
i

Solving Inverse Kinematics Using Artificial Neural Networks

By

Maaz Mohsin

170381

Supervisor:

Dr.Hasan Sajid

Robotics and Intelligent Machines Engineering

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

May, 2019

ii

Solving Inverse Kinematic Using Artificial Neural Networks

Maaz Mohsin

170381

A thesis submitted in partial fulfillment of the requirements for the degree of

MS(Robotic and Intelligent Machine Engineering)

Thesis Supervisor:

Dr.Hasan Sajid

Thesis Supervisor’s Signature: _____________________

Robotic and Intelligent Machine Engineering

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

May, 2019

iii

Declaration

I certify that this research work titled “Solving Inverse Kinematics using Artificial Neural

Networks” is my own work. The work has not been presented elsewhere for assessment. The

material that has been used from other sources it has been properly acknowledged / referred.

Signature of Student

Maaz Mohsin

2016-Nust-MS-RIME-00000170381

iv

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Student

Maaz Mohsin

00000170381

Dr. Hasan Sajid

(Supervisor)

v

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of NUST School of Mechanical & Manufacturing

Engineering (SMME). Details may be obtained by the Librarian. This page must form

part of any such copies made. Further copies (by any process) may not be made without

the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any

prior agreement to the contrary, and may not be made available for use by third parties

without the written permission of the SMME, which will prescribe the terms and

conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST School of Mechanical & Manufacturing

Engineering, Islamabad.

vi

Acknowledgements

I am thankful to the only Creator Allah Subhana-Watala to have given me strength and

knowledge to carry out this work at every step and for every new thought which You setup in my

mind to improve it. Indeed You are the most beneficial and merciful. I am helpless and could not

have any done anything without Your priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was Your will,

so indeed none be worthy of praise but You.

I would also like to express special thanks to my supervisor Dr.Hasan Sajid for his help

throughout my thesis and also for teaching the key concept of machine learning and deep

learning. I can safely say that I haven't learned any other subject in such depth than the ones

which he has taught. I am extremely obliged to him for his guidance, advice and the motivation

he gave me in the time of need for the accomplishment of my research work I would also like to

mention his tremendous support and cooperation. Each time I got stuck in something, he came

up with the solution. Without his help I wouldn’t have been able to complete my thesis. I

appreciate his patience and guidance throughout the whole thesis.

I am profusely thankful to my beloved parents (Mrs. & Mr. Dr. Abdul Qayyum

Mohsin) who raised me when I was not capable of walking and continued to support me

throughout in every department of my life, specially my mother who believed in me and always

was there to support and provide constructive criticism. I am also thankful to my sisters for their

prayers, encouragement and moral support and also to my dear friend (Raja Muhammad Saad

Bashir) who has always been there to help me.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

vii

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment.

viii

Abstract

Finding the inverse kinematic solution is among one of the most important task in the

field of robotics i.e. provided the position and orientation of the end factor compute the set of

joint angles which would represent the desired position of end effector. For this purpose there

exist many solutions such as geometric, algebraic and iterative as the complexity of the joint

structure of the manipulator increases the computation becomes more difficult and time

consuming. In order to elude cumbersome task of calculating manually a Neural Network based

approach is proposed to solve Inverse kinematics. In this study inverse kinematics of six-

degrees-of-freedom PUMA 560 was solved using ANN. Comprehensive study was conducted to

find the finest configuration for this problem.

Key Words: Artificial Neural Network, Inverse Kinematic, PUMA 560

ix

Table of Contents

Declaration.. iii

Plagiarism Certificate (Turnitin Report)... iv

Copyright Statement ... v

Acknowledgements .. vi

Abstract ... viii

Table of Contents ... ix

List of Figures ... xi

List of Tables ... xii

CHAPTER :1 INTRODUCTION ... 13

1.1 Problem Definition ... 14

CHAPTER :2 LITRETURE REVIEW .. 16

2.1 Kalman Filter.. 16

2.2 Adaptive Learning Strategy ... 16

2.3 Inclusion of Current Joint ... 17

2.4 Modular Neural Network ... 17

2.5 4 DOF Surgical Robot .. 17

2.6 Optimization Algorithm ... 17

2.7 Reliability-based Neural Network .. 18

2.8 Jacobian Solution ... 19

2.9 Committee Machine ... 19

2.10 Particle Swarm Optimization ... 19

CHAPTER :3 DATA SET ... 20

3.1 Kinematics Of Puma560 .. 20

3.2 Data Set Collection... 24

CHAPTER :4 PROPOSED METHODOLOGY ... 27

4.1 Methodology .. 27

4.2 First Configuration ... 27

4.3 Second configuration.. 29

4.4 Experimental Evaluation .. 31

4.5 First Configuration ... 31

4.6 Second Configuration ... 33

4.7 Training Details .. 36

4.8 Rectified Linear Unit .. 36

x

CHAPTER :5 CONCLUSION .. 38

5.1 Future Work ... 38

APPENDIX A .. 39

REFERENCES .. 44

xi

List of Figures

Figure 1:Kinematics Relation .. 13
Figure 2 ANN Relationship With Input Output .. 15

Figure 3 Elman Filter Architecture .. 18
Figure 4 Puma 560 Assignment of frame .. 23
Figure 5 Data Set Distribution ... 26
Figure 6 Configuration With Single Joint Output ... 28
Figure 7 Configuration With Six Joint As Outputs ... 30

Figure 8 Joint Error Configuration 1 ... 32

Figure 9 Position Error of configuration 1 ... 33

Figure 10 Joint Error Configuration 2 ... 34
Figure 11 Position Error Configuration 2 .. 35

Figure 12 RELU .. 37

file:///C:/Users/maaz%20mohsin/Documents/MS%20Thesis.docx%23_Toc11931631

xii

List of Tables

Table 1 DH Parameters Of PUMA 560... 21
Table 2 Joint Limits of Puma 560 .. 21
Table 3 Input For The Network ... 24
Table 4 Ground Truth For The Network .. 25
Table 6 Network Configuration For Single Joint Output ... 29

Table 7 Network Configuration For Six Joint Output ... 30

13

CHAPTER :1 INTRODUCTION

In this era of Digitalization and machines data has grown exponentially and its near to

impossible to hard code all those patterns and feature to perform analyses and understand to

learn. We need machine learning tool that can learn through examples that we provide and

perform detail feature analyses and moment recognitions for future and on the bases of those

predict outcomes perform particular tasks .In order to design a robot’s movements, we have to

recognize the connection between the actuators that we can control and the robot’s

position. In inverse kinematics we are given the position of the end effector and we compute

the joint configuration of the robot as shown figure 1.

Figure 1:Kinematics Relation

14

1.1 Problem Definition

To calculate the inverse kinematics solution of a robot there are many methodology such as

geometric, algebraic and iterative. As complexity of the joint structure of the manipulator

increases the computation becomes more difficult and time consuming. In order to elude

cumbersome task of calculating manually Neural Network based solution is proposed. Artificial

Neural network mimic biological brain. So keeping in mind the capability of neural networks to

solve complex tasks we find it suitable to solve the problem of inverse kinematics.

We chose PUMA560 which is a six degree of freedom robot. As we are using artificial neural

network which are a part of supervised machine learning technique we have to provide a suitable

data set for learning the non-linear function of inverse kinematics.

We illustrate the problem using the figure 2 for better understanding of the proposed problem.

We will give input the position and rotation matrix value to the neural network. The trained

neural network will give us the joints of against the provided input.

15

Figure 2 ANN Relationship With Input Output

To this end our contributions for this thesis are:

 Solving Inverse kinematics using learning

 Compile the data set for our robot i.e. Puma 560

 Devise the best configuration for solving the problem.

16

CHAPTER :2 LITRETURE REVIEW

Due to the strong capability of solving complex problems, Neural Networks solution have

attracted the attention if many researchers in recent years [1-6]. Applying Neural Networks to the

application of robotics in solving inverse kinematics give us an edge over the traditional

methods. Neural Network trained solution will manifest high efficiency no matter what the

kinematic structure is and have robust mapping capability but they have slow convergence speed,

the weights might stuck in local minima and there is this difficulty of deciding the number of

layers and neurons which comes with experience and experimentation. Researchers have used

various methodologies to improve the results of the problem some of them are enlisted with

detail below.

2.1 Kalman Filter

In literature many few researchers have used filters with neural networks to solve the problem of

inverse kinematics. Hoai-Nhan Nguyen and colleagues [14] proposed a calibrated method for

improvement in accuracy using extended kalman filter and an artificial neural network. Extended

Kalman filter was used remove the geometric parameter errors. After that a 3 layer ANN with 40

neuron and tan-sigmoid activation function was used to model the non-geometric error sources.

2.2 Adaptive Learning Strategy

Hasan, A.T., et al. [2] controlled the motion of the robotic manipulator using an adaptive

learning strategy. They used artificial neural network to surpass the problems in finding the

inverse kinematics solution. In their approach, a network was trained to learn the joint

configuration from the positions of end-effector

17

2.3 Inclusion of Current Joint

Almusawi, A.R.J., et al., [13] proposed that by including the current joint configuration of the

robot significant improvement in the accuracy was observed. Robotic Arm Denso VP6242 was

used to collect data set for training. Evaluation of the work was done by giving the desired

position to the robot and it achieved the required joint configuration necessary to attain those

particular points. The percentage error in position was 0.17, 0.36, 0.12 in position in X,Y and Z

respectively.

2.4 Modular Neural Network

Oyama and colleague [8] presented modular neural network architectures for learning the

inverse kinematics model. Their technique is established on DeMers’ method, which includes a

number of experts, an expert selector, an expert generator, and a feedback controller that can

accommodate the nonlinearities in the kinematic system. In their method they have achieved an

error of less than 10 mm in the hand position

2.5 4 DOF Surgical Robot

Nihat Çabuk et al., [16] presented a solution for Inverse kinematics problem of a four degree of

freedom manipulator using ANN, manipulator was used to for lightning system that is used in

surgery room ,The manipulator was designed in CAD and later used with Simulink. The author

used a 2 layer neural network, changed the number of neurons in the hidden layer in the order of

12, 24,36,72,96,110,120 and computed the results .The enlisted error were around 1.5 m.

2.6 Optimization Algorithm

Mustafa Ayyıldız et al., [15] Used 4 different algorithms among which are genetic algorithm,

particle swarm optimization, quantum particle swarm optimization and gravitational search

algorithm.100 randomly selected workspace points were defined in order to calculate inverse

18

kinematics which was calculated using these optimization algorithms. Comparison was

performed between these 4 algorithms on the basis of execution time and position of the end

effector. Results showed that quantum particle swarm optimization calculated the inverse

kinematics in less time, iteration and average error.

2.7 Reliability-based Neural Network

Koker [11] proposed the study in which he used parallel neural networks to compute the inverse

kinematics of the robots. He proposed a method in which he selected the best output from three

parallel networks to obtain the most consistent solution for a 6-degree-of-freedom robot. Three

networks were trained in order to reduce the error. RNN based model called Elman network was

used to map the state space of the system. Three Elman neural networks used “sigmoid” as an

activation function in order to deduce a reliable inverse kinematics solution. The detail pictorial

representation of their methodology is represented below in figure 3

Figure 3 Elman Filter Architecture

19

2.8 Jacobian Solution

Hasan et al., [12] used Artificial Neural Network to overcome singularities and uncertainties.

They used a 6 degree of freedom robotic manipulator and managed to achieve a low error rate

which was for joints 1–6 were 0.915%, 0.135%, 0.57%, 4.79%, 4.81%, and 1.11%, respectively.

They also calculated angular velocities with angular position .The error for angular velocities 1-6

were 1.265%, 2.02%, 1.205%, 1.41%, 1.15%, and 1.175% respectively. They also enlisted their

error in Cartesian position which was 3.34%, 6.72%, and 0.35% in PX, PY, PZ respectively.

2.9 Committee Machine

Koker Hasan et al., [4] proposed a neural network based committee machine to solve the 6 DOF

redundant robotic manipulator. The committee machine consisted of ten neural networks. All

neural networks were trained to solve the problem independently. In this work the researchers

stated that using six networks simultaneously reduces the error range from (5.76 - 13.44) mm to

(0.39-0.74) mm they also mentioned in their finding that using more the 6 networks

simultaneously had no significant effect on the output.

2.10 Particle Swarm Optimization

B. Durmuş et al., [18] calculated Inverse kinematics problem using particle swarm optimization.

As it is evident from the name PSO (Particle Swarm Optimization) is an optimization algorithm

which depends on the behavior of swarm. Like genetic algorithm it starts by generating an initial

population. Random selection of each individual is performed from the search space. After

processing each individual is evaluated on the basis of a fitness function which is predefined

according to the problem.

20

CHAPTER :3 DATA SET

For the purpose of calculating inverse kinematics we chose a 6 DOF PUMA 560 and collected

different data points in the workspace to construct the data set.

3.1 Kinematics Of Puma560

In order to define the motion of the joints of a robot regardless of the forces causing it kinematics

is used. Kinematics is usually divided into two parts i.e. forward Kinematics and Inverse

Kinematics.

Forward Kinematics is the process of computing the orientation and position of end-effector

from the set of joint angles .In other words transformation from joint space description into

Cartesian space description is known as forward Kinematics. Inverse Kinematics is the process

of computing the set of joint angles from the position and orientation of end-effector.

To compute Inverse Kinematics there exist many solutions such as geometric, algebraic and

iterative as the complexity of the joint structure of the manipulator increases the computation

becomes more difficult and time consuming. In order to elude cumbersome task of calculating

manually a Neural Network based approach is more appropriate to solve Inverse kinematics.

In order to design a robot’s movements, we have to recognize the connection between the

actuators that we can control and the robot’s position. In our study we have computed the inverse

kinematics of puma560 robot which has 6 DOF, the coordinate frame assignment has been

performed and assigned to the links which can be seen in figure 4. The DH (Denavit-Hartenberg)

parameters of the robot are shown in table 1.The joint ranges of puma560 are shown in table 2.

21

Link theta D A Alpha Offset

1 q1 0 0 0 0

2 q2 0 0 1.5708 0

3 q3 0.15005 0.4318 0 0

4 q4 0.4318 0.0203 -1.5708 0

5 q5 0 0 1.5708 0

6 q6 0 0 -1.5708 0

Table 1 DH Parameters Of PUMA 560

Links q_min q_max

A1 -2.7925 2.7925

A2 -0.7854 3.9270

A3 -3.9270 0.7854

A4 -1.9199 2.9671

A5 -1.7453 1.7453

A6 -4.6426 4.6426

Table 2 Joint Limits of Puma 560

22

The Homogeneous transformation matrix is used to represent the position and orientation of the

end effector with respect to the base of the robot. The homogeneous transformation matrix for all

joints for 0 to 6 is represented in equation 1

 = |

| 1

 Represents the rotational matrix 3 X 3 and

 represents the position vector of end effector.

This robot has six links thus we calculate transformation matrix for each link and then the

homogeneous transformation matrix is calculated by multiplication of each transformation.

 =

 [

] 2

Here “n”, “o”, and “a” defines the orientation of the end effector in the “X”, “Y” and “Z”

respectively. The Cartesian coordinates are calculated using the combination of joint angles lying

in the ranges shown in table 2 .Using these joint angle values a data set is constructed which is

explained in section below.

23

Figure 4 Puma 560 Assignment of frame

24

3.2 Data Set Collection

In order to map the function by neural network it is important to generate a good dataset. For this

study the data set was created using MATLAB software. Puma 560 model from Robotic toolbox

by peter corke [17] was used which is shown below in table1for acquiring the set of Cartesian

space and joint configuration. Random data sampling technique was used to obtain the values of

joint angles keeping in mind the configuration of robot mentioned in table 2.To compute the

forward kinematics “fkine” function was used and for Inverse kinematics “ikine6s” function of

robotic toolbox was used. To ensure the data consistency duplicate values were removed from

the data set. The data set consisted of 50000 unique data points which contained the Position

orientation and joint configuration of the robot. The input for ANN is shown in table 3 which has

the position and orientation and the output against this input is shown in table 4. Which consist

of the joint configuration of each link. This data set was divided in to training set, test set and

validation set with the ratio is shown in figure 5

P x P y P z n 11 n 12 n 13 O 12 O 22 O 32 a 13 a 23 a 33

-0.65 -0.21 0.53 -0.45 -0.89 0.01 -0.65 0.34 0.68 -0.61 0.3 -0.74

0.57 -0.07 0.47 -0.04 0.22 0.97 -0.22 -0.95 0.21 0.97 -0.21 0.09

-0.16 -0.48 0.39 -0.27 -0.21 -0.94 0.67 0.66 -0.33 0.69 -0.72 -0.04

0.05 -0.72 0.47 0.65 0.16 0.74 -0.74 0.32 0.59 -0.15 -0.93 0.33

-0.08 0.22 0.72 -0.48 -0.02 -0.88 -0.87 -0.15 0.48 -0.14 0.99 0.05

-0.17 -0.38 0.26 0.86 -0.21 0.46 -0.34 -0.91 0.23 0.37 -0.36 -0.86

0.28 0.23 0.01 -0.24 0.45 0.86 0.09 -0.87 0.48 0.97 0.19 0.17

-0.17 -0.34 0.43 0.23 0.92 0.31 -0.79 0.36 -0.5 -0.57 -0.13 0.81

-0.04 -0.65 -0.4 -0.06 -0.78 0.62 -0.99 0.13 0.07 -0.14 -0.61 -0.78

0.39 -0.03 0.64 0.61 -0.58 -0.55 0.68 0.02 0.73 -0.41 -0.82 0.4

-0.25 0.16 -0.58 0.67 -0.6 0.44 -0.65 -0.76 -0.05 0.37 -0.25 -0.9

Table 3 Input For The Network

25

Θ1 Θ2 Θ3 Θ4 Θ5 Θ6

0.09 2.28 -1.15 -0.37 1.35 -1.05

2.76 1.85 -0.37 1.61 0.18 -1.8

0.95 1.69 0.02 1.56 1.38 1.09

1.43 2.34 -1.12 -1.01 0.02 0.34

4.39 1.28 -0.45 0.67 0.8 -3.12

0.79 1.55 0.48 0.59 1.18 -2.3

3.4 1.95 0.83 -3.08 1.38 2.61

0.71 1.39 0.22 -2.82 1.06 -2.69

1.28 -3.1 -0.49 2.94 0.23 -3.11

2.69 1.54 -0.43 -1.95 1.4 -1.07

5.19 -2.73 0.04 -1.42 0.21 -2.06

Table 4 Ground Truth For The Network

26

Figure 5 Data Set Distribution

27

CHAPTER :4 PROPOSED METHODOLOGY

4.1 Methodology

The aim of this work is to train a set of neural networks to deliver inverse kinematics solution

and conclude which configuration is well suited. Given the orientation and position of the end-

effector the neural network should be able to output the set of joint angles of the robot. These

joint angles would be responsible to move the end-effector of robot to the desired position. So

the below mentioned techniques will have the position and orientation as input and the output of

the neural network will be joint angle (or set of joint angle).As there is no unique solution for the

inverse kinematics and mathematical derivation are time consuming and complex so it is better

to find out the solution through neural network. In our work we used an ANN to solve the

problem of inverse kinematics. We used two techniques and then compared the results of each

technique and with the results shown in literature.

4.2 First Configuration

In this configuration we computed the joint angle explicitly using a dedicated network for each

joint. The network consisted of 12 inputs and one output. The configuration of ANN is shown in

figure 6.

28

Figure 6 Configuration With Single Joint Output

For experimentation purpose we used two configuration one with three layers and second with

four layers. Rectified Linear Unit (RELU) was used as activation function in these layers. We

used 50 neurons in the first layer and then increased it with the multiple of two for the next

layers. The last layer consisted of only one neuron that represented our output i.e. Theta. The

layer details against the networks are shown in table6.

29

Layers/Networks Layer 1 Layer 2 Layer 3 Layer4

Network 1 50 100 Output -

Network 2 50 100 200 Output

Table 5 Network Configuration For Single Joint Output

4.3 Second configuration

In this configuration all joints were calculated simultaneously. The network consisted of 12

inputs and 6 outputs representing the six joints of Puma 560 as shown in figure 7 .For gaining

better results we increased the number of layers starting from 3 and going on to 7.The number of

neuron in the layer started from 50 and increased with the multiple of 2 in the next layer.

Different layer configuration were used which are shown in table 7. Rectified Linear Unit

(RELU) was used as activation function.

30

Figure 7 Configuration With Six Joint As Outputs

Layers/Networks Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Network 1 50 100 Output - - - -

Network 2 50 100 200 Output - - -

Network 3 50 100 200 400 Output - -

Network 4 50 100 200 400 600 Output -

Network 5 50 100 200 400 600 800 Output

Table 6 Network Configuration For Six Joint Output

31

4.4 Experimental Evaluation

 In order to come up with some conclusive results we focused on the error of actual and predicted

value. For this purpose of error calculation we calculated the difference of actual and predicted

value by the network using equation 3.

 () () 3

4.5 First Configuration

Focusing on a single theta as an output ANN works quite efficiently. We got good results in just

the second configuration of network which only had 4 layers out of which one was the output

layer. After training the network for 50000 epochs we evaluated the predicted joints and the

difference of the joint values of predicted and actual were plotted as an error in figure 8. Most of

the researcher focused on minimizing the MSE (Mean square Error) but we focused on

minimizing the position error, for this purpose we computed the forward kinematics and attained

the position values in X,Y,Z respectively. After getting the position values we took the

difference with the actual values and plotted the histogram representing the error in figure 9.

32

Figure 8 Joint Error Configuration 1

33

Figure 9 Position Error of configuration 1

4.6 Second Configuration

In the network giving us six joints cumulatively a comprehensive study was conducted using our

dataset. Starting from network 1 results were very poor but with the increase of layers and

number of neurons network started to predict somewhat near to the actual output we computed

the joint error using equation 3 in the predicted values of all the joints, the error and its spread is

represented against each network for every joint in figure 7.As it is apparent from the figure that

by increasing the number of layers and neurons the error is reduced and in the last network

predict values with state of the art accuracy. After calculating the results in joint space we

examined the results in Cartesian space. Forward kinematic of the predicted values were

calculated using the robotics toll box, after attaining the values in Cartesian space we calculated

the error by taking the difference of the actual and predicted values using the same equation used

prior in joint error calculation. Error in position of X ,Y and Z respectively are represented in

figure 8 .

34

Figure 10 Joint Error Configuration 2

35

Figure 11 Position Error Configuration 2

36

4.7 Training Details

We split our dataset into a training set and a test set, containing 32000 and 10000 unique data

points in our workspace respectively. We train over the data set for 50000 epochs for each

network proposed. We used a learning rate of 0.001 for the training. For the loss function, we

used the MSE(Mean Squared Error) loss which is given as:

∑ (̂)
 4

Where n is the total number of training samples y is the ground truth value and ̂ is the predicted

value of our network. Stochastic Gradient Descent (SGD) optimizer with learning rater of 0.001,

decay=1 and momentum value as 0.9

.

4.8 Rectified Linear Unit

To map the non-linear function of inverse kinematics we used Relu as an activation function.

Rectified Linear Units (ReLUs) have gained admiration as a non-linearity in recent years. Using

rectified linear units leads to faster training times over sigmoid, it also aids in stabilizing the

gradients, resulting in more stable training. The graphical representation is shown in figure 3.4

and it is mathematically given as:

 () () 5

37

Figure 12 RELU

38

CHAPTER :5 CONCLUSION

In this thesis we introduced the problem of solving inverse kinematics using neural network,

dataset for puma 560 with prior mentioned constraints of manipulators and baseline networks

with different configurations also which configuration will be efficient to solve the problem.

We hope that this effort overlays way for forthcoming work in the domain and we propose it as

an initial step towards autonomous robotics using machine learning. Below, we outline

considerations for potential future work in this domain.

5.1 Future Work

AI (Artificial Intelligence) and technologies associated to it will emerge in every industry in

coming future .Machines with the capability of perceiving and taking decision is one of the AI’s

major gifts to the modern civilization. With the development in technologies in terms of

hardware and software gates to the self – propelled machines are opened which has impacted our

operative rules.

 In the recent years, digital assistants, autonomous driving, robotic industrial staff, and smart

cities have demonstrated that intelligent machines are possible. AI has transformed most industry

sectors like trading, manufacturing, financing, healthcare, and media and continues to impact

different industries.

Neural networks can be used in motion planning and trajectory generation. In motion planning

few researchers have used PCNN (Pulse Couple Neural Network) but we would recommend to

use RNN (Recurrent Neural Networks) as they maintain historical data i.e. at each step the

previous state is known which would help in determining the next state so it would be beneficial

in decision making and object detection. Using RNN would result in better and efficient solution

to these problems.

39

APPENDIX A

The details of architecture of the model build in keras are shown below.

Combined Joints

 Network with 3 layers

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 6) 606

===

Total params: 6,356

Trainable params: 6,356

Non-trainable params: 0

 Network with 4 layers

Layer (type) Output Shape Param #

40

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 200) 20200

dense_4 (Dense) (None, 6) 1206

===

Total params: 27,156

Trainable params: 27,156

Non-trainable params: 0

 Network with 5 layers

Layer (type) Output Shape Param #

==

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 200) 20200

dense_4 (Dense) (None, 400) 80400

dense_5 (Dense) (None, 6) 2406

===

Total params: 108,756

41

Trainable params: 108,756

Non-trainable params: 0

 Network with 6 layers

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 200) 20200

dense_4 (Dense) (None, 400) 80400

dense_5 (Dense) (None, 600) 240600

dense_6 (Dense) (None, 6) 3606

===

Total params: 350,556

Trainable params: 350,556

Non-trainable params: 0

42

 Network with 7 layers

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 200) 20200

dense_4 (Dense) (None, 400) 80400

dense_5 (Dense) (None, 600) 240600

dense_6 (Dense) (None, 800) 480800

dense_7 (Dense) (None, 6) 4806

===

43

Total params: 832,556

Trainable params: 832,556

Non-trainable params: 0

Single Output

 Network with 3 layer

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 6) 606

===

Total params: 6,356

Trainable params: 6,356

Non-trainable params: 0

44

 Network with 4 layer

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 50) 650

dense_2 (Dense) (None, 100) 5100

dense_3 (Dense) (None, 200) 20200

dense_4 (Dense) (None, 6) 1206

===

Total params: 27,156

Trainable params: 27,156

Non-trainable params: 0

REFERENCES

1. Aggarwal, L., K. Aggarwal, and R.J. Urbanic, Use of Artificial Neural Networks for the

Development of an Inverse Kinematic Solution and Visual Identification of Singularity Zone(s).

Procedia CIRP, 2014. 17: p. 812-817.

2. Hasan, A.T., et al., An adaptive-learning algorithm to solve the inverse kinematics problem of a 6

D.O.F serial robot manipulator. Advances in Engineering Software, 2006. 37(7): p. 432-438.

3. Karlik, B. and S. Aydin, An improved approach to the solution of inverse kinematics problems for

robot manipulators. Engineering Applications of Artificial Intelligence, 2000. 13(2): p. 159-164.

45

4. Köker, R., T. Çakar, and Y. Sari, A neural-network committee machine approach to the inverse

kinematics problem solution of robotic manipulators. Engineering with Computers, 2014. 30(4):

p. 641-649.

5. Shi, Q. and J. Xie. A research on inverse kinematics solution of 6-DOF robot with offset-wrist

based on Adaboost neural network. in 2017 IEEE International Conference on Cybernetics and

Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM).

2017.

6. Toshani, H. and M. Farrokhi, Real-time inverse kinematics of redundant manipulators using

neural networks and quadratic programming: A Lyapunov-based approach. Robotics and

Autonomous Systems, 2014. 62(6): p. 766-781.

7. Tejomurtula, S. and S. Kak, Inverse kinematics in robotics using neural networks. Information

Sciences, 1999. 116(2): p. 147-164.

8. Oyama, E., et al. Inverse kinematics learning by modular architecture neural networks with

performance prediction networks. in Proceedings 2001 ICRA. IEEE International Conference on

Robotics and Automation (Cat. No.01CH37164). 2001.

9. Mayorga, R.V. and P. Sanongboon, Inverse kinematics and geometrically bounded singularities

prevention of redundant manipulators: An Artificial Neural Network approach. Robotics and

Autonomous Systems, 2005. 53(3): p. 164-176.

10. Bingul, Z., H.M. Ertunc, and C. Oysu. Applying Neural Network to Inverse Kinematic Problem for

6R Robot Manipulator with Offset Wrist. in Adaptive and Natural Computing Algorithms. 2005.

Vienna: Springer Vienna.

11. Köker, R., Reliability-based approach to the inverse kinematics solution of robots using Elman's

networks. Vol. 18. 2005. 685-693.

12. Hasan, A.T., et al., Artificial neural network-based kinematics Jacobian solution for serial

manipulator passing through singular configurations. Advances in Engineering Software, 2010.

41(2): p. 359-367.

13. Almusawi, A.R.J., et al., A New Artificial Neural Network Approach in Solving Inverse Kinematics

of Robotic Arm (Denso VP6242). Computational Intelligence and Neuroscience, 2016. 2016: p.

10.

14. Nguyen, H.-N., J. Zhou, and H.-J. Kang, A calibration method for enhancing robot accuracy

through integration of an extended Kalman filter algorithm and an artificial neural network.

Neurocomputing, 2015. 151: p. 996-1005.

46

15. Ayyıldız, M. and K. Çetinkaya, Comparison of four different heuristic optimization algorithms for

the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Computing and

Applications, 2016. 27(4): p. 825-836.

16. Çabuk, N., V. Bakırcıoğlu, and F. Şen, Neural Network Approach for Inverse Kinematic of a 4-DOF

Lighting Manipulator. 2017.

17. Corke, P., Robotics, Vision and Control. 2017: Springer.

18. 6 th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey.

