. Therefore, a few judiciously selected

classifiers can provide better system-level accuracy than many diverse classifiers.

81

4.4 Dataset and ADSs

We used two network-based datasets: router-based LBNL dataset [81] and the

endpoint based WiSNet Lab dataset [80]. For accuracy evaluation, we progressively

combined the following prominent and diverse network anomaly classifers: 1) Rate

Limiting [32], 2) Threshold Random Walk (TRW) [41], 3) Credit-based Threshold

Random Walk (TRW-CB) [43], 4) Packet Header Anomaly Detector (PHAD) [40],

5) Network Traffic Anomaly Detector (NETAD) [44], 6) Subspace Method [82], 7)

Kalman Filter [46], 8) Maximum Entropy Detector [47], and 9) Next-Generation

Intrusion Detector (NIDES) [48].

4.5 Performance Evaluation of Existing Combining Techniques

We empirically evaluate the accuracies of existing combining methods. To maintain

a logical flow of thought, description and adaptation of existing combiners to the

present traffic anomaly detection problem are provided inline. In addition to gauging

the accuracies of existing combining methods, we expect the results of this section to

reveal insights that can be used to develop an accurate combiner.

4.5.1 Existing Combining Schemes

4.5.1.1 Voting-based Combining:

Without loss of generality, let us treat each constituent anomaly classifier as a black-

box that takes the traffic zt as input at discrete time instance t and then outputs a

binary label, [1: anomaly, 0: benign]. Let the total number of classifiers to be
82

combined be N and let Λ = {1, 2, ...N} denote a set of indices for these classifiers.

Since each classifier has two possible outcomes, it can be regarded as a binary variable

Xi. These variables are combined into a single anomaly score using a weighted sum

random variable:

SN = w1X1 + w2X2 + ... + wNXN = Σ
i∈Λ

wiXi (6)

A threshold τ is then applied to this sum in order to classify a given input obser-

vation zt as benign or anomalous.

Under a voting logic, a weight of 1 is applied to the constituent classifiers’ binary

scores which are then summed up: St =
∑
i∈Λ

Xt[i], where Xt[i] is the output of the i-th

detector for zt. A final decision is made as follows:

fzt(St) =

1 if St ≥ τV

0 otherwise

(7)

In this study we evaluate three variants of the voting principle, namely single

instance (τV = 1), majority vote (τV = N/2), and all instance voting (τV = N).

Clearly, single instance combining will have good detection rates but poor false alarm

rates. All instance voting is on the other extreme with low detection rates with low

false alarm rates. Majority vote strikes a balance between these two limiting cases.

4.5.1.2 ENCORE Combining [100], [101]:

ENCORE implements a decision consensus approach based on the known accuracies

of the classifiers that flag an observation. In the present context, assume that after

analyzing the input zt, k out of the total N anomaly classifiers flag zt as anomalous.
83

ENCORE makes its combining decision based on the accuracies of the top 2 of these k

classifiers. Let pαt[i] and pαt[j] respectively denote the accuracies of the top 2 classifiers,

where αt ∈ {d : detection, f : falsealarm} can either represent detection rates or false

alarm rates. The combined anomaly score is decided according to the following rule:

fzt(pαt[i], pαt[j]) =

1 if pαt[i] − pαt[j] ≤ τE

0 otherwise

(8)

In other words, even an anomalous observation is classified as benign if the most ac-

curate classifiers’ accuracies are inconsistent. Note that, unlike voting-based combin-

ing, ENCORE takes the accuracies of the individual classifiers into account during the

combining process. According to [10], Enhanced Majority Vote ENCORE provides

the best accuracy dividends for IDS combining; details can be found in [97], [99], [100].

4.5.1.3 Bayesian Network based Combining:

The authors in [98] combine multiple IDS classifiers, where each classifier uses its

own representation of the input pattern. A Bayesian decision rule is used to identify

the classifier with the maximum a-posteriori probability to flag an input pattern zt

as anomalous. Assuming reasonably close a-priori and a-posteriori probabilities, the

Bayesian detector defines two different classification rules. Under the sum rule, a sum

random variable At is computed as a function of the individual classifiers’ accuracies

as follows:

At =
1

k

k∑

j=1

pαt[j], (9)

where k is the number of classifiers which flag the input as anomalous and αt ∈

84

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

← All Instances

← Single Instance

↑ Majority Vote

↑
ENCORE

← Median Rule
Sum Rule →

of Classifiers

A
v
e
r
a
g
e

d
e
t
e
c
t
i
o
n

r
a
t
e

(
%
)

(a) LBNL Detection rate

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

↑ Single Instance

← All Instances

↑ Majority Vote

← ENCORE

← Median Rule

← Sum Rule

of Classifiers

F
a
l
s
e

a
l
a
r
m
s
/
d
a
y

(b) LBNL False alarms per day

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

↓ All Instances

↑ Single Instance

← Majority Vote← ENCORE

↑
Median Rule

← Sum Rule

of Classifiers

A
v
e
r
a
g
e

d
e
t
e
c
t
i
o
n

r
a
t
e

(
%
)

(c) Endpoint Detection rate

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

All Instances
↓

← Single Instance

← Majority Vote

ENCORE
↓

← Median Rule

← Sum Rule

of Classifiers

F
a
l
s
e

a
l
a
r
m
s
/
d
a
y

(d) Endpoint False alarms per day

Figure 22: Accuracies of existing combining methods on the LBNL and Endpoint
datasets.

{d : det ection, f : falsealarm}. Under the median rule, Mt for an input window zt

is the median of the individual classifies’ accuracies:

Mt = medianj=1,...,k[pαt[j]]. (10)

At and Mt can be thresholded (≥ τd in case of αt = d and ≤ τf for αt = f) to obtain

a combined anomaly score. Similar to ENCORE, the Bayesian combiner accounts for

individual classifiers’ accuracies in the combining process.

85

4.5.2 Experimental Results

The experimental results for the voting principle, ENCORE, Bayesian network

based median and sum rules are shown in Figure 22. We connect the classifiers in

order of the highest performance operating points on the ROC curves. As expected,

for single instance combining, as more classifiers are connected to the system, the

system accuracy increases in terms of the detection rates but the false alarms also

increase proportionally. The abnormal fluctuations in the behavior of the majority

voting scheme is due to the non-identical nature of the classifiers that are progressively

connected to the system. Detection rates of the system as well as the false alarms vary

in no defined pattern as independent and non-identical classifiers are connected that

vary in their detection and false alarm rates. For the all instance voting principle,

the detection rate of the system decreases as more classifiers are connected since all

of them must flag the input as malicious for the system to classify it as malicious.

Although this principle has a decreasing trend in the detection rates of the system,

it has the same trend in its false alarms as well. ENCORE provides acceptable

detection rates since it considers each classifier’s overall accuracy when combining

ADSs. However, the detection rate goes down to 0 as more and more ADSs are

connected to the ensemble. The same trend is observed in the false alarm rates as

well. The median rule offers close to 90% detection rate on the LBNL dataset, but

fails to maintain this accuracy on the Endpoint dataset. The sum rule provides high

detection rates on both the datasets. However, both the techniques suffer from very

high false alarm rates (2000 to 7000) on both datasets.

86

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100
←Max−Entropy

Kalman Filter
 ↓ ↓TRW

TRW−CB →

Rate Limiting
 ↓

↓PHAD

↓ NETAD

NIDES
 ↓

Subspace method
 ↓

of Classifiers

A
v
e
r
a
g
e

d
e
t
e
c
t
i
o
n

r
a
t
e

(
%
) Blaster worm

RBOT.CCC worm

(a) Detection rate

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180
↓ Max−Entropy

Kalman
Filter
 ↓

← TRW

TRW−CB
 ↓

↓ Rate Limiting

PHAD
 ↓

NETAD
 ↓

NIDES
 ↓

Subspace method ↓

of Classifiers

F
a
l
s
e

a
l
a
r
m
s
/
d
a
y

Blaster worm
RBOT.CCC worm

(b) False alarms per day

Figure 23: Variance in the detection and false alarm rates of the classifiers on
Blaster and RBOT.CCC worms.

4.5.3 Deductions

4.5.3.1 Classifier Accuracies:

One drawback of the voting principle based ADS combining logic is that it combines

the outputs from non-identical classifiers without regard to the accuracies of the

constituent classifiers. Intuitively, a classifier with higher accuracy should be given

priority over a lower accuracy classifier. Hence a judicious approach is to define the

weight (wi) in Eq. 6, of each constituent classifier in accordance with its accuracy and

incorporate it in combining the outputs of multiple classifiers. ENCORE, considers

the mean accuracies [101] of the classifiers during ADS combining and consequently

offers considerably better detection rates on both datasets.

4.5.3.2 Variance in Accuracies:

During our performance evaluation we observed that a classifier providing very good

detection rate for one attack may fail completely for another attack [25]. Similarly,

87

some classifiers’ false alarms varied significantly during different periods of benign

activity. Figure 23 (a) and (b) show the detection and the false alarm rates for two

specific worms, RBOT.CCC and Blaster. From these results, it is evident that the

classifiers vary significantly in not only their detection rates but also in terms of their

false alarms.

Hence in order to achieve good system − level accuracy, a ADS combiner, in

addition to catering for the mean detection and false alarm rates, should also cater for

the variance in the accuracies of the individual classifiers. In the following section, we

propose an information-theoretic combiner which caters for the mean and variances

of the classifiers during the combining process.

4.6 An Information-Theoretic Combining Method

In this section we propose a novel ADS combining scheme based on the insights of

the preceding section. Accuracy of the proposed combiner is compared with the best

performing ENCORE method.

4.6.1 Combining Model

As stated in Section 4.5-C, the weights assigned to the outputs of each classifier

should characterize the accuracy of the classifier. Thus higher (lower) weights should

be assigned to more (less) accurate classifiers. To this end, we propose the use of

the information-theoretic Entropy measure to define the weight of a classifier. We

88

compute a classifier’s weight using its accuracy’s entropy as follows:

wdi = 1 + pdi log2(pdi) + (1− pdi)log2(1− pdi), or

wfi = −pfi log2(pfi)− (1− pfi)log2(1− pfi).

(11)

Based on whether we desire bounds on detections or false alarms, one of the above

weights can be used in Eq. 6 to combine multiple anomaly classifiers. Based on the

above weights, higher the detection rate for a classifier, lower is the entropy value

for it and higher is the weight assigned to its output. Similarly, higher are the false

alarms for a classifier, lower is the entropy and a smaller weight is assigned to it.

Section 4.5-C also revealed that connecting classifiers having low variance and

acceptable detection rates can allow a system to achieve higher system-level accuracy.

To incorporate classifiers’ variances in the weighting process, we extend the entropy-

based weighted averaging as follows:

wdi =
1+pdi log2(pdi)+(1−pdi)log2(1−pdi)

σdi

, or

wfi =
−pfi log2(pfi)−(1−pfi)log2(1−pfi)

σfi

,

(12)

where σαi
is the classifier’s standard deviation in detection/false alarm rates. We refer

to this weighting scheme as the Standard Deviation normalized Entropy of Accuracy

(SDnEA) combining scheme.

4.6.2 Performance Evaluation

Figure 24 compares the proposed SDnEA weighted scheme with ENCORE, which

provided the best accuracy results in Section 4.5. Clearly, the proposed SDnEA

weighted scheme outperforms ENCORE on both LBNL and Endpoint datasets. Ini-

89

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

← ENCORE

↑
SDnEA Weighted

of Classifiers

A
v
e
r
a
g
e

d
e
t
e
c
t
i
o
n

r
a
t
e

(
%
)

(a) LBNL Detection rate

2 3 4 5 6 7 8
0

10

20

30

40

50

60

← ENCORE

↓ SDnEA Weighted

of Classifiers

F
a
l
s
e

a
l
a
r
m
s
/
d
a
y

(b) LBNL False alarms per day

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

← ENCORE

↑
SDnEA Weighted

of Classifiers

A
v
e
r
a
g
e

d
e
t
e
c
t
i
o
n

r
a
t
e

(
%
)

(c) Endpoint Detection rate

2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

SDnEA Weighted
↓

ENCORE
↓

of Classifiers

F
a
l
s
e

a
l
a
r
m
s
/
d
a
y

(d) Endpoint False alarms per day

Figure 24: SDnEA and ENCORE accuracy comparison on the LBNL and Endpoint
datasets.

tially, with two to three classifier combinations, ENCORE and SDnEA provide com-

parable detection rates on the LBNL dataset. However, with increasing number of

classifiers, SDnEA provides a 40% decrease in false alarms over ENCORE. On the

endpoint dataset, SDnEA provides a 12% increase in detection rate and a 3% decrease

in false alarms for the same classifier combination. These results show that, while

combining multiple classifiers to achieve acceptable system performance, variance of

the constituent classifiers should also be considered since it has considerable impact

on the overall system accuracy.

90

We also note from Figure 24 that increasing the number of classifiers in the system

N does not necessarily induce a proportional increase in accuracy. Hence, increasing

system complexity does not guarantee a similar increase in system accuracy. Hence,

instead of relying on the number of classifiers to increase system accuracy, one should

employ few classifiers having high accuracies and low variances.

4.7 Chapter Summary

In this chapter we proposed an information theoretic multi-classifier ADS design

that combines the outputs of multiple diverse classifiers. We showed that our tech-

nique outperforms other existing techniques and yields high accuracy.

We presented a Standard Deviation normalized Entropy of Accuracy (SDnEA)

combining method for a combination of N parallel connected anomaly classifiers. SD-

nEA provided consistent and considerable accuracy (detection rates and false alarm)

improvements over existing combiners. We also showed that increasing the number

of classifiers does not induce a proportional increase in system accuracy. Therefore,

a few judiciously selected classifiers can provide better system-level accuracy than

many diverse classifiers.

In the next chapter we design, develop and evaluate a post-processing statistical

anomaly detection method for detection of bots. We compare our specific-purpose

ADS method with existing botnet detection tools, and show that our method is able

to provide better accuracy on changing bot behavior, in addition to the added benefits

of a stochastic over a rule-based solution.

91

CHAPTER 5: BAYESIAN INFERENCE BASED POST-PROCESSOR

FOR A SPECIFIC-PURPOSE ANOMALY DETECTION SYSTEM

Botnets have proven to be the most evasive threat to the security of networked sys-

tems. Botmasters, driven by economic and other incentives (like espionage [102,103]

or even sabotage [104]), continuously evolve their attack and evasion vectors, thereby

bypassing most signature-based detection mechanisms. General-purpose anomaly de-

tectors, which classify deviations from normality, are theoretically the best approach

to detect this evolving threat. However, since these systems learn the normal behavior

to detect activities that are abnormal, they have an inherent limitation of incurring

high false positive rates [105].

In this work we present Bottleneck, our prototype implementation, that builds

confidence in bot infections based on the causal bot lifecycle encoded in a Bayesian

network. We evaluate Bottleneck by applying it as a post-processing decision engine

on lifecycle events generated by two existing bot detectors (BotHunter and BotFlex)

on two independently-collected datasets. Our experimental results show that Bottle-

neck consistently achieves comparable or better accuracy than the existing rule-based

detectors when the training and test data are similar. For different training and test

data, Bottleneck, due to its automated learning and inference models, easily surpasses

the accuracies of rule-based systems. Moreover, Bottleneck’s stochastic nature allows

its accuracy to be tuned with respect to organizational needs. Lastly, Bottleneck is

able to cope with missing training data, without significantly compromising the bot

detection accuracy.

5.1 Motivation

Anomaly detection systems are perfectly-suited to detect the evolving botnet threats,

but generally suffer from unacceptably high false positive rates. Prior research has

used the bot lifecycle as a signature to build bot detection systems. These systems,

however, use rule-based decision engines which lack automated adaptability and learn-

ing, accuracy tunability and the ability to cope with gaps in training data. To counter

these limitations, we propose to replace the rigid decision engines in contemporary

bot detectors with a more formal Bayesian inference engine.

Diagnosis of bot infections using Bayesian inference offers many advantages, which

we describe next:

Adaptation with threat evolution: Rule-based detection results in rigid, and quite

often heuristic (expert opinion based), choices of decision rules and the weights of

each lifecycle event. This limits the ability of rule-based decisions to adapt with

the evolving threat landscape. Bayesian networks are designed to avoid this pitfall

by learning and reasoning about event causalities on a stochastic graph. In fact,

Baysesian networks can seamlessly incorporate new evidence in the graph as and

when it becomes available.

Accuracy tuning using soft decision confidence: The output of a rule-based decision

93

engine is a binary (bot or ¬bot) flag. Consequently, rule-based systems cannot be

tuned in accordance with organizational needs–e.g. one organization might want to

have very low false positive rates even if that translates into fewer true positives,

while another organization might have the opposite preference. Bayesian networks

provide a stochastic confidence in the inference which can be thresholded to overcome

this shortcoming.

Ability to extrapolate missing data: Training of a rule-based decision system is depen-

dent on the completeness of the training data. For the botnet phenomenon, such data

(e.g. observance of a full bot lifecycle) is hardly ever available in real-life scenarios,

thus impacting the accuracy of rule-based bot decision engines.15 A Bayesian infer-

ence engine does not suffer from this limitation as the causal relationship embedded

in its graph allows it to handle missing data by extrapolating probabilities.

Evidence window determination: An important parameter that impacts the accuracy

of a botnet decision engine is the time window for evidence accumulation. While

rule-based systems use heuristics to define these parameters, a Bayesian formulation

provides a formal notion of fading the belief of a network between successive evaluation

windows [106].

5.2 Challenges

Our objective in this research is to understand the challenges faced by an anomaly-

based botnet detector, and to explore how these challenges can be overcome by a prac-

15While some rule-based engines soften the impact of these fundamental problems by using
regression-based weight assignment and soft timers [35], these schemes lack a formal rigor and
remain susceptible to data overfitting.

94

tical and a more formal botnet detector. It is apparent that a viable anomaly-based

botnet detector must be able to substantively address the following four shortcomings

identified by Sommer and Paxon [105]:

Training: Can the bot detection solution learn and detect the same class of traffic?

Existing anomaly detectors learn normal behavior of the network to detect outliers;

i.e. network behavior that does not correspond to the learnt normal model. However,

quoting from [105]: Fundamentally, machine learning algorithms excel much better at

finding similarities than at identifying activity that does not belong there: the clas-

sic machine learning application is a classification problem, rather than discovering

meaningful outliers as required by anomaly detection systems.

Accuracy: Can the detection solution provide accuracies (false positives and false

negatives) acceptable for real-world deployments? Most anomaly-based botnet de-

tectors fail to provide reasonable false positives/negatives across different types of

botnets. It should be emphasized that even a very small number of false positives

can compromise real-life NIDS deployment, as false positives must be resolved by a

system admin by mining traffic logs.

Missing Data: Can an anomaly detection solution be robust to missing data?

Datasets used for learning and evaluation are never complete. Hence, when these

datasets are used for learning, the learnt model is biased towards the statistical pat-

terns present in data while remaining oblivious of missing patterns. Missing data

is unavoidable because: a) since data collection is generally time-bound, there is

an inherent disparity between data values of interest and those actually observed;

2) The vantage point of dataset collection is typically sub-optimal–e.g., in case of
95

a distributed traffic phenomenon (like botnets), data values observed at a gateway

router/switch are considerably richer in semantics than those observed at an end-

point. Clearly, when such datasets are used for bot detection, the behavior of the

resultant detection model is static as compared to bot behavior which continues to

evolve.

Extensibility: Can an anomaly detection system detect evolving malware? Botnets

continue to evolve to bypass security systems put in place for their detection. Existing

solutions rely heavily on bot specific characteristics for bot detection and hence are

easily evaded by evolving botnets which have immense resources at their disposal

[107].

5.3 Technical Approach

Since botnets continuously evolve their attack and evasion vectors, they have proven

to be a moving target for detection and mitigation mechanisms. Figure 25 shows

a high-level behavior representing a bot’s infection-to-attack lifecycle. We observe

that this structure has been invariant for the past 6-7 years [35,108]—essentially the

lifetime of the botnet phenomena. Since this invariant characteristic can be used as a

signature, we see several commercial and research solutions using rule based decision

engines over these lifecycle events [23, 35].

Hence, publically-available techniques [35] [42] detect bots through custom event

generation engines that flag infection, C&C communication and attack events, while

employing rule-based decision engines as post-processors which correlate these events

96

Vulnerability
Exploit

Spam

Bot−binary
Download

C&C Comm. Attack

Outbound
Scan

Spam

Inbound Scan

Figure 25: A time-invariant signature of a bot comprising its lifecycle events.

to build an infection score. We advocate a different and a more formal approach

by observing that a bot decision engine is perfectly-suited to be postulated as a

Bayesian inference problem. A bot’s lifecycle events can be directly mapped to a

Bayesian network, while stochastic inference on the network can be used to generate

the infection score. In this work, we propose Bottleneck: a Bayesian framework that

can solve the above shortcomings by replacing the heuristic based decision engine with

the formal inference of a Bayesian network. Bottleneck builds a Bayesian inference

network to model and reason about the causal relationships between bot lifecycle

events.

The rest of this chapter evaluates our proposed Bayesian bot decision engine, called

Bottleneck. For performance evaluation, we replace the rule-based decision engines of

the only two publically-available bot detection tools ([35, 42]) with Bottleneck. We

perform evaluations on two independently-collected traffic datasets, with the rule-

based decision engines forming the comparative baseline of our evaluations. Our

experiments show that Bottleneck can consistently match or outperform rule-based

97

decision engines in accuracy, adaptability, parameter tuning and detection delay.

5.4 Bottleneck: A Bayesian Framework to Infer a Bot Infection

In this section, we present Bottleneck as a Bayesian decision framework that en-

codes the bot lifecycle. It is pertinent to note that our system can run both in offline

(batch) or online modes as it has inherent support for churning decisions after win-

dowing the evidence. We first describe the bot lifecycle in detail. We then highlight

the suitability of Bayesian networks in modeling and detecting rapidly-evolving bot

malware. This is followed by a brief description of Bayesian networks and the param-

eter learning and inference algorithms used. Finally, we present an operational and

architectural view of our system.

5.4.1 Bot Lifecycle

Infection of a benign host within a network triggers a sequence of events, that

we have analyzed to be, consistent across a large corpus of botnets. These events

constitute the botnet lifecycle and can be employed for their detection. Bothunter [35]

also detects the lifecycle events in their state-based infection sequence model, for botnet

detection. However, BotHunter employs its own thresholding logic to detect and

declare bot infected hosts within the network. Being a closed source tool, little can

be extracted from such a thresholding process. It is not clear how the thresholds are

selected and what requirements need to be satisfied for bot declaration. Moreover,

with the evolution of social media, the social networking sites are extensively being

98

used as sources for botnet infection. Unlike earlier studies [35] [108], we incorporate

such events as well in our proposed lifecycle model.

Figure 25 presents different events constituting a botnet lifecycle. All these events

in the lifecycle pertain to the evidence that can be gathered from the network-level

flows. Hence, an inbound scan pertains to the inbound network flows recorded at

the network perimeter and bound towards (potentially susceptible) network hosts,

performing vulnerability scanning. Similarly, an Inbound infection pertains to an

end host exploit e.g. bufferoverflow or remote code execution etc. that triggers the

bot binary download. The host is now effectively a member of a botnet and hence

initiates bidirectional communication with the C&C (Command and Control) server.

The bot can then launch attacks as instructed by the botmaster and also infect other

hosts within the constituent network.

As for example, Conficker selectively scans the network to find vulnerable hosts.

It creates an HTTP server on the source host, and opens a random port between

1024 and 10000. Vulnerable host is exploited using bufferoverflow vulnerability in the

MS server RPC handling service to run shell code on the target host. If exploited

successfully, the host connects back to the HTTP server and downloads the bot

binary in DLL-form16. It then starts communication with the C&C server and scans

the network for more vulnerable hosts to infect. The botnet is also known to steal

personal information like credit card details.

16A few variants of the Conficker botnet copy these DLL-form bot binaries to removable media,
but since these events cannot be extracts from the network trace, we donot include such events in
our lifecycle. Similarly the bot also performs password cracking to copy itself to the ADMIN$ folder,
update registry values and performs other configuration changes, which we also not consider as part
of our lifecycle events owing to the inability to extract them from the network trace.

99

Storm is another famous botnet that spread via spam containing infected link that

results in drive by download exploit. Once exploited, the host contacts the C&C

servers and sends out more spam to infect other hosts within the network.

5.4.2 Why Bayesian inference for Bot detection?

Our initial motivation to employ Bayesian inference in detecting bot infections

stems from the rich history of the use of this technique in medical domain for diagnos-

ing diseases. We argue that, much like a disease can be identified by its characteristic

symptoms, a bot infection is distinctly identifiable by its infection lifecycle. Beyond

this intuitive motivation, our choice stems from background research exploring the

challenges faced by an anomaly-based botnet detector as laid out succinctly by Som-

mer and Paxson [105]. We summarize these challenges and discuss why we believe

Bayesian networks are perfectly-suited to overcome these challenges for the present

problem of bot detection.

Sommer and Paxson point out that most anomlay detectors train their machine

learning algorithms to learn normal behavior, but subsequently use these systems

to identify outliers [105]. Since these algorithms are tuned to find similarities rather

than differences, they yield lower accuracies as they misclassify untrained, yet benign,

network traffic as malicious.

A Bayesian network that models the bot lifecycle addresses these two related prob-

lems of lower accuracy and data training. Instead of modeling normality, such a

Bayesian network models the high-level bot lifecycle which remains largely time-

invariant. Thus it can be trained to identify the existence of bot and, more impor-
100

tantly, to not be impacted by presence of unknown but benign traffic.

Another problem with anomaly detection system is that their training sets invari-

ably have missing data [105]. This leads to a bias toward patterns present in the

dataset while not capturing any missing patterns. A Bayesian network, however, can

be built using expert opinion about the high-level bot lifecycle. Thus such a solution

is not forced to learn the structure of bot infection from (potentially incomplete) data.

It is important to note that data is still used to learn the conditional probabilities

between the lifecycle events. However, the Bayesian network has the innate ability

to extrapolate missing data (using, for instance, EM [109] algorithm) provided the

structure is generic and correctly encodes the causality in the system.

A final problem identified by Sommer and Vern relates to the “semantic-gap” be-

tween the detection signal and the translation into an actionable item for a network

administrator. This translation requires presenting more than a binary detection

alert (as its currently generated) to make informed decision. Furthermore, it needs

to handle different policy-based responses to similar levels and forms of alerts. A

Bayesian network bridges this gap in two ways. First, its detection is accompanied

by a belief value that allow different response policies to be implemented. Second,

influence diagrams, formed by adding a decision node within the original Bayesian

network, provide administrators with a simple way to encode policies in the form of

utility tables [110].

101

X
2

X
1

X
3

Figure 26: A Bayesian Network.

5.4.3 Bayesian Networks

Bayesian network based models have been used extensively to model uncertainty. A

Bayesian network is a collection of nodes (or random variables), all connected together

in a directed acyclic graph (DAG) structure. The nodes represent events of interest

i.e. information we want to track or infer e.g. communication of a monitored host with

the C&C server, bot-binary being downloaded to a local host etc. The directed links

between the nodes represent the direction of causality and the information dependence

between nodes. A node is independent of all non-descendent nodes given the parent

node(s) according to the directed Markov property [111].

Bayesian networks, in essence, represent a joint probability distribution function

which can be factored depending upon the causal relationships in the network struc-

ture. Hence, if a network comprises nodes X1, X2 and X3, with nodes X1 and X2

causally related to node X3 as shown in Figure 26, then the Bayesian network can be

represented as the joint probability distribution P (X1, X2, X3), which can be further

102

factored as follows:

P (X1, X2, X3) = P (X1/X3)P (X2/X3)P (X3). (13)

More generally, with a network comprising n nodes i.e. X = X1, X2, . . . , Xn, the joint

probability distribution for any Bayesian network can be represented using recursive

factorization as follows:

P (X) =
∏

P (Xi/parents(Xi)). (14)

The conditional probability distribution reflects the causality in the Bayesian network

and entails which random variable is conditioned on other variables.

Learning a Bayesian belief network includes: a) learning bayesian network struc-

ture; and b) learning Bayesian parameters. Structure learning in Bayesian networks

entails the learning of dependence and independence relationships between the do-

main variables. These are represented by uni-directional arrows leading from the

cause to the effect variable. Parameter learning, on the other hand, is learning the

conditional probability tables (CPTs) at each node. These parameters represent the

conditional probability values for each state of the variable given each value of the

parent node. For nodes with no parents, only prior-probabilities are specified. Once

the network is learnt and parameters are set, it is then used for inference. Following

sections give a detailed overview of the Bayesian learning and inference techniques

employed for our bot detection solution.

103

5.4.3.1 Bayesian Structure Learning

Since we had a large amount of ground-truthed data we deemed it pertinent to learn

the Bayesian network structure as well as performing Bayesian learning using data.

There are generally two approaches used for bayesian structure learning: a) search

and scoring based approaches; and b) dependency-analysis based approaches [112].

We use the latter for our structure learning since these are known to be efficient

and provide better prediction accuracy [113], also due to the lack of prior knowledge

pertaining to the causal network parameters required by the former [112].

We employ the Chow and Liu’s [114] algorithm for Bayesian structure learning

since it is shown to be highly consistent [115]. A Bayesian network with a variable

set X of n random variables is represented by a joint probability distribution:

P (X) = P (X1, X2, . . . , Xn). (15)

The algorithm approximates the joint probability distribution P(X) with a product

of first order distributions of tree dependence.

P (X) =
n∏

i=1

P (Xi/Xi−1). (16)

In estimation, it is important to identify the goodness of approximation. The algo-

rithm uses the Kullback-Leibler divergence measure to identify how much the product

of the first-order distributions diverge from the n-dimensional joint distribution:

D(P, Pa) =
∑

x

P (X)log
P (X)

Pa(X)
. (17)

104

such that

D(P, Pa) ≥ 0. (18)

with equality if both the distributions are the same. Equation 17 can further be

solved to the following form:

D(P, Pa) = −
n∑

i=1

I(Xi, Xj(i)) +
n∑

i=1

H(Xi)−H(X). (19)

where I(Xi, Xj(i)) is the mutual information between two random variables. Hence,

the goodness of the approximation depends on maximizing the overall mutual in-

formation between the constituent random variables in the Bayesian network. The

algorithm employs the maximum-likelihood estimator to construct joint frequency

distributions from the samples as follows:

f(Xi = u,Xj = v) =
n(Xi = u,Xj = v)∑
u,v

(Xi = u,Xj = v)
. (20)

f(Xi = u) =
∑

v

f(Xi = u,Xj = v).

fuv(i, j) is used as a maximum likelihood estimator for the the probability P (Xi =

u,Xj = v). Applying the optimization procedure (Equation 19) on this estimator and

selecting the structure on which the tree sum of the mutual information is maximized

gives the most optimum Bayesian network structure learnt from data.

We experimented with two Bayesian network structures: 1) The Bayesian network

structure learnt from data using the algorithm described above; and 2) A Bayesian

network structure based on expert opinion. Both these Bayesian networks are pre-

sented in the following Section.

105

5.4.3.2 Bayesian Parameter Learning and Belief Propagation

Learning Bayesian network parameters is trivial. Conditional probability tables

are populated with the empirical conditional frequencies from data [116] [113] i.e

with frequency ratios [111]. This is termed as the counting method [117]. Moreover,

in case of missing data, expectation maximization, gradient decent can be used for

approximation [117].

Once, the Bayesian network is learnt and probability tables are set, it is used for

Bayesian inference i.e. computing belief value of a node when the value of other vari-

ables is known. In performing inference, the DAG represented by the joint probability

distribution (Eq. 13) is used to calculate the marginal distributions that are condi-

tioned over the observed events. Hence, with the occurrence of bot lifecycle events,

the node CPTs are updated as the belief is propagated throughout the Bayesian net-

work. We employ the junction tree method [111] [118] for Bayesian inference and

belief propagation because of its faster execution [111] [117]. Here we provide a brief

overview of the junction tree algorithm, interested readers are referred to [111] for

more details.

The junction tree inference algorithm proceeds as follows: 1) Moralize the Bayesian

network; 2) Triangulate the graph; 3) Identify the cliques in the resulting graph which

inturn form the nodes of the desired junction tree; 4) Propagate the λ and π values

through the junction tree to perform inference. We explain each of these steps in

detail below.

The first step in converting the Bayesian network DAG into a junction tree is

106

to moralize the graph [119]. This is done by inserting undirected edges between

the parents of each child node in the DAG. Hence, each node and its parents now

form a complete subgraph. This is followed by replacing all the directed edges with

undirected edges in the original graph. The resulting graph in then triangulated [120].

A triangulated graph is an undirected graph such that any simple cycle of four nodes

in the graph has atleast one cord where a chord is described as an edge that does not

appear in a path. We next identify cliques, were clique is a complete subgraph, in the

triangulated graph. [111] proposes an algorithm to represent the joint distribution of

the DAG in terms of functions on the cliques and hence generate a list of maximal

cliques. [120] describes a technique to connect the cliques using maximum cardinality

ordering to form a junction tree. The junction trees adhere to the running intersection

property which implies that if a node is in two cliques, it is a part of all cliques

between the two cliques in the junction tree. The property ensures consistency of

message passing between cliques. In the junction tree, a clique is a basic unit of

local computation. Hence smaller the size of the cliques, faster the overall inference

computation. Thus far, we have explained one scheme for constructing a junction tree

from our Bayesian network DAG. We now explain the process of performing belief

propagation in the junction tree using a message passing algorithm.

Belief propagation in junction trees is achieved by computing the marginal for each

clique conditioned over the observed events, followed by computing marginal for each

node (i.e. random variable) within the clique. Here we explain one such message

passing algorithm, the Pearl Method [120] to propagate the λ and π values within

the junction tree for belief propagation.
107

Let e be the set of observed events. For a specific variable X, these events can be

divided into two sets: e−X for all events that constitute variables that are descendants

of X, and e+X for all other event variables. The following two values are used for the

belief computation of variable X:

λ(X) = P (e−X/X). (21)

π(X) = P (X/e+X). (22)

Since X can have multiple values, λ and π will be vector valued, with a value for each

state of variableX. These λ and π values are passed between the nodes in the junction

tree in an orderly fashion, hence called the message passing algorithm. Conditioned

on the observed events, the posterior probability of the variable X can be inferred as

follows:

P (X/e) = α.λ(X).π(X), (23)

where α = 1
P (e)

. Equation 23 is computed to infer the new belief of the random

variable X on the occurrence of a set of events e.

We now describe briefly how the λ and π values are computed. Readers are referred

to [120] for more details.

λ(X) is computed on all variables that are descendants of variable X. Let these be

variables: Y1, Y2,. . . , Yn. For cases where variableX is observed, λ acts as an indicator

variable. However, in cases where X is not observed, the λ message is computed as

follows:

λ(X) =
∑

yi

P (e−Y /yi).P (yi/X), (24)

108

where P (e−Y /yi) is the marginal probability λ(yi). Hence, to compute the value of

λ(X), we need to have the λ values for all its descendant nodes. Thus, λ values

are propagated upwards through the junction tree. π values, on the other hand are

propagated downwards from parent node variable(s) Y to child node variable X as

follow:

π(X) =
∑

yi

P (X/yi).π(yi). (25)

Hence to compute the π value for a variable, we need to compute the π values for its

parent nodes, and the conditional CPT values for the variable X.

5.4.4 Architecture of the Bottleneck System

We now present an operational and architectural view of the Bottleneck system.

Figure 27 shows that we subdivide the system into three components: Event genera-

tion, updates to Bayesian network, and bot classification. It is pertinent to note that

our system can run both in offline (batch) or online modes as it has inherent support

for churning decisions after windowing the evidence. We next explain the different

components in detail.

5.4.4.1 Lifecycle Event Generation

We divide a bot detector into two components: 1) an Event Generation Engine

(EGE) that flags events part of the bot lifecycle (infection, propagation, C&C com-

munication, attack, etc.); and 2) a decision engine which incorporates the causality

in the EGE events to generate a confidence in bot detection. The EGE is generally

a Network IDS (NIDS) (e.g. Bro [19] or Snort [20]), above which the decision engine
109

will be implemented. The EGE presents the events to the post-processing decision

engine in the form of a case file for each host indicating whether or not each of the

specified events has been detected in the last evaluation window.

In this design, we have intentionally decoupled the decision engine (our novelty)

from the lifecycle event detection. This decoupling serves two purposes. First, its

helps in adapting to the changing threat landscape of botnets. While the high-level

bot lifecycle will remain the same in the foreseeable future, the actual manifestation

of these lifecycle events will continue to evolve. This decoupling allows the Bottleneck

architecture to improve its accuracy in proportion to improvement in event detection

mechanisms, without having to alter its decision engine. Secondly, and perhaps more

importantly, this decoupling allows us to compare different decision engines using the

same set of events. Alternately, we can also replace or aggregate multiple engines to

improve the accuracy.

5.4.4.2 Bayesian Network Classifier using the Bot Lifecycle

The events generated by the EGE are input to an expert opinion based Bayesian

network classifier shown in Figure 27.

Bayesian networks represent a joint probability distribution function which can

be factored depending upon the causal relationships in the network structure. The

conditional probability distribution reflects the causality in the Bayesian network

and entails which node (random variable) is conditioned on other nodes (variables).

For learning Bayesian parameters, conditional probability tables at the nodes are

populated with the empirical conditional frequencies from data [116]. Once, the
110

Network
traffic

BOT

C&C
Comm.

Event
Generation

Engine
(EGE)

Events

Inbound
Scan

Vulnerability
Exploit

Bot−binary
Download

Attack

getBelief (BOT)
 >
 threshold

Bottleneck’s Bayesian Decision Engine

Figure 27: Bottleneck’s architecture, also showing the Bayesian network (based on
bot lifecycle) used to infer bot infections.

Bayesian network is learnt and probability tables are set, it is used for Bayesian

inference i.e. computing belief value of a node when the value of other variables is

known. We employed the junction tree method [118] for Bayesian inference which uses

a message passing algorithm for belief propagation. Bayesian networks are described

in more detail in Section 5.4.3.

Bayesian networks have very clear semantics which make them perfectly suited for

classification [120]. The nodes in a classification network can be of two categories:

hypothesis and evidence nodes. We use the BOT node as the hypothesis node and

make it the parent of all the lifecycle nodes that are evidence nodes for bot classifi-

cation. These evidence nodes represent the bot lifecycle events we obtain from study

of previous work and a large corpus of bot behavior (Figure 25).

The initial conditional probabilities of this bayesian network are learnt from a data
111

trace. At every detection interval, the presence of lifecycle events, conveyed by the

case file from the EGE, updates the conditional probability that propagates through

the network to update the belief of the classification node.

5.4.4.3 Bot Classification and Action

The updated belief of the BOT classification node can then be compared with a

threshold to classify a bot detection. We can easily extend this notion to compare

with several different thresholds to trigger correspondingly different reactions.

5.5 Bottleneck Performance Evaluation

In this section, we validate the advantages discussed earlier, by evaluating Bottle-

neck as a post-processing decision engine for two existing bot detectors–namely BotH-

unter [35] and BotFlex [42]. Accuracy is evaluated on two independently-collected

datasets: Nayatel 2.3.1 and SysNet Lab 2.3.2 trace.

5.5.1 Existing Bot Detectors

BotHunter [35] and BotFlex [42] are the only bot detection tools freely-available

online. We use these tools for evaluations throughout this paper.

BotHunter is a decision engine built over the Snort IDS. It modifies the Snort

ruleset to detect events possibly indicative of a bot infection, and implements a rule-

based correlation layer to evaluate whether a given host is infected. BotFlex similarly

implements a rule-based decision engine over an event generation engine (EGE) that

uses the Bro IDS. When evaluating Bottleneck, we use as input the events gener-
112

0 0.05 0.10 0.15 0.20 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 p
os

iti
ve

 R
at

e

BotFlex

BotHunter

Bottleneck on Botflex−EGE
Bottleneck on BotHunter−EGE

Figure 28: Accuracy evaluation of BotHunter, BotFlex and Bottleneck on Nayatel
ISP dataset. Bottleneck is trained and tested on the trace using 10 fold cross

validation.

ated by BotFlex and BotHunter’s EGEs. We therefore evaluated Bottleneck twice,

once using events generated by BotHunter-EGE and once using events generated by

BotFlex-EGE.

We downloaded BotHunter and BotFlex and their various blacklists on the day of

the data collection, thus allowing a judicious comparison. To ensure transparency

and allow future comparison, we will anonymize and release the Snort/Bro logs on

our project website [121].

5.5.2 Accuracy Evaluation

We first evaluate the overall accuracy of Bottleneck, BotHunter and BotFlex over

the Nayatel dataset. All accuracy results presented henceforth were obtained using

10-fold cross validation. We generate case files for the entire evaluation trace, in effect

running the system in an offline (batch) mode that is common in many commercial

malware detection appliances. Figure 28 provides ROC-based accuracy evaluation for

this scenario under different detection thresholds. Before we present the evaluation
113

Table 12: Investigating false positive and false negatives of Bottleneck, Botflex and
BotHunter on the Nayatel dataset

(a) Bottleneck and BotHunter over BotHunter-EGE

Bottleneck FP: 14 4 IPs: 3 or more lifecycle events observed
7 IPs: Attack observed coupled with at least one other event
3 IPs: CnC Communication observed

FN: 13 4 IPs: No lifecycle events observed
8 IPs: Only one event observed
1 IP: Exploit,CnC,Attack observed

BotHunter FP: 14 9 IPs: Caused by E8
5 IPs: Bot events generated so declaration conditions are met

FN: 23 4 IPs: No lifecycle events observed
7 IPs: Event detections insufficient to trigger bot declaration conditions.
12 IPs: Neither of the two conditions satisfied due to windowing

(b) Bottleneck and BotFlex over BotFlex-EGE

Bottleneck FP: 17 16 IPs: 3 or more events triggered by EGE
1 IP: Exploit and egg download observed, given high weight by Bayesian in-
ference module

FN: 7 Inbound scan with at most two other events (Inbound scan always lowers the
overall belief)

BotFlex FP: 17 3 or more events triggered

FN: 7 6 IPs: Event detections insufficient to trigger bot declaration conditions
1 IP: Inbound scan and exploit with CnC communication

results, it is pertinent to reiterate that Bottleneck’s design allows us to threshold the

belief in the classification (BOT) node (Figure 27). This thresholding is a unique

feature as it allows the user to adapt the detection engine in accordance with organi-

zational needs. On the other hand, accuracy results of rule-based systems (BotFlex

and BotHunter) are points in the ROC space.

It can be observed that BotHunter and Botflex provide good accuracies (> 75%

TP and 5 − 6.5% FP) on the ISP dataset. This is mainly because the bot traffic

in the dataset triggered a large number of bot lifecycle events, which facilitated the

decision engines of BotHunter and BotFlex.

In comparison to BotHunter, Bottleneck provides a significant increase in true

114

positives (from 78.5% to 87.9%),while reducing the false positives slightly from 5.1%

to 4.8%. Moreover in comparison to BotFlex, Bottleneck matches BotFlex’s TPR,

while inducing a slight decrease in FPR (from 6.2% to 5.1%).

Based on the above results, we observe that Bottleneck provides comparable or

better accuracy than BotHunter and BotFlex. We now provide a breakdown of the

false positives and false negatives to better understand why Bottleneck offers accuracy

improvements as compared to BotHunter and BotFlex, despite relying on the same

underlying EGE.

5.5.2.1 Detailed Analysis of FPs and FNs

Table 12 presents a detailed analysis of the false positives and false negatives flagged

by Bottleneck, BotFlex and BotHunter.

Table 12 (a) compares BotHunter and Bottleneck, with both receiving events from

the BotHunter-EGE. Bottleneck, with its learning-based logic, is able to detect 4

of the 7 hosts that BotHunter misses because the lifecycle events that trigger BotH-

unter’s conditions do not appear in the dataset. Hence these infections do not strictly

adhere to the rulebase and are consequently missed by BotHunter. Bottleneck, on

the other hand, is able to detect these infections as it observed and learned similar

incomplete event combinations on infected hosts in the training data. Hence the

Bayesian framework is able to extrapolate missing data, a feature that rule-based

decision engines lack.

Regarding the six hosts detected by BotHunter but missed by Bottleneck, five do

not generate any lifecycle event, and are understandably missed. These hosts do
115

however generate one BotHunter-specific event (E8[rb]17) for outbound connections

matching a blacklist and are thus included in the true positive count for BotHunter.

In other words, a more robust blacklist would also allow Bottleneck to flag these bots.

Interestingly, 9 out of 14 false positives by BotHunter are also caused by the same E8

event, so we hypothesize that this blacklist is designed to be inclusive and broad.

Table 12(b) compares BotFlex with Bottleneck, with both receiving events from

the BotFlex-EGE. We observe that 15 of the 17 FPs by both Bottleneck and BotFlex

are common, and are caused by bot lifecycle events being detected by BotFlex-EGE

on benign hosts. Similarly, 6 out of the 7 FNs are also common to both and are caused

by insufficient events being observed by the EGE. We conclude, therefore, that many

of Bottleneck’s FPs in our evaluation are a consequence of the liberal event generation

policy employed by BotFlex.

5.5.2.2 Discussion

The results presented in this section have established that, while operating on the

same event generation evidence as existing bot detectors, the Bayesian Bottleneck

decision engine:

• Enables existing bot detectors to achieve comparable or better accuracies than

their built-in rule-based decision engines;

• Allows the accuracy of the system to be tuned with respect to organizational

needs; and

17Outbound to malware site: ¡Host¿ has connected to a known malware control site.

116

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
 p

o
si

tiv
e

 r
a

te

Botflex

BotHunter

Bottleneck on Botflex−EGE
Bottleneck on BotHunter−EGE

Figure 29: Bottleneck, BotHunter and BotFlex evaluated on the Sysnet trace.
Bottleneck is first trained on the ISP dataset and then tested on the Sysnet trace.

• Can provide good accuracy even when the entire bot lifecycle is not present in

the training dataset.

Now we present some additional benefits of employing a stochastic Bayesian deci-

sion engine for bot detection.

5.5.3 Accuracy under changing bot behavior

We argued earlier that Bayesian inference, being stochastic in nature, should be

able to maintain high accuracy with changing bot behavior. To substantiate this

argument, we train the Bayesian network on the Nayatel dataset, but subsequently

evaluate accuracy on the SysNet dataset. Since the bot traffic in the SysNet dataset

was triggered manually (by running the binary), in a controlled environment, this

dataset is intrinsically different from the ISP dataset and constitutes partial bot

lifecycle events. This is a realistic scenario since botnets are continuously evolving to

mask their propagation activities to evade detection [1].

Figure 29 provides an accuracy comparison of BotHunter and BotFlex with Bot-

117

tleneck, under the present experimental setup. It can be seen in Figure 29 that as

the bot behavior changes, rule-based decision engines are unable to maintain their

accuracy, resulting in missed detections. It can be observed that Bottleneck provides

consistently high accuracy despite changing bot behavior. It detects 9 out of the 10

infected hosts; the only host that is missed has no lifecycle events detected by either

BotFlex- or BotHunter-EGE.

Moreover, when taking input from the BotHunter-EGE, Bottleneck generates only

one false positive, which occurs because outbound scanning (which has high correla-

tion with bot infection in the training data) is detected on the host. It can be observed

that Bottleneck generates significantly higher FPs on BotFlex-EGE. A closer exam-

ination of the false positives reveals that BotFlex detects events such as inbound

exploit, CnC communication and outbound scanning on these hosts, and hence Bot-

tleneck’s false positives are in this case inherited from the EGE itself. Bottleneck

is able to achieve an overall TP of 90% with only one additional false positive as

compared to BotFlex.

In comparison to BotHunter’s 4 true positives, Bottleneck is able to detect 7 hosts

with zero false positives, and 9 hosts with only one false positive. We hence conclude

that Bottleneck, being stochastic in nature, is able to adapt to changing bot behavior.

This allows Bottleneck to offer higher accuracy than rigid rule-based decision engines.

All real-time detection engines employ some windowing mechanism for detection –

evidence is accumulated over a specific time window, after which a decision is made,

and previous evidence is completely or partially discarded. The question that arises

here is how much memory to retain between windows – too much could mean falsely
118

identifying no-longer malicious hosts, while too little could result in missed detec-

tions. In this section we evaluate Bottleneck for real time deployment and provide

a comparison with the windowing mechanism employed by Bothunter. BotFlex does

not provide any windowing and hence is not evaluated in this section.

To understand the effect of windowing on a detector’s accuracy, we analyzed BotH-

unter’s 23 missed detections, shown in Table 12. On 12 (approximately 50%) of these

hosts, different lifecycle events were indeed flagged by the BotHunter EGE. However,

being spread over different observation windows, these events failed to trigger any of

the decision engine’s conditions.18

Bayesian networks present a built-in mechanism to handle the windowing issue

by fading the belief after every detection window. Not only is this method tunable

(by changing the fading degree), it also provides a mathematically rigorous way to

handle the question of how much previous information we should retain. Bottleneck

implements a windowed Bayesian network with fading degree representing the extent

of memory retained between windows. The fading degree varies between [0,1], with

higher values signifying less memory.

5.5.4 Real-Time Evaluation of Bottleneck

Figure 30 evaluates Bottleneck on 5-minute evaluation windows with changing fad-

ing degree. It can be observed that the current evaluation does not result in any

significant accuracy degradation compared to running the system in batch-mode. We

18BotHunter’s three conditions are (1): evidence of (local host infection AND outward bot coordi-
nation or attack) (2): at least two distinct signs of outward bot coordination or attack (3): evidence
that a host attempts communication with a confirmed malware site.

119

0 0.05 0.10 0.15 0.20 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

TPR and FPR for 5−minute windows compared to no windowing

5−minute window
No windowing (Bottleneck on BotHunter−EGE)

Figure 30: TPR and FPR for 5-minute windows compared to no windowing

thus conclude that Bottleneck is capable of highly accurate real-time bot detection.

It can be observed that Bottleneck consistently provides high accuracy with 86.9%

TP and 4.4% FP at the best operating point. Hence, Bottleneck provides 3.1% higher

overall accuracy as compared to BotHunter.

5.5.5 Detection Delay

Next we show the detection delay incurred by Bottleneck. We compute this delay

with reference to the time the groundtruth flags a bot based on the observed C&C

communication. We measure the delay for Bottleneck on a 5-minute window with a

threshold of 0.3, Bottleneck’s best operating point as seen in Figure 30.

Let TGT be the time the groundtruth declares an IP as a bot and let TB be the

time Bottleneck detects it. Hence, TGT -TB is the delay incurred by Bottleneck with

reference to the groundtruth. We segregate the detection delay incurred by Bottle-

neck into two subsets: the first subset constitutes 29 bot IPs where TB < TGT , i.e.

Bottleneck’s detection time leads the groundtruth (Figure 31(a)); the second subset

constitutes 64 bot IPs where TB > TGT , i.e. Bottleneck’s detection lags behind the
120

65 70 75 80 85 90 95
0

50

100

150

200

250

300

350

Host ID

D
et

ec
tio

n
di

ffe
re

nc
e

(m
in

ut
es

)

T(GT) − T(B)

(a) Bottleneck lead time with respect to
groundtruth

0 10 20 30 40 50 60 70
−350

−300

−250

−200

−150

−100

−50

0

Host ID

D
et

ec
tio

n
di

ffe
re

nc
e

(m
in

ut
es

)

T(GT) − T(B)

(b) Bottleneck lag time with respect to
groundtruth

Figure 31: Bot detection delay incurred by Bottleneck.

groundtruth (Figure 31(b)).

We thus observe that when leading, Bottleneck leads the groundtruth detection by

an average lead time of 57 minutes and a standard deviation of 77.5 minutes (Figure

31(a)). On the other hand, when lagging, the average lag time is 63.2 minutes with a

standard deviation of 80.8 minutes (Figure 31(b)). However, overall Bottleneck lags

with an average of 29.2 minutes and a standard deviation of 97.2 minutes; this delay

is quite reasonable considering that we also get accuracy comparable to the batch

mode operation.

121

C&C
Comm.

BOT

Attack

Vulnerability
Exploit

Bot−binary
Download

Figure 32: Learnt Bayesian Network.

Table 13: Accuracy Evaluation of the Bayesian network Learnt from Data

Threshold TPR FPR FNR TNR
0.5 95.9 % 0 % 4.1 % 100 %
0.6 95.9 % 0 % 4.1 % 100 %
0.7 95.9 % 0 % 4.1 % 100 %
0.8 95.9 % 0 % 4.1 % 100 %
0.9 95.9 % 0 % 4.1 % 100 %
0.95 95.9 % 0 % 4.1 % 100 %

5.5.6 Learning Bayesian Network from Data

Bayesian networks offer the ability to learn the Bayesian network structure from

data.

Learning a Bayesian belief network includes: a) learning Bayesian network struc-

ture; and b) learning Bayesian parameters. Structure learning in Bayesian networks

entails the learning of dependence and independence relationships between the do-

main variables. These are represented by uni-directional arrows leading from the

cause to the effect variable. Parameter learning, on the other hand, is learning the

conditional probability tables (CPTs) at each node. These parameters represent the

conditional probability values for each state of the variable given each value of the

parent node. For nodes with no parents, only prior-probabilities are specified. Once

the network is learnt and parameters are set, it is then used for inference on the

remaining 75% of the trace.

122

Figure 32 presents the Bayesian network learnt from data using the Chow and

Liu’s algorithm. Similar to earlier evaluations (Section 5.5), we trained the learnt

Bayesian networks on 25% of the trace, by volume, for parameter learning. It was

then evaluated for accuracy on the remaining 75% of the bot and non-bot traffic

trace. Table 13 provides ROC-based evaluation of the learnt Bayesian network. The

network provides an overall accuracy of 99.78% with 0 false positives. However, there

are comparatively more false negatives as compared to the expert opinion based

Bayesian network. Our analysis shows that missing causal relationships between

nodes in the learnt model, decreased the impact of the parameter updates when new

events occurred in the trace and consequently resulted in the missed detections.

5.6 Discussion of Blind Spots and Future work

In this section, we enumerate some limitations of the proposed Bayesian network

based bot detection solution and propose countermeasures to mitigate these limita-

tions.

• Like other probabilistic models, Bayesian networks are susceptible to slow poi-

soning and mimicry attacks. These attacks can effect both the parameter learn-

ing in Bayesian networks and the Bayesian classification leading to deliberate

false positives. We believe that the poisoning of parameter learning can be pre-

vented by either training online over sanitized and verified trace and updating

the learned CPT values only after an expert vets that change. Furthermore,

we can employ a larger window over which we completely reset the Bayesian
123

networks probabilities to their originally learnt priors. This will mitigate any

slow poisoning attack.

• The accuracy provided by Bottleneck is limited by the mechanisms for event

generation. We need to look into how different mechanisms can be added to

the output of an EGE. Even more important is to define how these events will

be combined. One option is to use simple majority, AND, and OR rules. A

more interesting option to explore is to see if we can incorporate the different

strengths and weakness of each mechanism into the way the Bayesian network

updates its bot belief.

• Bottleneck, in its current state only provides bot detection and no defense ca-

pability. This can be incorporated by augmenting the current Bayesian net-

work with utility nodes results in an influence diagram. The utility node is

connected to the nodes on which we desire to implement policy decisions. A

network administrator can simply add a utility table specifying their policy and

corresponding actions can take place based on not only the belief of the BOT

node, but other evidence nodes and their state.

• Bayesian inference algorithms are generally complex and require a decent pro-

cessing to work. We need to evaluate this performance aspect of our algorithm

to understand its feasibility for online operation.

124

5.7 Chapter Summary

In this chapter we proposed a machine learning-based specific-purpose ADS for the

detection of bots. Bottleneck formulates its decision logic on a Bayesian network based

on the high-level and abstract bot lifecycle. We show that the Bayesian network based

decision logic provides comparable accuracy to rule-based bot detection tools, while

providing superior performance when tested with changing traffic characteristics.

In the next chapter we model general-purpose anomaly detection systems and high-

light that these systems are inherently susceptible to evasion margin estimation at-

tacks. We propose to redesign anomaly detection systems and present some novel

ADS design philosophies, to make them robust against evasion attacks.

125

CHAPTER 6: RETHINKING THE ADS DESIGN PHILOSOPHY

While the original models for intrusion detection system were proposed more than

two decades ago [17], intrusion detection or more specifically anomaly detection, still

remains an active area of research as the attacks continue to adapt and evade anomaly

detection solutions [21]. In this chapter, we argue that there is a dire need to for-

mally revisit the weak basis and assumptions on which anomaly detection systems

have been designed thus far. We advocate a radically different open standards ADS

design philosophy. in which the security of the system, instead of relying on the ADS

detection methodology, is dependent on random network parameters.

After extensive evaluations of the current general-purpose anomaly detection sys-

tems we observed that ADS limitations in terms of low accuracies and susceptibility

to evasion attacks, are deep rooted in the inherent design of these systems. Hence,

we believe, there is a need to redesign the anomaly detection systems to enable them

to offer acceptable accuracies to enable the commercial deployment of these systems.

In the following sections, we highlight the high accuracies offered by statistical ADSs

and develop a thorough understanding of an attacker’s ability to design network at-

tacks to evade state-of-the-art ADSs. We offer a few research directions to pursue a

paradigm shift in the design philosophy of future general-purpose ADSs so that they

are able to exhibit a high degree of robustness under any attack scenario.

6.1 Motivation

The last decade has witnessed a considerable shift in the malware trends and eco-

nomics. Malware are now being designed specifically for espionage [122], to sabo-

tage [103], and to cause large scale chaos and destruction [104]. As the detection

methodologies have refined over the years, so have the attackers with stealthy mal-

ware propagation [15]. Thus, in addition to the exponentially increasing volume and

impact of these new malicious code threats, the stealthiness, sophistication and im-

pact of malware attacks are soaring at an alarming pace.

6.2 Challenges

Numerous general-purpose Anomaly Detection Systems (ADSs) have been pro-

posed in the last few years to combat these rapidly evolving attacks. Some of these

systems are now experiencing commercial deployments [123]– [23]. Over the last few

years, the main research focus has been on either improving constituent components

of the anomaly detection systems e.g. automating maintenance and calibration [124],

optimizing training since training data is scarce [125] or providing detection solutions

that build on top of existing anomaly detection systems [126]. These efforts have

have not been able to make ADSs any more secure since adding more security layers

does not necessarily mean more security. Hence, even today, the anomaly detection

systems suffer from the same inherent limitations of low accuracies and susceptibility

to attacks as they were when they were originally conceived. Hence, there is a need

to revisit the ADS design philosophy and address the root cause of the limitations
127

inherent in the ADS design.

6.3 Statistical Anomaly Detection

It can be observed from the preliminary evaluations in Chapter 2 (Figure 3 and

7) that statistical ADSs, constituting both classes of the ADS domain (programmed

as well as self learning) as shown in Figure 2, provide the best accuracy on both

of the attack traffic datasets; LBNL (TRW [41]) as well as Endpoint (Maximum

Entropy [47], TRW-CB [43], Kalman Filter [46]). Volumetric IDSs [32] [48] could

not provide acceptable accuracy dividends on the LBNL dataset owing to the low

rate of the constituent attacks. In contrast to volumetric IDSs, rule based ADS

classifiers [44], [40] provided high detection rates albeit an unacceptable false alarm

cost. This is deep rooted in the fact that that normal traffic behavior of a network

changes with time.

Moreover statistical IDSs, due to their inherent stochastic nature, are considered

more rigorous against malware attacks [18] as opposed to rule based systems and

simple thresholded IDSs that need to be constantly updated with changes in network

characteristics and also due to their complete inherent reliance on human factor for

detection of anomalies. However, the statistical IDSs rely heavily on the underlying

statistical model and parameters that mirror the network traffic characteristics. Due

to their reliance on the network traffic, an intelligent and a resourceful attacker can

bypass such an ADS by skillfully crafting the probes that it sends into the network so

that it stays just below the radar and evades an ADS’s detection. In the next section,

128

we stochastically model such an evasion process and show that it is rooted into the

ADS detection methodology used by the ADSs today. We also provide experimental

results in the form of ROC curves for the three most prominent and benchmarked

statistical ADSs in Figure 3 and 7 [47], [41], [43].

6.4 Stochastically Estimating the Evasion Margin

Many research efforts in the recent past have been focused towards evading anomaly

detection systems [127]– [28]. However, as the attacks became increasingly sophisti-

cated, the ADSs grew weaker in comparison [128]. We argue that the prevalent ADS

design methodology is fundamentally flawed [129] because currently the anomaly de-

tection algorithms rely on the premise that the underlying detection principle is not

known to the attacker. This assumption, however, does not hold in real world where

some knowledge about the ADS principle can be obtained through several methods

like social engineering, fingerprinting, trial and error, etc. [130]. In fact, in many

scenarios an ADS can be evaded without knowing the exact design principles; several

types of attacks (e.g., polymorphic blending attacks [130], [28], mimicry attacks [131],

portscans [7], etc.) have been proposed in existing literature.

Throughout this section, we assume the role of an attacker. As a proof-of-concept,

we will present stochastic methods to estimate the evasion margin for two existing,

prominent and diverse statistical ADSs [47], [41], [43]. We will use real-world at-

tack traffic datasets to provide preliminary experimental results to demonstrate the

evasiveness of our methods.

129

6.4.1 Breaking the Maximum Entropy ADS

Maximum Entropy [47] is a general-purpose anomaly detection system that uses

information theoretic methods to identify anomalies. In the following subsections,

we briefly describe the detection principle of this ADS and then present stochastic

methods for the estimation of basic ADS configuration parameters.

6.4.1.1 Detection Principle

The Maximum Entropy detector employs information theoretic Kullback-Leibler

divergence measure for anomaly detection. The KL measure computes how much

the baseline distribution p(ω) (obtained from benign traffic profiles) varies from the

real-time distribution q(ω) (which might contain benign as well as malicious traffic

traces). The traffic is divided into 2348 packet classes based on the destination

ports and the protocol. The detector uses maximum entropy estimation to develop

the baseline distribution for the traffic classes. Since the attacker does not know

the network topology and/or the services running within the network, it tends to

communicate with hosts that do not exist or hosts that do not have the requested

service available. Thus the malicious packets from the attacker would considerably

alter the real-time traffic characteristics from the baseline distribution. The Maximum

entropy detector analyzes W real-time windows for attack detection in each traffic

class. If the divergence between the baseline and the real-time distributions for a

particular packet class exceeds the threshold τKL in h of theseW windows, an anomaly

is flagged by the detector.

130

6.4.1.2 Stochastic Methods for ADS Parameter Estimation

Aim: Our main aim, as an attacker, is to estimate the evasion margin for the

ADS. This evasion margin will be the bound on the number of scan packets (t) that

an attacker can send to a target entity (host/network) without detection.

The following basic configuration parameters need to be estimated by the attacker

to achieve the above listed aim: (a) Baseline Distribution, p(ω); (b) Real-time Dis-

tribution, q(ω); (c) KL threshold, τKL. Let us assume that during a time window

δ, the following packet sequence is observed at the end-host or the network gateway:

{x1, x2, x3, . . . , x̂i, ˆxi+1, . . . , ˆxi+t, . . . , xn}. The window constitutes t scan packets, rep-

resented by x̂i. Moreover let the real-time benign packet class distribution in time-

window δ be represented by qB
(δ) ≡ qB. The KL divergence measure for a particular

packet class ω in time window δ is given by:

Dp||q(ω) = p(ω)log2

(
p(ω)/q(ω)

)
. (26)

Let us consider that the attacker sends t scan packets to the target entity. This

would alter the runtime distribution in the δ time window. This new distribution of

the attacked packet class ω constitutes benign and anomalous scan packets (qB,M
(δ) ≡

qB,M):

qB,M [ω] =
fB,M [ω]

n
=

∑
1(xi ∈ ω)

n
, (27)

where n are the total number of packets observed during time window δ and
∑

1(X)

is an indicator function that takes the value 1 ifX is true and 0 otherwise. Resultantly,

the scan packets will alter the frequency of the attacked packet class:
131

fB,M [ω] = fB[ω] + t.

⇒ qB,M [ω] =
fB[ω] + t

n
=

fB[ω]

n
+

t

n
= qB[ω] +

t

n
. (28)

Real-time distribution of the non-attack classes ω̃ which can be represented as:

qB[ω̃] ≈
fB[ω̃]

2348∑
i=1

fB[xi] + t

≈
fB[ω̃]

n
.

We can now compute the number of scans that the attacker can send to the target

using Eq. 26:

Dp||q(ω) = p(ω) log
(
p(ω)/qB,M (ω)

)
< τKL.

However, p(ω) < qB,M (ω), since the extra scan packets would result in increased

probability of the attack packet class. Thus

Dp||q(ω) = p(ω) log

(
p(ω)

qB,M(ω)

)
> −τKL ⇒

{
2
τKL/p(ω)p(ω)− qB[ω]

}
×n > t. (29)

Eq. 29 gives the upper bound on the number of scan packets that the attacker can

send into the network while just remaining below the detection threshold. Thus, for

the attacker to estimate the number of evasion scans, it would have to estimate the

baseline distribution p(ω), the runtime distribution q(ω) and the threshold τKL. The

following sub-sections describe in detail the statistical estimation of these parameters.

132

6.4.1.2.1 Estimating the Baseline Distribution p(ω)

Baseline distribution is learnt during the training phase on benign traffic profiles,

before ADS deployment. Here we list a few scenarios for the estimation of such a

benign distribution.

Real time Observation: As proposed in [130], a realistic attack scenario can be

that the attacker compromises a host X in network A which communicates with the

target host in another network or the target network itself. Once the attacker has

control over host X, it can observe the normal traffic from host X to the target entity.

From this observed normal traffic, the attacker can estimate the baseline probability

mass function p̂(ω) for the attacked packet class ω (i.e. the class the attack wishes to

exploit), since the attacker knows the type of services running on the remote target

host.

Brute force: One of the most common modus operandi used extensively in crypt-

analysis is the brute force estimation. Despite its computational complexity, it has

been shown that with the current high-performance COTS (multithreaded and multi-

core) hardware, it is not difficult for a craft attacker to acquire and exploit hardware

parallelism to carry out a bruteforce analysis [130], [132]. Let ω be the attacked

packet class with λ instances. For the brute force technique to estimate the baseline

distribution, all possible combination of the connection instances would have to be

experimented. This would undoubtedly require multiple IP addresses to launch the

attack simultaneously. The attacker can set the initial number of connections for all

instances to unity: p(ω) = {ω1 = 1, ω2 = 1, ω3 = 1, ...ωλ = 1}. Then, by trial and

133

p
i
(w) p

j
(w) p

k
(w) p

n
(w)

H(p
j
/p

i
) H(p

k
/p

j
) H(p

n
/p

n−1
)

Figure 33: Conditional entropy calculation for threshold estimation.

error, the attacker can vary the connections per instance and observe the resultant

behavior of the target network/host.

6.4.1.2.2 Estimating the Detection Threshold τKL

In a recent paper [133], the Co-PI proposed a Markovian stochastic model of tem-

poral dependence in an ADS’ anomaly scores. We used conditional entropy analyses

for determining the order of the Markov chain that should be used for threshold esti-

mation. While the motivation for the original work was to improve the accuracy and

automation of an ADS, the threshold prediction algorithm can be adapted to estimate

the KL threshold for the present attack scenario. Let us assume that the attacker has

access to the real time distribution p(ω) as described above. The attacker observes

p(ω) in n non-overlapping time windows. Using the first order Markov chain (where

the probability of choosing the next state is only dependent on the current state),

he/she can compute the conditional entropy of two random variables one in each con-

secutive time window (which characterizes the information remaining in one random

variable when the other is already known); for the estimation of the threshold bound.

Unlike [133], our main aim is to find the random variables (i.e. benign distributions)

at two time indices i and j ∀ i 6= j such that random variable at i gives minimum

134

information about random variable at j. Since in large order Markov chains (i.e. the

number of previous states that the current state depends upon), random variables

in previous time windows tend to provide some information (if not none) about the

present random variable, our aim is to find the minimum information overlap. There-

fore, we restrict the evaluation of conditional entropy to first order Markov chains

only.

H (pj|pi) = −
∑

ω

p(pi, pj) log (p (pj|pi)) .

The conditional entropy H(pj|pi), of two random variables pi and pj correspond

to the information in pj not given by pi. Thus, computing the maximum conditional

entropy between baseline distributions in two consecutive time bins, as we slide from

bin 1 to bin n, can provide us the minimum information overlap in normal benign

data. This is shown in Figure 33 and can be stochastically modeled as:

Hmax = max
i,j∈{1,2...n}

H (pj |pi) .

This minimum information overlap can be used to identify the acceptable diver-

gence bounds for normal traffic for which the detector does not raise an alarm. We

evaluate the KL measure on benign distributions in non-overlapping windows to max-

imize the corresponding conditional entropy. These two benign distributions, per-

taining to the attacked packet class ω, can be used for the KL divergence measure

computation of Eq.26. This KL divergence, for a particular packet class ω, gives the

maximum variation of the real-time distribution from the baseline that can go unde-

tected through the Maximum Entropy ADS. Thus, greater are the number of benign

135

windows n that we analyze, greater the expected divergence [133].

6.4.1.2.3 Estimating the Real-time Distribution q(ω)

Attacker needs to estimate the real-time distribution in time window δ. The esti-

mate q̂B
δ ≡ q̂B can be easily obtained from Eq. 29 as:

q̂B[ω] < 2
τ
K

L

p(ω)p(ω). (30)

Equipped with these estimates of the baseline distribution and the KL threshold,

we show that an attacker can launch a successful evasion attack against the ADS.

6.4.2 Sequential Hypothesis Testing based TRW ADSs

TRW-based ADSs are statistical pre-programmed portscan detection classifiers [41],

[43]. In this section, we provide a brief description of the basic detection principle

employed by these detectors and then explain the evasion margin estimation by the

attacker.

6.4.2.1 TRW Detection Principle

Both the sequential hypothesis testing based classifiers employ likelihood ratio test-

ing for anomaly detection. However, the original TRW classifier [41] detects remote

scanners (i.e., port scanners located outside the local network perimeter) while Credit-

based TRW (TRW-CB) [43] detects local scanners (i.e., outgoing port scans in a net-

work). Both these algorithms have been shown to be quite accurate and commercial

ADSs also deploy these algorithms for portscan detection. The basic TRW detection

136

algorithm is as follows.

Let r be a host being observed by the ADS. For a given host, let Yi be an indicator

random variable with the following possible outcomes:

Yi =

0 if connection attemp is a success

1 if connection attemp is a failure

Thus, Yi is a bernoulli random variable indicating the outcome of a connection

attempt towards/from a host. The sequential hypothesis testing technique considers

two hypotheses: H0 is the hypothesis that the host under observation is benign; and

H1 is the hypothesis that host is a scanner. Moreover, following a priori probabilities:

Pr[Yi = 0/H0] = θ0 Pr[Yi = 1/H0] = 1− θ0

Pr[Yi = 0/H1] = θ1 Pr[Yi = 1/H1] = 1− θ1

∀ θ0 > θ1 . (31)

Since the scanners tend to connect to host that do not exist or hosts that do not

have the requested service available [41], hence the probability of a connection to be a

success is much higher for benign hosts than for scanners. Both TRW and TRW-CB

leverage the above observation to detect portscans using the likelihood ratio test:

Λ(Y) =

n∏

i=1

Pr[Yi/H1]

Pr[Yi/H0]
. (32)

Thus each connection attempt is analyzed for likelihood calculation. Algorithmic

details are provided in the following subsections.

TRW [41] employs the forward likelihood ratio test to identify if remote hosts are

scanners. Each entity (host or network) separately computes Λ(Y) for the incoming

connection attempts from remote hosts and when it exceeds the threshold τ1, the
137

τ
1

Infection

Likelihood
ratio S

S

F
F F

F

F

F

Y
−2 Y

−1
Y

0 Y
1

Y
2

Y
3

Y
4

Y
5 Y

6
Y

7

S

F

F F F F FFFS S S

(a) TRW Sequential Likelihood ratio test

Likelihood
ratio

F
F

F

Infection

Y
2

Y
1

Y
0

Y
−1

Y
−2

FFFSS

τ
1

(b) Reverse sequential hypothesis testing in
TRW-CB

Figure 34: TRW and TRW-CB SHT.

remote host is termed as a scanner. Figure 34 (a) illustrates how the likelihood ratio

proceeds forward as the remote host scans the local entity for vulnerability detection.

TRW-CB [43] detects local hosts as scanners employing reverse sequential hy-

pothesis testing (HT) to the connection attempts originating from the local entity

(host or network). TRW-CB augments the HT based anomaly detection mechanism

with credit based rate limiting [32]. It computes the likelihood ratio test in Eq. 32

in reverse chronological order. Thus, the HT proceeds with the most recent obser-

vation first (i.e. Λ (Y2, Y1, Y0, Y−1, Y−2)) as shown in Figure 34 (b). Moreover, the

credit-based rate limiting algorithm limits the number of first contact connections by

issuing a fixed number of credits C to each host pertaining to the number of open

connections that a host can afford.

6.4.2.2 Stochastic Methods for TRW Parameter Estimation

While TRW based detectors provide high accuracy dividends at both the endpoint

and gateways [25], they suffer from the same inherent ADS limitation i.e. once the

detection methodology is known, it is trivial to bypass the classifier. To achieve

this aim, the following parameters need to be estimated: (a) a priori probabilities

138

(Eq. 31); and (b) threshold τ1. The classifiers use two threshold values, the upper

threshold used to identify scanners and the lower threshold to establish the host as

benign. However in practical ADS deployments, the hosts are continually monitored

unless found infected. Thus, we considered the upper threshold value only.

Estimating a priori probabilities Since TRW-based ADSs are pre-programmed

classifiers, the a priori probabilities and the threshold are built into the system; suit-

able values suggested in [41] are: θ0 = 0.7 and θ1 = 0.1. As mentioned before, we are

assuming attackers have multiple IP addresses at their disposal for launching an at-

tack. This is a realistic assumption since the attacker can have multiple compromised

systems that it can use to launch an attack against a target entity (host or network).

Let us consider an attacker that sends ni random scan packets to/from a particular

entity to identifying the services running on the target hosts and/or servers. Let us

assume that ni(s) of these connections were successes and ni(f) were failures. This

connection information can be used to easily estimate the a priori probabilities as

follows:

Probability of connection success = θ1 = ni(s)/ni
;

Probability of connection failure = 1 - θ1 = ni(f)/ni
.

According to Eq. 31, the successful connection probability for benign hosts is

greater than for scanners. With these estimated values for θ1, θ0 can be set to a

value greater than θ1. Likelihood ratio test is computed on two terms: θ1/θ0 and

1− θ1/1− θ0. Since scanners tend to experience more failed connection attempts, the

second term would have a greater impact on the likelihood ratio of Eq. 32. Thus

greater the value of θ0 as compared to θ1, higher the impact of connection failure on
139

τ
1

Y
0 Y

1
Y

2
Y

3
Y

4
Y

5 Y
6

Y
7

F F FF

Likelihood
ratio F

F

F F

F

S

S

S

Normalizing likelihood at the endpoint

F S S S

Getting close to τ
1

NO
ALARM !

Figure 35: Attack scenario for evading TRW detection.

the subsequent likelihood ratio computation.

Estimating TRW’s Threshold Threshold value can be accurately estimated by

experimental evaluation. Using the above a priori probabilities, the attacker can scan

a target entity and observe the corresponding likelihood ratio values generated with

each new scan packet. The attacker can scan computers such that it knows whether

a scan will be successful or not. A local scanner can easily achieve this by setting

up remote computers on the Internet; in fact, multiple virtual hosts on one remote

computer can also provide the same results. For a remote scanner, the attacker can

keep track of previous successful scans. These prior successful scans can be used to

bring the likelihood ratio down whenever required. When the attacker exceeds the

threshold, any new connections from the attacker would be deferred by the ADS. The

likelihood ratio test value when this happens can be set as a bound for the upper

threshold τ1.

140

6.4.3 Dataset Formation

Two datasets, with complementary strengths, were used for the ROC evaluation

given in Chapter 2. We use benign and attack traces from the same datasets in

the following evaluation. However, here we explain the formation of the datasets by

assuming the role of an attacker.

Using the stochastic estimates of Section 6.4.1, the number of scan packets t, were

computed using Eq. 29. For both the datasets, t scan packets for each attacked class,

pertaining to the specific malware, were inserted in each time window δ. For example,

for Blaster worm, attack sessions were inserted for class pertaining to TCP port 135.

For malware that spans more than one attack class, t attack sessions for each attack

class were computed and inserted in each time window.

In the TRW-based detectors we interleave the scanning sessions with the benign

sessions such that the estimated threshold τ1 is not exceeded. Using the parameter

estimates as presented in Section 6.4.2, scan packets were interleaved with benign

connection traces, as shown in Figure 35. With the TRW ADSs, the attacker has

the ability to itself compute the likelihood ratio that would be used at the target

entity for the evaluation of the maliciousness of the attacker. Thus, scan packets

were inserted in a window unless the likelihood ratio was ε (error threshold) close to

the threshold τ1. When this limit was reached, successful benign connections were

inserted to normalize the likelihood.

141

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

Max−Entropy
Max−Entropy under known configuration attack
TRW−CB
TRW−CB under known configuration attack
TRW
TRW under known configuration attack

(a) Endpoint dataset

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

Max−Entropy
Max−Entropy under known configuration attack
TRW−CB
TRW−CB under known configuration attack
TRW
TRW under known configuration attack

(b) LBNL dataset

Figure 36: ROC analysis of TRW-based ADS classifiers under configuration
estimation attack.

6.4.4 Preliminary Experimental Results for the Proposed Attack

Figure 36 provides an ROC analysis for the Maximum Entropy, TRW and Credit-

based TRW classifiers on the original dataset and on the newly formed dataset with

parameter estimation. Maximum Entropy detector provided the best accuracy div-

142

idends on the endpoint dataset as was shown in Figure 3 in Chapter 2. However,

the detector could not maintain its accuracy on the gateway LBNL dataset. On the

new datasets formed with ADS parameter estimation, the detector was completely

paralyzed and all attacks, without exception, were able to bypass the ADS. Thus, an

intelligent attacker can reliably compute the scans that it can send into the network

without detection. Similarly, the TRW based detectors have also been unable to de-

tect intrusions by the attacker (local and remote), as shown in Figure 36. On the

Endpoint dataset some detections were observed. These were due to the estimation

errors in the parameter computations. However these detections are negligible com-

pared to the aggressiveness of the attacker. Thus the ROCs show that an intelligent

attacker can easily paralyze and bypass even the most accurate of the ADS.

In light of these preliminary evaluations, we reiterate the fact that the current

anomaly detection systems need to be majorly redesigned owing to the disability

of the ADS detectors to maintain accuracy in the presence of a resourceful and an

intelligent attacker.

6.4.5 Discussion

Hence, the last section has reiterated our claim that while some ADSs are able

to provide high accuracy dividends at specific points of network deployment, these

can be bypassed by intelligent stochastic analysis and estimations. The experimental

evaluations of Figure 3, 7 and 36 authenticate our claims. Consequently, we argue

that there is a need to revisit the weak basis on which anomaly detection systems

are still being designed. In the next sections, we aim to present some preliminary
143

evaluations of a few proposals for ADS redesign that we are currently working on.

6.5 Cryptographically-Inspired Anomaly Detection System Design

In the previous sections, we have highlighted that, while a few current IDSs pro-

vide acceptable accuracy dividends at specific deployment points, these systems are

inherently trivial to bypass. The fundamental weakness of these IDSs is the falla-

cious design premise that the attacker does not have the knowledge of the underlying

system used for detection. In this section, we provide arguments in support of a

cryptographically-inspired rethinking of the ADS detection philosophy in accordance

with Kerckhoff’s principle of cryptography.

Cryptographic Systems: Cryptographic cipher systems employ randomness for

the protection of communication data [134]– [135]. Principally randomness is intro-

duced by two factors: permutation and substitution. Thus data is transformed and

replaced using secret keys until the ciphertext is so randomized that deciphering the

original plaintext is infeasible. We argue that this notion of randomness can also be

used for securing traffic information in anomaly detection systems by introducing un-

certainty to the baseline distribution using secret key transformations. The remaining

of this section describes some cryptographically inspired designs for ID Systems.

Strategy: The underlying principle of statistical anomaly detection is that the

normal data instances occur in high probability spaces of the stochastic model, while

intrusive instances do not [18]. Thus in non-parametric statistical anomaly detection,

the baseline distributions are obtained from the benign traffic profiles. The real-time

144

Figure 37: Partitioning the ADS detection process.

distributions, during actual ADS deployment, are compared with the baseline distri-

butions for the detection of intrusions using statistical analysis. Since the baseline and

the run-time distributions can be obtained by the attacker, as was explained in Section

6.4, the information about these distributions can be manipulated by the attacker to

its advantage. Thus, we propose that the baseline distribution should be randomized

using a secret parameter before statistical evaluation. Thus the cryptographically in-

spired transformation as well as the added randomness would add robustness to the

system thereby preventing the attacker to develop an estimate for these configuration

parameters. We propose that the complete ADS thresholding be partitioned into

two phases: transformation and thresholding. This is shown in Figure 37. Thus, in

the first phase, the baseline distribution is transformed using transformation matrix

which is described in detail in the next section. The ADS detection principle is then

applied to the transformed baseline and the real-time distributions for the detection

of maliciousness in the traffic. The main aim is to transform the baseline distribution

based on a secret key which consequently has a large configuration space, thus making

it impossible for the attacker to guess/estimate these parameters. In the following

sections, we propose a few channel coding based models of the ADS configuration

145

Figure 38: Discrete memoryless Symmetric channel.

parameters that can be used to introduce this randomness.

6.5.1 Modeling ADS detection as a Information Channel Coding prob-

lem

Discrete memoryless symmetric channels [136] are characterized by an input al-

phabet X , an output alphabet Y , and the conditional probability mass function

p (y/x) , ∀x ∈ X, y ∈ Y . Moreover, since the channel is memoryless and symmetric,

the output of the channel depends only on the current input i.e. p(y) = f(p(x)) and

the alphabet size is the same i.e. |X| = |Y |. Such a channel is shown in Figure

38. The channel can be represented in the form of a matrix called channel transition

matrix represented as:

p(y/x) =

p (y0/x0) p (y1/x0) . . . p
(
y|Y |−1/x0

)

p (y0/x1) p (y1/x1) . . . p
(
y|Y |−1/x1

)

.

.

p
(
y0/x|X|−1

)
p
(
y1/xX|−1

)
. . . p

(
y|Y |−1/x|X|−1

)

. (33)

Such a model is used in information channel capacity domain to maximize the channel

capacity based on the input distribution p(x) for a given channel p(y/x).
146

We can use information channel coding as a baseline to model our information

randomization process. The channel transition matrix can be used to perform linear

transformations of the baseline distribution in each time window with the same al-

phabet size ω at the output (i.e. |X| = |Y | = ω). The matrix can be parameterized

with a random secret key θ, that can be the source of randomness in the ADS detec-

tion process. The transition matrix can hence be represented as p(y; θ/x). Moreover,

each secret key value has a large configuration space. Thus, this two tier randomness:

secret key for configuration space selection and the specific configuration parameters

from within that space would render the detection process impractical for the attacker

to evade. The remaining of this section describes a method for the randomization of

the ADS detection process through the parameterized transition matrix p(y; θ/x).

6.5.1.1 Minimizing the mutual information

Our main aim is to transform the input baseline distribution p(x) before ADS

detection is performed on the real-time distribution qB,M(x). Thus the attacker not

knowing the secret key and the ultimately the parameter configuration would not

be able to determine the evasion margin. Thus, in order to achieve this objective,

we need to minimize the mutual information between the input baseline distribution

p(x) and the transformed distribution p(y). Mutual information is the measure of the

information overlap between two random variables (or distributions). If one of the

random variable is known (e.g. X and consequently p(x)) then the other one can be

predicted if the information overlap between the two random variables is considerable.

Mutual information between two random variablesX and Y , in terms of the transition
147

Figure 39: Dependence of information measures on crossover probability.

matrix, is given by:

I(X ; Y) =
∑

x∈X

∑

y∈Y

p(x, y)log2

(
p(y; θ/x)

p(y)

)
=

∑

x,y∈ω

p(x, y)log2

 p(y; θ/x)∑

x′∈ω

p(x′)p(y; θ/x′)

.

(34)

Our cryptographical-inspired ADS selects a transition matrix that minimizes the

information overlap between the input baseline distribution p(x) and the output p(y),

i.e.

min
p(y;θ/x)

I(X ; Y) = min
p(y;θ/x)

∑

x∈X

∑

y∈Y

p(x, y)log2

(
p(y; θ/x)

p(y)

)
=

∑

x,y∈ω

p(x, y)log2

 p(y; θ/x)∑

x′∈ω

p(x′)p(y; θ/x′)

.

(35)

The probability that the input xi will be mapped to the output yj where i 6= j

is called the crossover probability. This is shown in Figure 38. As the cross over

probability increases, the corresponding mutual information between the input base-

line distribution and the output decreases. However, as we minimize the mutual

information measure, we consequently increase the divergence between the input and
148

output baseline and the real-time distribution. This is shown in Figure 39. It can be

observed that the mutual information decreases as the crossover probability increases

and ultimately becomes zero at approximate probability value of 0.5. Thus our legit-

imate interval for the crossover probability is limited to {0.0.5}. Figure 39 also gives

the divergence measure for two classes in p(x). It can be seen that as the crossover

probability increases, so does the divergence between the input and the output dis-

tributions. Thus the amount of divergence should be parameterized (by ∆), based

on the secret key θ for randomization. Thus, the mutual information is minimized

based on the transition matrix p(y; θ/x), provided the divergence between the input

baseline distribution p(x) and the output p(y) does not exceed beyond ∆, which is

a function of the secret key θ. Thus, this would result in randomizing the baseline

distribution used for anomaly detection by the ADS.

6.5.2 Modeling ADS detection as an Information Source Coding prob-

lem

Here we reiterate the fact that the basic purpose of transforming the baseline dis-

tribution is to conceal and obscure so as to make it impossible for the attacker to

estimate the underlying ADS parameters. This is achieved by parameterizing the

transformation with the secret key which randomizes the resultant process. Another

approach to model the p(x) transformation is modeling it as a source coding problem.

Hence, we propose to randomize the input random variable (X) based on a source

information measure by transforming these outcomes using a uniform transition ma-

trix (U(1, ω)) confining the probability variations to an interval {0, φ} with maximum
149

divergence variance of ∆ which is dependent on the value of the secret key θ. Thus

for the secret key defined divergence variation of ∆, many possible probability limits

exist, any of which can be selected by the ADS for transition matrix computation

p(y; θ/x). Subsequently, the transformation module in Figure 39 can be further split

into two constituent phases as shown in Figure 10. These are described in detail in

the following subsections:

6.5.2.1 Information Content based instance selection

The baseline distribution mostly constitutes instances that contain approximately

the same amount of information, except a few that have a large information variance.

Today the malware targets one of these two traffic class categories based on his/her

intend to identify either the well known applications running on well known ports

pertaining to traffic classes which occur with high probability i.e. low information

content unlike the remaining less probable classes. Thus, a plausible transformation

scheme can be based on the information content of these classes to consequently

prevent the attacker from developing an accurate estimate. In order to achieve this

objective, we propose to use the information content (I(xi)) or the expected value of

the information content (i.e. entropy H(xi)) of the instances of the baseline distribu-

tion to define the uniform transition matrix p(y; θ/x). These information measures

present the amount of information content associated with each outcome in the image

of the random variable. The self information and the entropy for the ith outcome in

150

the baseline distribution p(x) is given by:

I(xi) = log2

(
1

p(xi)

)
, H(xi) = E

{
log2

(
1

p(xi)

)}
= p(xi)log2

(
1

p(xi)

)
. (36)

The instances of higher probability are more likely to occur in the real-time dis-

tribution and thus have lower information content. The less likely instances however

have higher information content. Based on this similarity between the instances of

the baseline distribution, the transition matrix p(y; θ/x) can be defined as a uniform

stochastic distribution as follows:

p(y; θ/x) =

f(p(xi,j), φ) I(xi) ≈ I(xj) ∀i, j ∈ ω

0 otherwise,

(37)

where φ defines the maximum uniform probability transformation
(
1/φ

)
for the out-

comes with similar information content I(xi) (or entropy H(xi)) such that the maxi-

mum divergence between the input baseline and the output does not exceed ∆ (defined

as a function of the secret key); f(p(xi,j), φ) can be an equiareal geometric transfor-

mation function (e.g. scaling, shearing etc.); and ω are the total traffic classes consti-

tuting the baseline distribution. The secret key determines the maximum variation of

the output distribution from the input, which consequently determines the acceptable

bound on the maximum probability variation for the similar (I(xi) ≈ I(xj)) instances

of the baseline distribution.

6.5.2.2 Transformation & Normalization

Once the transition matrix is defined, based on the similarity of instances consti-

tuting the baseline distribution, instances of p(x) are transformed by p(y; θ/x) and
151

Figure 40: Partitioning the ADS Transformation process.

then normalized to form a valid p(y). Normalization would result in a decrease in the

probability of occurrence of the remaining instances not selected for transformation.

Thus, the transformed baseline distribution p(y) can be built with respect to either

the high information or the low information instances. However, the degree of trans-

formation is bounded by the parameter ∆ which is defined as a function of the secret

key θ. Thus greater is ∆, greater is the allowed deviation of transformed p(y) (i.e.

greater can be the value of φ) from the baseline distribution p(x) and vice versa.

In the next section we describe how the baseline and run-time distributions and

parameters can be used to evaluate the accuracy of the ADS in each time window.

6.5.3 Anomaly Detection

Let the maximum acceptable divergence between the input baseline distribution

and the output is ∆. This divergence is represented in Figure 41 by the red circle

on the left. The circumference of the circle marks the maximum divergence limit for

the transformation process. Thus, the information overlap between the input p(x)

and the output p(y) is minimized based on this value of the divergence ∆. Thus for

accurate detection, the real-time distribution qB,M(x) should be compared with both

the original baseline distribution p(x) and the transformed p(y).

152

A robust attacker would intend to cause maximum damage to the network in terms

of intrusions while just staying within the evasion margin. Since the attacker can

only estimate the baseline distribution p(x) but cannot estimate p(y), the real-time

distribution comprising attack traffic (qB,M (x)) would tend to lie on the boundary

of the red circle on the left; an attacker would always try to maximize the attack

impact without detection. However, the boundary of p(x), can be partitioned into

two spaces for attack detection: non-overlapping boundary space; and overlapping

boundary space between p(x) and p(y). Then in order to differentiate intrusions from

legitimate benign activity within a time window, the ADS would need to threshold

on the following two conditions:

• Anomaly detection on the non-overlapping boundary region between p(x) &

p(y):

D(p(x)||qB,M(x)) ≈ ∆ => D(p(y)||qB,M(x)) ≈ 2∆.

• Anomaly detection on the overlapping boundary region between p(x) & p(y):

D(p(x)||qB,M(x)) ≈ ∆ => D(p(y)||qB,M(x)) << ∆(≈ 0).

Similar thresholding conditions can also be defined for benign real-time distribution

as follow:

• Benign traffic window:

D(p(x)||qB(x)) << ∆ => D(p(y)||qB(x)) ∈ {(< 2∆∩ > ∆)∪ ≈ ∆}.

Thus, an attacker who has complete knowledge of the working of the system will
153

Figure 41: Transformation of the baseline distribution.

not be able to evade the ADS due to the inherent randomness in the proposed design

methodology.

In this section we proposed to redesign the ADS by randomizing the normal baseline

distribution to make it practically infeasible for the attacker to correctly estimate it.

In the following section we propose to randomize the ADS feature space to achieve

the same objective of making parameter estimation infeasible for the attacker.

6.6 Moving Target-based Randomized Feature Space

In this section we propose to redesign the current anomaly detection systems by

enabling these systems to perform detection by mutating between multiple feature

dimensions instead of relying solely on a specific feature space. We call these multi-

dimensional features the Moving target-based feature space (MTFS).

In current anomaly detection systems, features used for detection do not vary

throughout the operational life of the ADS. Moreover, the statistical feature distri-

butions of the underlying static feature space are thresholded for anomaly detection.

Hence as shown in Section 6.4, the anomaly detection system can be easily evaded by

154

disseminating stealthy malware that stays below the detection threshold. This is not

necessarily a daunting task due to numerous off-the-shelf tools available to perform

network traffic forensics. The current anomaly detectors employ fixed features for de-

tection purposes. This makes evading these AD systems possible. Hence, in order to

cater for this inherent limitation in anomaly detection systems, we propose a moving

target (MT) defense based anomaly detection. The MTFS based detector mutates the

underlying detection feature(s) across time. Thus at different time instances different

features are employed for detection of network attacks. This makes it difficult for

the adversary to predict the detection feature(s) being monitored at a given time for

anomaly detection because the features being analyzed for detection constantly vary.

It makes the job of the adversary harder because now it would also have to estimate

the features being analyzed by the ADS for detection at current time window before

evasion procedure could be framed. Moreover, since the MTFS feature being ana-

lyzed by the ADS changes across time, it consequently makes the task of ascertaining

what type of traffic will pass through the ADS undetected, even more challenging.

The inherent randomness introduced by such a time varying feature space mutation

results in a detection system that is robust to exploitation by network traffic analysis.

We believe that the proposed approach can make it economically impractical (since

time and effort has a cost against the gain, in the event of a successful intrusion) for

the adversary to launch an evasion attack.

Moving Target based feature space mutation can be applied to any type of anomaly

detection system e.g. rule-based ADS or volumetric ADS or threshold-based ADS

etc. Hence, for example an MTFS rule based system would tend to have a mutating
155

feature space and hence a mutating rule base. Similarly, in threshold-based systems

the features space employed for detection is thresholded for detecting anomalies.

Hence, an MTFS threshold-based ADS would tend to mutate the features thresholded

in different time windows and consequently the threshold space. Similarly it can be

applied to statistical ADSs by varying the feature space being analyzed by the ADS for

attack detection in different time windows. Hence the moving target based detection

is a general scheme that can be tailored towards any type of anomaly detection system.

In this work we aim to define optimality and performance in terms of unpredictabil-

ity, accuracy and detection delay. Hence in employing an MTFS based anomaly de-

tection system, we aim to achieve a detector which is resilient to evasion by network

traffic analysis and in turn yields optimal performance. Mutating between features

for ADS detection randomizes the detection model and thus increases the deterrence

of the system against evasion attacks without compromise on performance. In the

following subsection we perform some preliminary analysis of feature space muta-

tion. We provide experimental results on both LBNL and endpoint traffic traces.

We also present results that provide sound basis for mutating feature space across

time, which leads to detecting attack sessions that were previously undetected by

non-MTFS based Maximum Entropy ADS, used as a proof of concept, due to eva-

sion estimation. Thus, the MTFS-based ADS would be capable of detecting a wide

range of attacks . This is based on the premise that attack traffic perturbs network

traffic semantics and hence some feature distribution(s). In the following subsections,

we provide detailed discussions with extensive experimental results to support our

claims.
156

0 500 1000 1500 2000
0

0.5

1

P
ro

ba
bi

lit
y

0 500 1000 1500 2000
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

0 500 1000 1500 2000
0

10

20

30

Destination Port and Protocol−based feature space

K
L

di
ve

rg
en

ce

(a)

(b)

(c)

Figure 42: Kullback Leibler divergence based attack detection on destination port &
protocol features.

6.6.1 Vertical Correlation - Multiple Feature Perturbations Observed

for a Single Attack Class

In this section we provide experimental results to verify that different features

have the capability to detect the same class of attacks. This will in turn assist us

in identifying the valid set of features that can be used for detecting a particular

class/type of attack. We provide results on LBNL traces (i.e. inbound scan attacks).

Motivation: An attack tends to perturb network traffic semantics. Hence, if

multiple feature distributions get affected by an attack, any of those perturbed feature

distributions can be employed for detection. Thus mutating between these features

can guarantee the detection of the attack in different time windows.

Experimental Evaluation: We perform some preliminary evaluation of the mov-

ing target based ADS using the Kullback Leibler divergence measure of the Maximum

entropy ADS. Maximum Entropy ADS by default uses Destination port and protocol

based 2348 feature classes for attack detection. We used the Maximum Entropy detec-
157

tion principle on an MTFS (mutation based feature space) constituting the following

features:

• Destination Port & Protocol (default);

• Packet Lengths; and

• Destination Ports.

Figure 42, Figure 44, and Figure 45 present maximum entropy estimation on the

above mentioned features, respectively, of the MTFS space on the LBNL traces.

The figures also provide the probability density function (PDF) for the benign and

attack window distributions. It can be easily analyzed that attack sessions introduce

significant perturbations in terms of spreading out of the attack window PDF that

deviates significantly from the benign distribution, which is inadvertently skewed.

Moreover, another significant insight is that multiple features get perturbed within

the same attack window for the same type of attack. Hence, in turn, any of these

features could be used for attack detection.

The plots reiterate the underlying principle employed in statistical analysis that

in benign distribution a few feature classes constitute a major share of the traffic.

However, the major share shifts during the attack period to other (attacked) feature

classes. Hence, the run-time distribution diverges from the benign distribution and

thus the attack gets detected. Probability density (PDF) plots illustrate this shifting

of the trend from one set of prominent features to others.

Figure 42 (a) and (b) present the benign and attack window distributions for the

2348 destination port & protocol-based classes respectively. Figure 42 (c) gives the
158

550
600

650
700

750

0
10

20
30

40
50

60
0

5

10

15

20

25

30

Destination port & Protocol−based
 feature space

Time windows

K
L

va
lu

e

Figure 43: KL divergence exceeding the threshold in multiple time windows.

Kullback Leibler divergence for the 2348 feature classes over the 60, 1sec evaluation

windows used by Maximum Entropy detector as explained in Section 6.4.1.

The LBNL traces have scan-based attack packets, these scan packets are targeted

towards multiple hosts (i.e. multiple destination ports) within the network. This in

turn spreads out the PDF of the attack window which ultimately leads to a greater

divergence between the benign PDF and the attack window PDF and hence the

detection of the attack. This can be clearly seen in Figure 42 (c).

Most of the benign traffic is web-based and hence is dominated by packets with

destination port 80. However, in the attack window, multiple packets scanning on

different destination ports tend to vary the port semantics by shifting the emphasis

from web to scan ports.

Figure 43 shows the feature classes from the perspective of Maximum Entropy

ADS. For the ADS to raise an alarm, the KL divergence is to exceed the threshold

for atleast 30 1sec windows in a total of 60 evaluated windows. It can be seen that

the classes that diverge significantly in Figure 42 (c), diverge in multiple windows for
159

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Benign Distribution

4300 4350 4400 4450 4500 4550 4600 4650 4700
0

0.05

0.1

0.15

0.2
Benign Ditribution

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

P
ro

ba
bi

lit
y

Attack Window Distribution

4300 4350 4400 4450 4500 4550 4600 4650 4700
0

0.05

0.1

0.15

0.2
Attack Window Distribution

0 100 200 300 400 500
−0.1

−0.05

0

Destination port−based feature space

K
L

di
ve

rg
en

ce

4300 4350 4400 4450 4500 4550 4600 4650 4700
0

10

20

30

(a) (b)

(c) (d)

(e) (f)

Figure 44: Kullback Leibler divergence based attack detection on destination port
feature.

Maximum Entropy ADS to raise an alarm as shown in Figure 43.

Figure 44 provides the PDF and the KL divergence plots for destination port-based

587 feature classes. The plots (a),(c),(e) and (b),(d),(f) provide distribution and

divergence values, respectively, for different regions of the feature space emphasizing

two important insights: (i) For ports observed in benign traffic, an increased frequency

of occurrence in attack window tends to generate negative KL divergence values;

(ii) for ports not observed in the benign trace, an occurrence in the attack window

exponentially increases the KL divergence value. Hence in cases where a destination

port based feature class that is unobserved in benign trace is seen in attack window,

the Maximum Entropy ADS will tend to detect it. However the same does not happen

with an increase in the frequency of the already observed classes. Figure 10 provides

similar plots for packet length based feature classes.

It can be observed that all three features detect the LBNL attack. This is the

inherent strength of statistical detection. Attack traffic perturbs the semantic balance

160

0 20 40 60 80 100
0

0.5

1

P
ro

ba
bi

lit
y

Benign Distribution

100 200 300 400 500 600
0

0.01

0.02

0.03
Benign Distribution

0 20 40 60 80 100
0

0.5

1

P
ro

ba
bi

lit
y

Attack Window Distribution

100 200 300 400 500 600
0

0.01

0.02

0.03
Attack Window Distribution

0 20 40 60 80 100
0

10

20

30

Packet Length−based feature space

K
L

di
ve

rg
en

ce

100 200 300 400 500 600
0

10

20

30

(a) (b)

(c) (d)

(e) (f)

Figure 45: Kullback Leibler divergence based attack detection on ’Packet Length’
feature.

between features, learnt in the training dataset. Hence attacks are detected based

on variations introduced by the attack packets in the underlying model. Moreover,

these attacks perturb multiple features and these can be employed across time for a

randomized detection model.

Hence, anomalies in network traffic translate into perturbations in network traffic

semantics. As already mentioned, these variations are detected by identifying statisti-

cal variations in traffic features. Hence if some malware is introduced in the network,

some feature(s) inadvertently get disturbed. However, if the feature perturbed is not

the feature being analyzed or does not have direct or indirect effect on the analyzed

feature; then it is possible that the malware can pass undetected. However, this is an

inherent limitation of the statistical feature based detection and not of the moving

target based scheme.

Challenges: It is important to identify the valid set of mutating features such that

the performance of the MTFS-based ADS is not compromised. There are multiple

161

scenarios to consider in this regard. For example, for an attack that spans a single

time window, the features employed for detection should be diverse enough to detect

the attack class. If however, an attack spans multiple time windows, mutating feature

space should select features that ensure the detection of the anomaly.

6.6.2 Horizontal Correlation - Effect of Features on Detecting Different

Types of Attacks

In this section we argue that a feature can be perturbed by the occurrence of

different types of attacks. Thus, if there are N different attacks that an ADS is

configured to detect, different attacks might perturb the same feature. Thus we

believe that the features that get perturbed by multiple attacks overlap.

Motivation: If we can identify the common feature classes that the different types

of attacks, the ADS is configured to detect; we can in turn formulate mutating feature

classes based on a combination of all these features. Mutating between disjoint sets of

these horizontally correlated feature classes would result in an ADS that can achieve

optimal performance and is robust to evasion attacks.

Since malicious insiders pose a greater security threat than outsiders [137], we

perform MTFS analysis on the endpoint dataset [80]. In this dataset most of the

attacks originate from within the network. i.e. from malicious entities inside the

network. For this section we provide results on network traces with different types of

outbound attacks.

Experimental Evaluation: Different types of attacks perturb different features

in network traffic. We believe if we can identify the overlapping features that detect
162

0 20 40 60 80 100 120

0

20

40

60

K
L

di
ve

rg
en

ce

Destination Port−based Estimation

0 20 40 60 80 100 120

0

20

40

60

K
L

di
ve

rg
en

ce

Packet Length−based Estimation

0 20 40 60 80 100 120

0

20

40

60

Time (seconds)

K
L

di
ve

rg
en

ce
Byte Distribution−based Estimation

(b)

(a)

(c)

Figure 46: Different types of attacks detected by different feature classes.

different types of attacks, we can have a much smaller feature space that can detect

diverse attacks and hence can provide optimal performance.

Figure 46 presents the KL divergence for two different types of attacks detected by

three different feature classes. The attack window shown, has traffic from a scanning

worm (Dloader-NY), followed by an SQL injection attack on a web server on port

80. Dloader has an average scan rate of approximately 46 scans per second (sps).

This is a very high scan rate as compared to other malware [24]. However, the SQL

injection attack packets are bundled with large payloads targeted for a webserver on

destination port 80.

Figure 46 (a) shows the KL divergence using destination port based feature classes.

This feature is able to detect the scanning attack owing to its high scan rate. This

is because attack packets (with destination port 135 and 139) alter the probability

distribution of destination port-based feature classes. Thus the attack is detected due

to significant divergence of the port distribution in the attack window from the benign

distribution. However, since the only feature employed for detection is destination
163

port, it is unable to detect the SQL injection attack on port 80 for one significant

reason: port 80 has high probability of occurrence in the benign distribution and

hence such payload based attacks do not significantly perturb the attack window

distribution, for port 80.

Figure 46 (b), on the other hand, shows the KL divergence when packet length

based feature classes are employed for detection. It can be clearly seen that it is

unable to detect the scanning malware despite its extremely high scan rate. However,

the SQL injection attack is detected owing to large payloads.

Figure 46 (c) shows the KL-divergence on the packet byte distribution for benign

and malicious time window. The byte distribution is calculated using IP-wise n-gram

analysis (where n=1). The distribution was computed for each IP in the network.

It can be seen that the byte distribution-based feature class is able to detect both

the attacks. This is because under normal circumstances an IP tends to have a byte

sequence that is different than the skewed sequence observed during scanning (very

small or no payload at all). Similarly, and payload based attacks like buffer over flow

and SQL injection attacks are bundles with comparatively large payloads. Thus, this

perturbs the normal sequence of bytes due to complex SQL queries or buffer overflow

code in the payload. We call this feature that can detect multiple classes of attacks,

the overlapping feature.

Hence, the classes of anomalies that an ADS can detect strongly relies on the fea-

tures employ for detection. We thus propose that a mutating feature space should

have a minimal, pre-defined number of constituent features for optimal accuracy.

Mutating between such feature spaces would in turn result in an ADS that is robust
164

against evasion estimation attacks and at the same time provides optimal perfor-

mance.

Challenge: The main challenge here is to find efficient feature(s) that can detect

most of the attack types. This will enable an ADS to use features that are more

sensitive to different attack types and in turn shorten the size of the feature space

employed for detection as well. Therefore, it can be seen as a set of efficient features

capable of dealing with different attack types.

Following are some of the open research problems with regard to the evaluations

presented thus far: 1. How many features to be employed for detection within a

detection window? 2. What features to use for detection within a detection window?

and 3. When to mutate from one set of features to another? We elaborate on these

research questions in the following subsections.

6.6.3 ADS Features Space

We argue that simultaneously employing all the features for detection, while in-

creases complexity, does not necessarily yield optimal performance. We can judi-

ciously select the feature classes maximizing the use of overlapping features where

ever possible.

Motivation: Firstly, mutation based anomaly detection i.e. mutating feature

space across time results in a more rigorous detection technique than using a high

dimensional feature space across all time windows. Having a high dimensional feature

space does improve performance [87], provided the features are correlated judiciously

for attack detection. However, the ADS is still susceptible to evasion margin estima-
165

2 4 8 12 424 2348
70

80

90

100

number of subspaces

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Detection rate

2 4 8 12 424 2348
0.3

0.4

0.5

0.6

0.7

0.8

number of subspaces

A
ve

ra
ge

 fa
ls

e
al

ar
m

s
pe

r
da

y

(b) False alarm rate

Figure 47: Accuracy of the Maximum Entropy detector with varying number of
subspaces; results are generated for the Endpoint dataset and are averaged over all

endpoints and attacks.

tion and hence can be bypassed by an intelligent and a resourceful attacker. This

is because the underlying feature space does not change with time and hence can

be leveraged to analyze network traffic semantics and craft attacks accordingly. The

moving target based ADS design would, however, make it infeasible for an adversary

to craft evasion estimation attacks due to inherent randomness of the detection pro-

cess introduced by the mutating feature space. However, it is important to identify

the right number of features to be employed for detection in different time windows,

by an MTFS-based ADS, for optimal performance.

Experimental Evaluation: Using a high-dimensional feature space does not

necessarily improve accuracy. To support our claim we reuse some earlier results

from Chapter 4 (Figure 13 shown again in Figure 47. Figure 47 provides the accuracy

gain on the endpoint dataset achieved by the Maximum Entropy ADS as the feature

subspaces are varied from 2 to 2348 using the detector’s slicing technique progressively.

166

Figure 47(a) shows that the detection rate does not increase progressively as we

increase the number of analyzed static feature classes from 2 to 2348. The same

trend is observed in the false alarms as well.

Moreover, using a high dimensional feature space translates into higher memory

consumption as well. Thus the resultant ADS is more complex and hence needs

more resource for its operation. Maximum Entropy has the highest runtime memory

utilization (approx 67 KB) as compared to other ADSs evaluated in Chapter 2 [25].

Thus, while using all the features simultaneously does not improve robustness, it

also does not ensure high accuracy. Hence, selecting a few feature class(es) judiciously

for detection in a time window would suffice to introduce enough randomness in the

process of ADS detection so as to render the parameter estimation attacks impractical.

Challenges: It is imperative to identify the right number of features that can

be employed for detection. The number of features implies those features that can

provide acceptable performance and have low complexity.

6.6.4 Traffic-aware Mutation

Random (not traffic aware) mutation strategy is applicable in the cases where we

don’t have any knowledge about the attacker behavior. This strategy makes the

evasion harder for the attacker without making any assumption about the attacker’s

behavior. However, traffic aware mutation can be employed in the case where behavior

of the attacker can be learned from traffic. For the purpose of traffic aware mutation,

game theoretic approach can be used. In this case, the game model can assume two

players i.e., attacker j and defender i. We assume that we do not have any knowledge
167

about the attacker’s history of actions.

The goal of the attacker is to stay undetected; however, the goal of the defender

is to detect the attack. Consider that the attacker wants to either launch a scan,

buffer overflow or other similar attacks while staying undetected. In order to stay

undetected, the attacker would have possible actions of either changing the header

fields or introduce payload depending upon the defense mechanism being employed.

Similarly, in order to combat the attacker, the defense mechanism has actions of

selecting a feature or set of features from a given feature space which was derived

after horizontal and vertical correlation discussed in the previous sections.

For every selected action, a payoff is given to the player i.e., defender or attacker.

The attacker receives a payoff in terms of effectiveness of attack while staying unde-

tected. However, the defender receives the payoff in terms of effectiveness of defense

mechanism i.e., attack being detected or not. Since the goal of the attacker is to scan

the network without being detected, the payoff can be defined in terms of relative

number of nodes that has been scanned without being detected. This means the

higher the number of nodes being scanned without detection, the higher the payoff

for the attacker. On the contrary, the defender’s payoff can be defined in terms of

misdetection i.e., inverse of the number of nodes being scanned without detection.

Assuming that the attacker is rational, the strategy of the attacker can be calcu-

lated using the Nash equilibrium. It reveals a pure strategy, which consists of the

sequence of the same action from the given action set since the attacks were not

detected, or a mixed strategy which is a probabilistic distribution over the corre-

sponding pure strategies. The regular quantal response equilibrium (QRE) can be
168

used to generalize the Nash equilibrium by introducing an error parameter to the

payoff function since payoff functions can be erroneous. The error parameter is also

called rational parameter. If the player is completely irrational (attacker), which is

not covered by Nash equilibrium, the rational parameter will converge to 0. How-

ever, in case of complete rational behavior it will converge to infinity. Therefore, a

corresponding defend policy (which features to select) can be employed in order to

combat with the attacker behavior thus resulting to traffic aware or behavior aware

mutation.

6.7 Chapter Summary

In this chapter, we stochastically modeled statistical anomaly detection systems

and showed that these systems are inherently susceptible to evasion attacks. We have

presented some novel ADS design philosophies to make future ADSs robust against

such attacks. This is part of our ongoing research. Next chapter concludes this

thesis.

169

CHAPTER 7: CONCLUSION

In this thesis we focused on: i) Proposing techniques to improve existing general-

purpose ADSs; ii) Design and develop a specific-purpose ADS post-processor for bot

detection based on the bot lifecycle; iii) Stochastically model current general-purpose

anomaly detection systems; and iv) Outline alternative designs for general-purpose

ADSs to make them robust against parameter estimation attacks.

To improve the accuracy of current general-purpose ADSs, we proposed a pre-

processing and a post-processing method. We first proposed a feature space slicing

based pre-processor to improve the performance of existing general-purpose ADSs.

The inherent design of current ADSs, does not allow them to exploit parallelism

available in modern day hardware. We hence propose a framework for parallelizing

current day ADSs which, as a by product, also improves the performance of these

systems. We illustrate that accuracy of existing statistical ADSs can be improved

if more computational resources are available for their deployment. The key idea

is to segregate benign and malicious instances into separate subspaces to mitigate

averaging out and noise artifacts. We tested our feature space slicing framework on

a diverse set of network and host-based ADSs. Each ADS was evaluated on its own

defined set of feature(s) employed by the ADS for detection of traffic anomalies. Our

experimental evaluation shows that, if feature quantification and number of subspaces

is determined judiciously, a general-purpose ADS operating simultaneously on the

reduced subspaces can achieve dramatic improvements in detection and false alarm

rates.

We also proposed a multi classifier based ADS post-processing method that judi-

ciously aggregates the outputs of N parallel connected classifiers. We modeled and

evaluated conventional voting based combining schemes, ENCORE and bayesian net-

work based median rule and sum rule. We proposed a standard deviation normalized

Entropy of Accuracy (SDnEA) weighted scheme. We showed experimentally that

the proposed schemes provide consistently better accuracy (detection rates and false

alarm) than existing combining schemes by also considering the accuracy and the

variance in accuracies of the general-purpose ADSs.

Keeping up with the evolving threat landscape, we also designed and evaluated a

novel specific-purpose ADS post-processor for the detection of bots. Our proposed

bot detection post-processor basis its decision logic on a Bayesian network based on

the high-level and abstract bot lifecycle. We showed that the bot lifecycle when used

as a signature for bot detection yields low false positives. We further showed that the

Bayesian network using the formal notion of fading can provide an accuracy of 87.9%

with only 4.8% false positives. When evaluated on changing bot behavior, Bottleneck

provided an improvement of detection rate from 40% to 90% at the cost of 1 false

positive. Furthermore, Bottleneck provided 90% accuracy, with one additional false

positives, over a 5 minute window as compared to batch mode execution. Hence,

Bottleneck merits consideration for real-time, online deployment.

Finally we showed that current general-purpose ADSs are vulnerable to parameter
171

estimation attacks. This is deep rooted in the design of these systems. Hence there is a

need to re-design the anomaly detection systems to make it infeasible for the attacker

to devise evasion attacks. We proposed two cryptographically-inspired designs and

another moving target-based ADS design. In the crypto-inspired ADS design we

propose to randomize the baseline distribution, while in the moving target based

design we propose to randomize the feature space of an ADS. These ADS designs

introduce randomness in the detection process which in turn renders evasion attacks

computationally infeasible.

172

REFERENCES

[1] J. Stewart, “Inside the storm: Protocols and encryption of the storm botnet,” in Black Hat Technical Security
Conference, USA, 2008.

[2] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” Technical report, Tech. Rep., 2000.

[3] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide anomalies in traffic flows,” in Pro-
ceedings of the 4th ACM SIGCOMM conference on Internet measurement. ACM, 2004, pp. 201–206.

[4] “Symantec internet security threat reports i–xi,” Jan 2002–Jan 2008.

[5] M. Corp., “Mcafee virtual criminology report: North american study into organized crime and the internet,”
2005.

[6] “Computer economics: 2001 economic impact of malicious code attacks.” [Online]. Available: http:
//www.computereconomics.com/cei/press/pr92101.html

[7] D. Moore, C. Shannon et al., “Code-red: a case study on the spread and victims of an internet worm,” in
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM, 2002, pp. 273–284.

[8] “Cyber secure institute.” [Online]. Available: http://cybersecureinstitute.org/blog/?p=15

[9] S. Shin and G. Gu, “Conficker and beyond: a large-scale empirical study,” in Proceedings of the 26th Annual
Computer Security Applications Conference. ACM, 2010, pp. 151–160.

[10] F. Cohen, “Computer viruses: theory and experiments,” Computers & security, vol. 6, no. 1, pp. 22–35, 1987.

[11] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside the slammer worm,” Security
& Privacy, IEEE, vol. 1, no. 4, pp. 33–39, 2003.

[12] E. Rescorla, “Security holes... who cares,” in Proceedings of the 12th USENIX Security Symposium, 2003, pp.
75–90.

[13] Z. Chen and C. Ji, “A self-learning worm using importance scanning,” in Proceedings of the 2005 ACM workshop
on Rapid malcode. ACM, 2005, pp. 22–29.

[14] J. Ma, G. M. Voelker, and S. Savage, “Self-stopping worms,” in Proceedings of the 2005 ACM workshop on
Rapid malcode. ACM, 2005, pp. 12–21.

[15] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of scanning worms.” in USENIX Security
Symposium, vol. 2, 2004, pp. 16–85.

[16] “Advanced threat report - 2012,” http://www.fireeye.com/info-center/.

[17] D. E. Denning, “An intrusion-detection model,” Software Engineering, IEEE Transactions on, no. 2, pp. 222–
232, 1987.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing Surveys (CSUR),
vol. 41, no. 3, p. 15, 2009.

[19] “Bro,” http://www.bro.org/, Online May 2012.

[20] M. Roesch et al., “Snort-lightweight intrusion detection for networks,” in Proceedings of the 13th USENIX
conference on System administration. Seattle, Washington, 1999, pp. 229–238.

[21] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quarantine: Requirements for containing self-
propagating code,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 3. IEEE, 2003, pp. 1901–1910.

[22] “Fireeye, next-generation threats.” [Online]. Available: http://www.fireeye.com/threat-protection/
why-dont-traditional-defenses-work.html

[23] “Damballa csp,” https://www.damballa.com/solutions/damballa csp.php Online April 2013.

173

[24] C. Wong, S. Bielski, A. Studer, and C. Wang, “Empirical analysis of rate limiting mechanisms,” in Recent
Advances in Intrusion Detection. Springer, 2006, pp. 22–42.

[25] A. B. Ashfaq, M. J. Robert, A. Mumtaz, M. Q. Ali, A. Sajjad, and S. A. Khayam, “A comparative evaluation
of anomaly detectors under portscan attacks,” in Recent Advances in Intrusion Detection. Springer, 2008, pp.
351–371.

[26] K. Nyalkalkar, S. Sinhay, M. Bailey, and F. Jahanian, “A comparative study of two network-based anomaly
detection methods,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 176–180.

[27] C. Smith, A. Matrawy, S. Chow, and B. Abdelaziz, “Computer worms: Architectures, evasion strategies, and
detection mechanisms,” Journal of Information Assurance and Security, vol. 4, pp. 69–83, 2008.

[28] P. Fogla and W. Lee, “Evading network anomaly detection systems: formal reasoning and practical techniques,”
in Proceedings of the 13th ACM conference on Computer and communications security. ACM, 2006, pp. 59–68.

[29] “Emerging cyber threats report for 2009,” October 15, 2008.

[30] B. Lowe, “Symantec report: The underground economy,” Dec 2008. [Online]. Available: http:
//www.symantec.com/connect/sites/default/files/SYMC ISTR and Underground Economy SHARE 0.ppt

[31] Z. Li, Q. Liao, and A. Striegel, “Botnet economics: uncertainty matters,” in Managing Information Risk and
the Economics of Security. Springer, 2009, pp. 245–267.

[32] M. M. Williamson, “Throttling viruses: Restricting propagation to defeat malicious mobile code,” in Computer
Security Applications Conference, 2002. Proceedings. 18th Annual. IEEE, 2002, pp. 61–68.

[33] D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers for misuse and anomaly detection using a bag of
system calls representation,” in Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC. IEEE, 2005, pp. 118–125.

[34] “Ddos attack launchged against spamhaus,” 2013. [Online]. Available: http://www.bbc.co.uk/news/
technology-21954636

[35] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter: detecting malware infection through
ids-driven dialog correlation,” in Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, ser. SS’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 12:1–12:16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1362903.1362915

[36] “Bibliography of anomaly detection systems,” 2012. [Online]. Available: http://wisnet.niit.edu.pk/projects/
adeval/Literature$\ $survey/Bibliography.doc

[37] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 darpa off-line intrusion detection
evaluation,” Computer networks, vol. 34, no. 4, pp. 579–595, 2000.

[38] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham et al., “Evaluating intrusion detection systems: The 1998 darpa off-
line intrusion detection evaluation,” in DARPA Information Survivability Conference and Exposition, 2000.
DISCEX’00. Proceedings, vol. 2. IEEE, 2000, pp. 12–26.

[39] S. A. Khayam, “Wireless channel modeling and malware detection using statistical and information-theoretic
tools,” Ph.D. dissertation, Michigan State University, 2006.

[40] M. Mahoney and P. K. Chan, “Phad: Packet header anomaly detection for identifying hostile network traffic,”
Florida Institute of Technology technical report CS-2001-04, pp. 1–17, 2001.

[41] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan detection using sequential hypothesis
testing,” in Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 211–225.

[42] S. Khattak, Z. Ahmed, A. A. Syed, and S. A. Khayam, “Poster: Botflex: A community-driven tool for botnet
detection.”

[43] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm infections,” in Recent Advances
in Intrusion Detection. Springer, 2004, pp. 59–81.

[44] M. V. Mahoney, “Network traffic anomaly detection based on packet bytes,” in Proceedings of the 2003 ACM
symposium on Applied computing. ACM, 2003, pp. 346–350.

174

[45] S. A. Khayam, H. Radha, and D. Loguinov, “Worm detection at network endpoints using information-theoretic
traffic perturbations,” in Communications, 2008. ICC’08. IEEE International Conference on. IEEE, 2008,
pp. 1561–1565.

[46] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical methods for anomaly detection,” in
Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. USENIX Association, 2005,
pp. 31–31.

[47] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network traffic using maximum entropy estima-
tion,” in Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. USENIX Association,
2005, pp. 32–32.

[48] “Next-generation intrusion detection expert system (nides).” [Online]. Available: http://www.csl.sri.com/
projects/nides/

[49] W. Lee and D. Xiang, “Information-theoretic measures for anomaly detection,” in Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001, pp. 130–143.

[50] “Wisnet ads comparison homepage.” [Online]. Available: http://wisnet.seecs.nust.edu.pk/projects/ENS/
source code.html

[51] J. Twycross and M. M. Williamson, “Implementing and testing a virus throttle,” in Proceedings of the 12th
USENIX Security Symposium, vol. 285, 2003, p. 294.

[52] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca for traffic anomaly detection,” ACM
SIGMETRICS Performance Evaluation Review, vol. 35, no. 1, pp. 109–120, 2007.

[53] T. Joachims, “Making large scale svm learning practical,” 1999.

[54] “Nayatel,” http://www.nayatel.pk/index.php Online April, 2013.

[55] “Computer immune systems, datasets.” [Online]. Available: http://www.cs.unm.edu/∼immsec/data/synth-sm.
html

[56] “Cert-polaska,” http://www.cert.pl/PDF/Report Virut EN.pdf Online April, 2013.

[57] [Online]. Available: http://www.team-cymru.org/

[58] [Online]. Available: http://www.icir.org/

[59] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace anonymization,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 29–38, 2006.

[60] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A first look at modern enterprise traffic,”
in Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement. USENIX Association, 2005,
pp. 2–2.

[61] “Winpcap homepage.” [Online]. Available: http://www.winpcap.org/

[62] “Symantec security response.” [Online]. Available: http://securityresponse.symantec.com/avcenter

[63] C. Shannon and D. Moore, “The spread of the witty worm,” Security & Privacy, IEEE, vol. 2, no. 4, pp. 46–50,
2004.

[64] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for unix processes,” in Security
and Privacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE, 1996, pp. 120–128.

[65] “Information security hype,” 2003.

[66] “Gartner information security hype cycle declares intrusion detection systems a market failure–
money slated for intrusion detection should be invested in firewalls,” June 2003. [Online]. Available:
http://www.gartner.com/5 about/press releases/pr11june2003c.jsp

[67] “Fireeye malware protect system (mps) homepage.” [Online]. Available: http://www.fireeye.com/products/

[68] “Cisco anomaly guard module homepage.” [Online]. Available: www.cisco.com/en/US/products/ps6235/

175

[69] “Arbor networks peakflow homepage.” [Online]. Available: http://www.arbornetworks.com/en/peakflow-x.
html

[70] “Endace ninjabox homepage.” [Online]. Available: http://www.endace.com/ninjabox.html

[71] “Intel coreTM2 duo processor.” [Online]. Available: http://www.intel.com/products/processor/core2duo/
index.htm

[72] “Amd athlonTMii x2 dual-core processor.” [Online]. Available: http://www.amd.com/us-en/Processors/
ProductInformation/\newline0,,30 118 9485 16006,00.html

[73] “nvidia motherboard gpus.” [Online]. Available: http://www.nvidia.com/page/gpu mobo.html

[74] “Intel larrabee integrated graphics accelerator.” [Online]. Available: http://software.intel.com/en-us/articles/
larrabee/

[75] “Intel single-chip cloud computer (ssc) homepage.” [Online]. Available: http://techresearch.intel.com/articles/
Tera-Scale/1826.htm

[76] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis, “Gnort: High performance
network intrusion detection using graphics processors,” in Recent Advances in Intrusion Detection. Springer,
2008, pp. 116–134.

[77] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching hardware for speeding up intrusion
detection,” ACM SIGARCH Computer Architecture News, vol. 33, no. 1, pp. 99–107, 2005.

[78] P. Piyachon and Y. Luo, “Efficient memory utilization on network processors for deep packet inspection,” in
Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and communications systems.
ACM, 2006, pp. 71–80.

[79] S. Yi, B.-k. Kim, J. Oh, J. Jang, G. Kesidis, and C. R. Das, “Memory-efficient content filtering hardware for
high-speed intrusion detection systems,” in Proceedings of the 2007 ACM symposium on Applied computing.
ACM, 2007, pp. 264–269.

[80] “Nust dataset.” [Online]. Available: http://www.wisnet.seecs.nust.edu.pk/projects/ENS/DataSets.html

[81] “Lbnl/icsi enterprise tracing project.” [Online]. Available: http://www.icir.org/enterprise-tracing/download.
html

[82] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4. ACM, 2004, pp. 219–230.

[83] ——, “Mining anomalies using traffic feature distributions,” in ACM SIGCOMM Computer Communication
Review, vol. 35, no. 4. ACM, 2005, pp. 217–228.

[84] D. Turner, M. Fossi, E. Johnson, T. Mark, J. Blackbird, S. Entwise, M. Low, D. McKinney, and
C. Wueest, “Symantec global internet security threat report–trends for 2008,” h ttp://eval. symantec.
com/mktginfo/enterprise/white papers/b-whitepaper internet security threat report, vol. 14, pp. 04–2009, 2009.

[85] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu et al., “The ghost in the browser analysis of
web-based malware,” in Proceedings of the first conference on First Workshop on Hot Topics in Understanding
Botnets, 2007, pp. 4–4.

[86] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.

[87] A. B. Ashfaq, M. Javed, S. A. Khayam, and H. Radha, “An information-theoretic combining method for multi-
classifier anomaly detection systems,” in Communications (ICC), 2010 IEEE International Conference on.
IEEE, 2010, pp. 1–5.

[88] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham, “Classification and novel class detection in
concept-drifting data streams under time constraints,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 23, no. 6, pp. 859–874, 2011.

[89] T. M. Mitchell, “Machine learning. wcb,” 1997.

[90] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann,
2005.

176

[91] D. J. Ketchen and C. L. Shook, “The application of cluster analysis in strategic management research: an
analysis and critique,” Strategic management journal, vol. 17, no. 6, pp. 441–458, 1996.

[92] L. J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring expression data: identification and analysis of coexpressed
genes,” Genome research, vol. 9, no. 11, pp. 1106–1115, 1999.

[93] G. Giacinto, R. Perdisci, M. Del Rio, and F. Roli, “Intrusion detection in computer networks by a modular
ensemble of one-class classifiers,” Information Fusion, vol. 9, no. 1, pp. 69–82, 2008.

[94] S. L. Scott, “A bayesian paradigm for designing intrusion detection systems,” Computational statistics & data
analysis, vol. 45, no. 1, pp. 69–83, 2004.

[95] A. Al-Ani and M. Deriche, “A new technique for combining multiple classifiers using the dempster-shafer theory
of evidence,” arXiv preprint arXiv:1107.0018, 2011.

[96] N. Hatami and R. Ebrahimpour, “Combining multiple classifiers: diversify with boosting and combining by
stacking,” Int. J. Comput. Sci. Network Security, vol. 7, no. 1, pp. 127–31, 2007.

[97] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers and their applications to
handwriting recognition,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 22, no. 3, pp. 418–435,
1992.

[98] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 20, no. 3, pp. 226–239, 1998.

[99] A. F. R. Rahman, H. Alam, and M. C. Fairhurst, “Multiple classifier combination for character recognition:
Revisiting the majority voting system and its variations,” in Document Analysis Systems V. Springer, 2002,
pp. 167–178.

[100] M. Fairhurst and A. Rahman, “Enhancing consensus in multiple expert decision fusion,” IEE Proceedings-
Vision, Image and Signal Processing, vol. 147, no. 1, pp. 39–46, 2000.

[101] A. Rahman and M. Fairhurst, “Exploiting second order information to design a novel multiple expert decision
combination platform for pattern classification,” Electronics Letters, vol. 33, no. 6, pp. 476–477, 1997.

[102]

[103] “Tracking ghostnet: Investigating a cyber espionage network,” 2009, information Warfare Monitor.

[104] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper, Symantec Corp., Security
Response, 2011.

[105] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for network intrusion
detection,” in Security and Privacy (SP), 2010 IEEE Symposium on, may 2010, pp. 305 –316.

[106] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs. Springer, 2007.

[107] M. Knysz, X. Hu, and K. G. Shin, “Good guys vs. bot guise: Mimicry attacks against fast-flux detection
systems,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 1844–1852.

[108] M. A. R. J. Z. Fabian and M. A. Terzis, “A multifaceted approach to understanding the botnet phenomenon,”
in Proceedings of the 2006 ACM SIGCOMM Internet Measurement Conference (IMC), vol. 2006, 2006.

[109] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em
algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 1–38, 1977.

[110] N. R. Ramay, S. Khattak, A. A. Syed, and S. A. Khayam, “Poster: Bottleneck: A generalized, flexible, and
extensible framework for botnet defense.”

[111] R. Cowell, “Introduction to inference for bayesian networks,” NATO ASI SERIES D BEHAVIOURAL AND
SOCIAL SCIENCES, vol. 89, pp. 9–26, 1998.

[112] X. Qin and W. Lee, “Discovering novel attack strategies from infosec alerts,” in In Proceedings of the 9th
European Symposium on Research in Computer Security, Sophia Antipolis, 2004, pp. 439–456.

[113] J. Cheng and R. Greiner, “Learning bayesian belief network classifiers: Algorithms and system,” in Advances in
Artificial Intelligence, ser. Lecture Notes in Computer Science, E. Stroulia and S. Matwin, Eds. Springer Berlin
Heidelberg, 2001, vol. 2056, pp. 141–151. [Online]. Available: http://dx.doi.org/10.1007/3-540-45153-6 14

177

[114] C. Chow and C. Liu, “Approximating discrete probability distributions with dependence trees,” Information
Theory, IEEE Transactions on, vol. 14, no. 3, pp. 462–467, May 1968.

[115] C. Chow and T. Wagner, “Consistency of an estimate of tree-dependent probability distributions (corresp.),”
Information Theory, IEEE Transactions on, vol. 19, no. 3, pp. 369–371, May 1973.

[116] G. Cooper and E. Herskovits, “A bayesian method for the induction of probabilistic networks from data,”
Machine Learning, vol. 9, pp. 309–347, 1992. [Online]. Available: http://dx.doi.org/10.1007/BF00994110

[117] A. Netica, “Programers library reference manual.”

[118] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell, “Bayesian analysis in expert systems,”
Statistical science, pp. 219–247, 1993.

[119] F. V. Jensen, An introduction to Bayesian networks. UCL press London, 1996, vol. 74.

[120] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann,
1988.

[121] “Bottleneck,” http://sysnet.org.pk/w/Code and Tools#BotFlex.

[122] FireEye, “Protecting against advanced malware and targeted apt attacks,” 2012. [Online]. Available:
http://www.fireeye.com/resources/pdfs/FireEye Gartner RB Feb2012.pdf

[123] “Arbor network’s peakflow.” [Online]. Available: http://www.arbornetworks.com

[124] G. F. Cretu-Ciocarlie, A. Stavrou, M. E. Locasto, and S. J. Stolfo, “Adaptive anomaly detection via self-
calibration and dynamic updating,” in Recent Advances in Intrusion Detection. Springer, 2009, pp. 41–60.

[125] W. K. Robertson, F. Maggi, C. Kruegel, and G. Vigna, “Effective anomaly detection with scarce training data.”
in NDSS, 2010.

[126] F. Silveira and C. Diot, “Urca: Pulling out anomalies by their root causes,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1–9.

[127] F. Cohen, “50 ways to defeat your intrusion detection system,” 2003.

[128] G. V. Hulme, “Gartner: Intrusion detection on the way out,” Information Week, June, vol. 13, p. 2003, 2003.

[129] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of service: Eluding network intrusion detec-
tion,” DTIC Document, Tech. Rep., 1998.

[130] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Polymorphic blending attacks,” in Proceedings of
the 15th USENIX Security Symposium, 2006, pp. 241–256.

[131] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems,” in Proceedings of the 9th
ACM Conference on Computer and Communications Security. ACM, 2002, pp. 255–264.

[132] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

[133] M. Q. Ali, H. Khan, A. Sajjad, and S. A. Khayam, “On achieving good operating points on an roc plane
using stochastic anomaly score prediction,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 314–323.

[134] O. Goldreich, “Foundations of cryptography, volume i,” Basic Tools, 2003.

[135] B. Schneier, “The data encryption standard (des),” CryptoGram newsletter, 2000.

[136] I. Land, “A note on symmetric discrete memoryless channels,” 2005. [Online]. Available: http:
//kom.aau.dk/project/sipcom/SIPCom06/sites/sipcom8/courses/SIPCom8-1/SymDMCs.pdf

[137] “Malicious insider threats report, computer economics,” May 2010. [Online]. Available: http:
//securityresponse.symantec.com/avcenter

178

