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Abstract 
 

Random Numbers have applications in a number of computer sciences domains 

specifically in computer security algorithms they play a vital role. One of the 

techniques to generate a random number is to follow an algorithm which tries to 

generate random numbers as close as a true random number generator source, 

this algorithm based random number generation is known as Pseudo random 

Number Generation (PRNG). In this research we studied existing techniques of  

Cellular Automata (CA) based Pseudo Random generator (PRNG) and 

proposed 5 different variations in the existing algorithm, modified the CA rules as 

per requirement for the proposed techniques i.e. 3D Neuman and Moore 

neighborhood, 2D to 3D jumping Neuman and 2D Neuman and Moore jumping 

neighborhoods. In all the cases Neuman neighborhood means non diagonal 

adjacent neighbors while Moore neighborhood means diagonally adjacent 

neighbors. CA rules define which neighbors participate in the current cycle for 

random number generation.  

We implemented the simulation code in C++ and tested the outputs in 

internationally accepted standard for Random Numbers “DIEHARD”, the 

analysis of the results are made as per recommendations of ANSI standards 

and it is discussed which of the above techniques can be declared to be best in 

terms of quality of randomness in random numbers generation. 
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Chapter 1 Introduction 

  



 

1.1    Random Number 

 

Random numbers have applications in many areas from simulation, game-playing, 

cryptography, statistical sampling, and evaluation of multiple integrals, particle transport 

calculations, and computations in statistical physics, to name a few. 

Random numbers are numbers that occur in a sequence such that two conditions are 

met, first the values are uniformly distributed over a defined interval or set, and secondly 

it is impossible to predict future values based on past or present ones. Random 

numbers are important in statistical analysis and probability theory. 

Although it may look simple at first sight to give a definition of what a random number is, 

it proves to be quite difficult in practice. 

A random number is a number generated by a process, whose outcome is 

unpredictable, and which cannot be sub sequentially reliably reproduced. This definition 

works fine provided that one has some kind of a black box, such a black box is usually 

called a random number generator that fulfills this task. 

However, if one were to be given a number, it is simply impossible to verify whether it 

was produced by a random number generator or not. In order to study the randomness 

of the output of such a generator, it is hence absolutely essential to consider sequences 

of numbers. 

It is quite straightforward to define whether a sequence of infinite length is random or 

not. This sequence is random if the quantity of information it contains in the sense of 

Shannon's information theory is also infinite.   

1.2    Motivation 

 

As the discussions made in the above sections, there are lot of applications in the 

domain of computer sciences, IT and other fields of research where random numbers 

play a vital role, studying existing solutions to generate a random sequence and what 

possibilities are there to improve the quality of randomness and efficiency of random 



 

number generators is a vast and interesting topic, its very motivating to find a new or 

better random number generator or discovering better technique for implementing the 

existing solutions as this addition in the knowledge domain has practical applications 

and can be useful for many other applications. 

1.3    Problem Statement 

 

After doing a comprehensive literature survey, understanding of what random numbers 

are, their properties, testing quality of randomness we have selected the topic of 

Cellular Automata to work on, there is vast scope in the filed of cellular automata 

specifically with respect to the two and three dimensional structures as very less people 

have worked on this area and comprehensive results specifically with respect to a three 

dimensional cellular automata are not found in the literature, So we have decided to 

narrow down the area of interest, following statement can be treated as our problem 

statement. 

“High Quality PRNG exploring 3D PCA Structure and possibilities for 2D to 3D jumping 

PCA” 

1.4    Goals and Objectives of the Research 

 

The objectives of the research is to add new ideas with respect to neighbor selection 

criteria in programmable cellular automata and their impact on the quality of 

randomness, one of the goals is finding a better random generator than the existing 

solutions, this opens a new track of research for the future as well as all possible 

neighborhood combinations can not be covered in a single research. 

Our specific goals to be achieved are 

 Implementation and Results for 2-D PCA [both for von Neumann and Moore 

neighborhood]. 

 3-D PCA Implementation with All Neighbors. 



 

 2-D to 3-D jumping PCA where the Z- Neighbors are selected depending on the 

z-index control register, this area is never explored before. 

1.5    Scope of the Research 

 

The scope of this research is limited to programmable cellular automata for 3D 

lattice of cells and its variations for 3D to 2D jumping, both the Neumann and Moore 

neighbors are considered, the work studies choosing different neighbors and their 

effect on the quality of random number sequence generated, this work does not 

include FPGA implementation details and their hardware complexities due to limited 

amount of time. 

 

1.6    Thesis outline 

 

The document has the following chapters. 

 

Chapter 2: Background and Experimental Setup 

 Discuses in general about the types of random numbers, various commonly used 

generators and about Cellular Automata generators, it also describes about the 

background needed for testing and simulation environment we used to accomplish 

the proposed solutions. 

 

Chapter 3: Literature Review/ Related work 

Discuses the most relevant research papers regarding the programmable cellular 

automata, the authors approach and the results they found. 

 

Chapter 4: Methodology 

Discuss the work flow and steps taken to accomplish this research work. 

 



 

Chapter 5: Proposed Solutions 

Detail discussion about the solutions proposed, the algorithm, mechanism of 

working for picking different neighbors and the programmable cellular automat rules 

applied. 

 

Chapter 6: Testing of Proposed Solutions 

 In this chapter testing strategy is discussed, the tests we applied and the process 

of testing of proposed random number generators is explained. 

 

Chapter 7: Analysis of Results 

This chapter describes the analysis of all the results we got as a result of testing; 

the criteria of analysis, memory and run time cost comparisons are also discussed. 

 

Chapter 8: Conclusion and Future Work 

This chapter gives the concluding remarks, which random number generator is the 

best among the proposed methods and also what future work can be done if some 

one wants to extend this piece of work. 

 

At the end of report the Appendices discuss important code and data structures, 

DIEHARD dumps and detail results of each implemented solution. 

 

  



 

 

 

 

 

 

 

 

 

 

Chapter 2  Background  
  



 

In this chapter first we will discuss some background about types of random numbers 

and commonly used random number generators and then the tools and technologies 

required to accomplish the implementation of our proposed solutions, for simulation of 

each proposed generator we used standard C++ complier, for testing the DIEHARD tool 

is used and for comparison of results, calculating means and standard deviations and 

other analysis Microsoft Excel is used.  

 

2.1 Types of random Numbers 

 

In this section we briefly discuss the major categories of Random Number generators. 

 

2.1.1 True Random Numbers or Physical Random-Number Generators 

 

Games of chance are the classic examples of random processes, and the first choice 

would be to use traditional gambling devices as random-number generators. 

 
Unfortunately, these devices are rather slow, especially since the typical computer 

application may require millions of numbers per second. Also, the numbers obtained 

from such devices are not always truly random e.g. cards may be imperfectly shuffled, 

dice and wheels may not be balanced, the random sequence obtained through the 

physical sources are thus know as physical random numbers or true random numbers, 

other physical phenomenon can also be considered in this regard, like the little 

variations in somebody's mouse movements or in the amount of time between 

keystrokes, a really good physical phenomenon to use is a radioactive source. The 

points in time at which a radioactive source decays are completely unpredictable, and 

they can quite easily be detected and fed into a computer. Another suitable physical 

phenomenon is atmospheric noise, which is quite easy to pick up with a normal radio. 



 

Similarly background noise from an office or laboratory or even from a car engine can 

also be used as source.  

 

One important shortcoming of any physical generator is the lack of reproducibility. 

 
2.1.2 Pseudo Random Number Generators or Arithmetical Random 

Generators 

 

The most common method of generating pseudo-random numbers on the computer 

uses a recursive technique called the linear-congruential, or Lehmer, generator. The 

sequence is defined on the set of integers by the recursion formula 

    
    Xn+1 = AXn + C (MOD m) 

 
One method to improve the pseudo-random number generators is to use a combination 

of two or more unrelated generators. 

Some other well known PRNG techniques are discussed below very briefly. 

 
Linear Feed back Shift Registers (LFSR) 

 
A feedback shift register is made up of two parts: a shift register and a feedback 

function. The shift register is a sequence of bits. (The length of a shift register is figured 

in bits; if it is n bits long, it is called an n-bit shift register.) Each time a bit is needed, all 

of the bits in the shift register are shifted 1 bit to the right. The new left-most bit is 

computed as a function of the other bits in the register. The output of the shift register is 

1 bit, often the least significant bit. The period of a shift register is the length of the 

output sequence before it starts repeating. 

 
The simplest kind of feedback shift register is a linear feedback shift register, or LFSR. 

The feedback function is simply the XOR of certain bits in the register; the list of these 

bits is called a tap sequence. Sometimes this is called a Fibonacci configuration. 



 

 
 
Geffe Generator 

 
This key stream generator uses three LFSRs, combined in a nonlinear manner 

Two of the LFSRs are inputs into a multiplexer, and the third LFSR controls the output 

of the multiplexer. If a1, a2, and a3 are the outputs of the three LFSRs, the output of the 

Geffe generator can be described by 

 
b = (a1 ^ a2) • ((¬ a1) ^ a3) 

 
a variation is known as Generalized Gaffe Generator, Instead of choosing between two 

LFSRs, this scheme chooses between k LFSRs, as long as k is a power of 2. There are 

k + 1 LFSRs total. LFSR-1 must be clocked log2k times faster than the other k LFSRs. 

 

Similar other variations of using LFSR in different combinations are, Jennings 

Generator, Beth-Piper Stop-and-Go Generator, Alternating Stop-and-Go Generator and 

Bilateral Stop-and-Go Generator. 

 
 
Self-Decimated Generators 

 
Self-decimated generators are generators that control their own clock. When the output 

of the LFSR is 0, the LFSR is clothe LFSR is clocked d times. When the output of the 

LFSR is 1, the LFSR is clocked k times. 

 
Shrinking Generator 

 
The shrinking generator uses a different form of clock control than the previous 

generators. Take two LFSRs: LFSR-1 and LFSR-2. Clock both of them. If the output of 

LFSR-1 is 1, then the output of the generator is LFSR-2. If the output of LFSR-1 is 0, 

discard the two bits, clock both LFSRs, and try again. 

 
A5 

 



 

A5 is the stream cipher used to encrypt GSM (Group Special Mobile). A5 consists of 

three LFSRs; the register lengths are 19, 22, and 23; all the feedback polynomials are 

sparse. The output is the XOR of the three LFSRs. A5 uses variable clock control. Each 

register is clocked based on its own middle bit, XORed with the inverse threshold 

function of the middle bits of all three registers. Usually, two of the LFSRs clock in each 

round. 

 
Additive Generators 

 
Additive generators (sometimes called lagged Fibonacci generators) are extremely 

efficient because they produce random words instead of random bits, basically these 

are the combinations of techniques discussed above, Fish, Pike and Mush are some of 

the examples of additive generators. 

 
2.1.3 Properties of a Good Random Number Generator 

 

If we go through the literature about random number generators and their qualities we 

get the following points for a good random generator to have: 

 Random pattern :  Passes statistical tests of randomness 

 Long period :  Goes as long as possible before repeating 

 Efficiency :   Executes rapidly and requires little storage 

 Repeatability :  Produces same sequence if started with same initializations 

 Portability :   Capable of  producing same results on different computers 

 

 

2.1.4 The Cellular Automata and its types 

 

The concept of Cellular Automata (CA) was initiated in the early 1950's by J. Von 

Neumann and Stan Ulam, Cellular automata can be viewed as a simple model of a 



 

spatially extended decentralized system made up of a number of individual components 

(cells). The communication between constituent cells is limited to local interaction. 

Each individual cell is in a specific state which changes over time depending on the 

states of its local neighbors. 

 
The reason behind the popularity of cellular automata is their simplicity in understanding 

and implementation, different structural variations of CA have been proposed in their 

designs and analysis of the CA to make it versatile for modeling purposes. 

The two variations of neighborhood are termed as Von Neumann and Moore 

neighborhood, Neumann means adjacent Non Diagonal and Moore means adjacent 

Diagonal neighbors. 

Cellular automata on multi-dimensional grids have also been proposed. The grids have 

either null or periodic boundary. In null boundary configurations the boundary cells are 

assumed to have `null' dependency.  A periodic boundary is one in which the grid is 

considered to be folded. 

 
The nature of next state functions also varies significantly; researchers have defined the 

rule set according to the design requirements of the applications. Also there are some 

standard rule sets, in all cases, the output of next state depends upon the output of the 

previous state. 

 
In general a random number generator can be treated as a block box to which we give 

initial seed and it is assumed to give random number sequence as output for a desired 

length. 

 
 
 
 
 

 

Seed and initialization parameters Random number sequence 

Random Number 

Generator  

Figure 1: Random Number Generator 



 

 

The multidimensional grid of a cellular automata can be found in various forms like 1D 

cellular automata, where the cells are placed adjacent to each other in linear fashion, 

2D cellular automata where the lattice of cells are placed in a matrix structure that can 

be viewed in rows and columns, similarly in 3D cellular automata the structure can be 

viewed in the form of planes, rows and columns. 

In each configuration each cell has certain neighbors, the number of neighbors 

considered is known as the radius, thus a radius of 1 means adjacent left and right 

neighbors in case of 1D cellular automata and four neighbors i.e. left, top, right, bottom 

in case of 2D cellular structure. 

When we talk about a cellular automaton greater than one dimension there is also 

concept of Neumann and Moore neighbors in cellular automata, the Non Diagonally 

adjacent neighbors are known as Neumann while the diagonally adjacent neighbors are 

known as Moore neighbors. 

 

2.2 DIEHARD Test and its Details 

 

DIEHARD is Internationally Accepted for Randomness Testing and treated as de 

facto standard for testing RNGs. 

DIEHARD is suit of tests, it basically comprises of 18 rigorous statistical tests, each test 

checks the randomness of a series of numbers on a specific parameter defined. 

Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1) if the 

input file contains truly independent random bits.   Those p-values are obtained by  

p=F(X), where F is the assumed distribution of the sample random variable X, which is 

often normal. 

 



 

2.2.1 DIEHARD Tests Applied 

 

We applied the following tests of DIEHARD on all the proposed solutions. 

 

 

 

 

 

 

 

 

 

Here we briefly discuss the internal workings of each test applied. 

 

 BIRTHDAY SPACINGS TEST  

Choose m birthdays in a year of n days.  List the spacing’s between the 

birthdays.  If j is the number of values that  occur more than once in that list, then 

j is asymptotically  Poisson distributed with mean m^3/(4n). 

 

 THE OVERLAPPING 5-PERMUTATION TEST 

This tests looks at a sequence of one million 32-bit random integers.  Each set of 

five consecutive integers can be in one of 120 states, for the 5! possible 

orderings of five numbers.  Thus the 5th, 6th, 7th, numbers each provide a state. 

As many thousands of state transitions are observed, cumulative counts are 

made of the number of occurrences of each state. 

 

 BIRTHDAY SPACINGS TEST  

 THE OVERLAPPING 5-PERMUTATION 
TEST 

 BINARY RANK TEST 

 THE BITSTREAM TEST 

 COUNT-THE-1's TEST 

 PARKING LOT TEST 

 THE MINIMUM DISTANCE TEST 

 THE 3DSPHERES TEST 

 OPSO(Overlapping-Pairs-Sparse-
Occupancy) TEST 

 OQSO(Overlapping-Quadruples-Sparse-
Occupancy) TEST 

 DNA TEST 

 

 SQEEZE TEST 

 OVERLAPPING SUMS TEST 

 RUNS TEST 

 CRAPS TEST 

 



 

 BINARY RANK TEST 

This is the BINARY RANK TEST for 31x31 matrices. The leftmost 31 bits of 31 

random integers from the test sequence are used to form a 31x31 binary matrix 

over the field {0,1}. The rank is determined. Ranks are found for 40,000 such 

random matrices and a chi-square test is performed on counts for ranks 31,30,29 

and <=28. 

 

 THE BITSTREAM TEST 

The file under test is viewed as a stream of bits. Call them  b1,b2,... .  Consider 

an alphabet with two "letters", 0 and 1 and think of the stream of bits as a 

succession of 20-letter words, overlapping.  Thus the first word is b1b2...b20, the 

second is b2b3...b21, and so on.  The bit stream test counts the number of 

missing 20-letter (20-bit) words in a string of 2^21 overlapping 20-letter words. 

 

 OPSO(Overlapping-Pairs-Sparse-Occupancy) TEST 

OPSO means Overlapping-Pairs-Sparse-Occupancy, The OPSO test considers 

2-letter words from an alphabet of 1024 letters.  Each letter is determined by a 

specified ten bits from a 32-bit integer in the sequence to be tested. OPSO 

generates  2^21 (overlapping) 2-letter words, The OPSO test takes 32 bits at a 

time from the test file and uses a designated set of ten consecutive bits. It then 

restarts the file for the next designated 10 bits, and so on.  

 

 OQSO(Overlapping-Quadruples-Sparse-Occupancy) TEST 

The test OQSO is similar, except that it considers 4-letter words from an alphabet 

of 32 letters, each letter determined by a designated string of 5 consecutive bits 

from the test file, elements of which are assumed 32-bit random integers. 

 



 

 COUNT-THE-1's TEST 

It considers the file under test as a stream of bytes (four per 32 bit integer).  Each 

byte can contain from 0 to 8 1's, with probabilities 1, 8,28,56,70,56,28,8,1 over 

256.  Now let the stream of bytes provide a string of overlapping 5-letter words, 

each "letter" taking values A,B,C,D,E. 

 

 PARKING LOT TEST 

In a square of side 100, randomly "park" a car---a circle of radius 1.   Then try to 

park a 2nd, a 3rd, and so on, each time parking.  That is, if an attempt to park a 

car causes a crash with one already parked, try again at a new random location. 

 

 THE MINIMUM DISTANCE TEST 

It does this 100 times, choose n=8000 random points in a square of side 10000.  

Find d, the minimum distance between the (n^2-n)/2 pairs of points.  If the points 

are truly independent uniform, then d^2, the square of the minimum distance 

should be (very close to) exponentially distributed with mean .995. 

 

 THE 3DSPHERES TEST 

Chooses  4000 random points in a cube of edge 1000.  At each point, center a 

sphere large enough to reach the next closest point. Then the volume of the 

smallest such sphere is (very close to) exponentially distributed with mean 

120pi/3. 

 

 SQEEZE TEST 

Random integers are floated to get uniforms on [0,1). Starting with 

k=2^31=2147483647, the test finds j, the number of  iterations necessary to 



 

reduce k to 1, using the reduction k=ceiling(k*U), with U provided by floating 

integers from the file being tested. 

 OVERLAPPING SUMS TEST 

Integers are floated to get a sequence U(1),U(2),... of uniform [0,1) variables.  

Then overlapping sums,  S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are 

formed. The S's are virtually normal with a certain covariance matrix.  A linear 

transformation of the S's converts them to a sequence of independent standard 

normals. 

 

 RUNS TEST 

This is the RUNS test.  It counts runs up, and runs down,  in a sequence of 

uniform [0,1) variables, obtained by floating the 32-bit integers in the specified 

file. Runs are counted for sequences of length 10,000.  This is done ten times. 

 

 CRAPS TEST 

It plays 200,000 games of craps, finds the number of wins and the number of 

throws necessary to end each game.  The number of wins should be (very close 

to) a normal with mean 200000p and variance 200000p(1-p), with p=244/495.  

Throws necessary to complete the game can vary from 1 to infinity. 

 

DIEHARD requires a binary file of 32 bit integers to be generated; following is the code 

we used to generate the required binary file. 

First the file is opened in binary append mode using the following statement 

if ( (outfile = fopen("Rnd2DM.rng", "ab+" )) == NULL ) 



 

to write each character as 8 bits, where each bit in our case represents either 1 or 0 of a 

random number sequence we used the technique of character wise bit shifting operator, 

we declared 8 unsigned characters to hold each individual bit. 

unsigned char mask8, mask7, mask6, mask5, mask4, mask3, mask2, mask1; 

Each mask corresponds to bit 1 at a specific position, 

e.g. mask8 = mask8<<7; // 1 0 0 0 0 0 0 0 

Similarly we adjust each mask at the time of writing, then copy these values to a temp 

character variable by using bitwise OR operator using temp = temp | mask8; at the end 

this temp variable is written to the binary file using the following statement. 

fwrite(&temp, sizeof(temp), 1, outfile); 

the whole code is written in a iterative loop, so at the end we have generated a binary 

file in the form as required by DIEHARD. 

 

2.3 Simulation Environment 

 

The whole code for the proposed solutions is written in C++ and compiled and tested on 

both Microsoft Visual C++ and Borland Turbo C++ compilers, no compiler specific 

routine or function is called to maintain cross compilers compatibility, the written code 

can be easily ported to any OOP like C# or Java if any one wish to use those 

programming environments in future. 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 Literature Review/ Related work 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

3.1 Literature Review 

 

Random number generators are used in number of applications like computer 

simulations, built-in self test, and cryptography to name a few [1]. Most random number 

generators are deterministic in nature as the numbers are generated using some 

mathematical formulas or deterministic algorithms, known as Pseudo Random Number 

Generators or PRNG as opposed to a True random Number Generator where the 

source of a random number might be some natural source. 

Standard Statistical tests are conducted to ensure a PRNG produces numbers that are 

uniformly distributed, uncorrelated with extreme long period [2]. There are quite a 

number of tests that can be applied to judge the quality of randomness, failing a single 

test does not mean that the sequence is not random so normally a set of tests is applied 

to check the quality of randomness, some times the tests to be applied might be 

application specific as well. 

There are quite a number of PRNGs. Some examples are linear feedback shift register 

(LFSR), linear congruential generator (LCG), and cellular automata (CA) based PRNGs. 

CA-based PRNGs were focus of researchers because its easy to implement in 

hardware, typically FPGA based Implementations, also computer based simulations in 

which implementation of cell structures and the corresponding CA rules in a 

corresponding data structure with each iteration generating the next state can be done 

easily. 

The majority of research on CA-based PRNG has been focused on one-dimensional (1-

D) CA with nearest three-cell neighborhood known as elementary CA, different types of 

cellular Automata and their applications are thoroughly discussed in a survey done on 

cellular automata [3]. 

The latest research focuses on increasing complexity of CA cell configurations and 

increasing CA dimensionality that can lead to better performance [4]. By increasing 

complexity we mean what logical operations are performed on a single cell per iteration 

and which neighbors are participating in finding the next sate value, to make the 



 

situation further implausible the dimensions of the lattice structure is increased thus 

making more options for the participating neighbors. 

Certain modifications in basic CA are also suggested using extra control registers which 

transforms the basic CA to Programmable CA (PCA) [5]. These control registers works 

as decision makers in each iteration for number of participating neighbors, whether the 

current value of cell itself participates or not and similarly any kind of transformation in 

value post CA-logical operation is required or not. The control register values are 

themselves updated after each iteration. 

One of the first 2D based CA was proposed by [6] based on 8 x 8 lattice of cells, while 

[7] worked on Asymmetric neighborhood and lattice structure PRNG for 2D CA. 

For testing of Random Numbers the DIEHARD test is used by a number of researchers 

as it is treated as industry standard for checking the randomness quality of random 

numbers [8]. DIEHARD comprises of some 18 different statistical tests which are 

supposed to be passed if the resultant values are in a specific range, DIEAHRD 

requires a binary file of at least 10MB as an input. 

The analysis of results produced by the DIEHARD is done by comparing p-values and 

finding the safe ranges when we compare them among several algorithms as done by 

[9]. Similarly others values can be calculated e.g. incomplete gamma count to check the 

uniformity of probability distribution among the generated p-values [2]. 

Sheng-Uei Guan etal. [10], describes the concept of self programmable automata 

(SPACA)and how to generate PRNG using this technique, authors used the concept on 

linear form of cells where the rule selection values are updated internally along with two 

external control registers. 

The basic concept is to add rule selection neighborhood to the state transition 

neighborhood of PCA, thus making it SPCA. Authors used rules 90/150/165/105 for 

their rule selection neighborhood. 

The paper discusses the concept for 1D CA structure and more emphasis is given on 

making FPGA implementation more efficient and simpler, moreover no results 



 

comparison is given in results section using same approach; however authors 

considered different algorithms with different length blocks for analysis, also suggested 

out put sampling to increase efficiency of algorithm.  

 

3.2 Related Work 

 

A Two Dimensional Cellular Automata with programmable scheme is used by Byung-

Heon Kang etal [11]. The authors applied rules 15, 31, 47 and 63 with two external 

control registers and compared the results with Guan, authors concluded that their 

scheme passes all DIEHARD tests with better quality as generated by Guan.  

 

 

 

 

 

The two control registers are self control register and sign control register, self control 

register’s value decide whether the current value of cell participates in finding next state 

and sign control’s value is used to logically invert the calculated results for next state’s 

value. 

The proposed algorithm is run 100 times and a pass is considered if the p-values from 

DIEHARD fall in the range 0.025 < p < 0.975. Authors also used a novel time spacing 

technique for minimization of auto correlations among block of random numbers. 

Figure 2: CA Rules Implemented for  2D-PCA  [11] 



 

Figure 3: 2D-PCA Structure  [11] 

 

 

The research paper discusses only Von-Neumann neighbors for 2D CA implementation; 

strategy of how initial values are given to control registers is not discussed. 

Sang-Ho Shin etal [12] worked on 3Dimmensional CA but with Moore Neighborhood 

only i.e. considering the diagonal neighbors, the focus of paper was to reduce the 

Hardware Implementation cost, the results were given in the form of Passing or Failing 

a DIEHARD test, what actual p-values are produced are not discussed so the quality of 

Randomness can not be discussed. No experimental setup or implementation 

methodology details are discussed, however authors claim that they have executed 

their scheme 100 times to generate the results. 



 

Figure 4: Results for Different Logical Operations with CA Rules  [12] 

Sang-Ho Shin, Kee-Young Yoo [13] worked on finding out on the optimal combination of 

Logical operations and CA rules for 3-Neighbors i.e. r+1 Von Neumann, the authors 

suggest a number of CA rules LCA, NCAAX, and NCAOX (as per their naming 

convention) for better results and also suggested that periodic boundary condition is 

better than the NULL boundary conditions i.e. for extreme cells the structure wraps 

around. The results discussed are just in the form of pass/ fail rate but the comparison 

is given between Null boundary and periodic boundary conditions. 

 

 

The research paper is very good if some one wants to explore the results of different 

combinations of logical gates with different CA rules. 

 

 

 

 



 

Figure 5:DIEHARD  Results Compared using Safe Window Range  [9] 

 

 

Instead of comparing just Pass and Fail results as done by [12] and [13] a  

better approach is adopted by [9].  

Here the author has defined three regions, Failure, Doubtful and Safe values providing 

a more better and quantitative analysis among the results being compared. 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

Chapter 4  Methodology  

  



 

To complete this research work we followed the following sequence of events. 

4.1 Literature Survey Phase 

 

First of all a through Literature Survey is done to study current techniques applied in 

generation of Random Numbers specifically with respect to Cellular Automata, types of 

Random Numbers and their properties etc. this phase of work is already discussed in 

previous chapters. 

4.2 Idea Generation Phase 

 

Then we explored the areas where we can work and finalized the methods for Random 

Number Generation to be implemented. This idea generation phase lead to the 

proposed solutions, the methods to be implemented are given below; the details about 

each are discussed in chapter 5. 

1. 2D Neumann Neighbors PCA 

2. 2D Moore Neighbors PCA 

3. 2D Neumann Moore jumping Neighbors PCA 

4. 3D Neumann Neighbors PCA 

5. 3D to 2D Jumping Neumann Neighbors PCA 

6. 3D Moore + Neumann Neighbors PCA 

 

4.3 Proposed Solution Implementation Phase 

 

We used Computer Simulation to implement the required group of PCA for 3D CA and 

its variations and generated binary files of Random Numbers; the important piece of 

code is discussed in Appendix A. 



 

The complete implementation is done and no complier specific function is used nor any 

complier settings has been made for the code to work, this makes the code portable 

with very little changes to any other object oriented programming language. 

 

4.4 Testing Phase 

 

In the next phase Testing is done on DIEHARD suit of Tests, DIEHARD is 

Internationally Accepted suit of tests for Randomness Testing and treated as de 

facto standard for testing RNGs, details of this phase are discussed in chapter 4 and 

detailed results are shown in Appendix B.  100 Binary files in the specific format as 

required by the DIEHARD are generated for each proposed solution and the DIEHARD 

dumps are gathered for the analysis phase. 

 

4.5 Analysis of Results Phase 

 

The Analysis and Comparison of Results comes in the last phase and it concludes 

which approach is better for Random number generation, this is discussed in chapter 6, 

analysis phase also describes the criteria we have selected for checking the quality of 

randomness of each proposed method. 

 

4.6 Assumptions 

 

We have made the following assumptions at the start of this research; these 

assumptions are further verified by the results produced. 

 



 

 In general if you increase the complexity of neighbors the quality of Randomness for 

cellular automata will increase. 

 By increasing dimensions the run time efficiency will not be increasing in exponential 

order. 

 

 Although various other tests are present for randomness testing but DIEHARD is 

selected as it is considered as toughest to pass, plus DIEHARD suit contains a set 

of tests. 

 
 

 The random numbers generated follows the normal distribution for a large data set; 

the large data set i.e. at least a 10MB file is also requirement of DIEHARD suit. 

 

 The safe window size i.e. values that pass in certain range is taken from a journal 

paper published [9], the conclusive remarks might change if different safe window 

size is taken e.g. a broader window might pass those values that were considered to 

be failed and vice versa. 

 

  



 

 

 

 

 

 

 

 

 

 

 

Chapter 5 Proposed Solutions 

 
  



 

The analysis of literature survey gives us the following points: 

 
1. Most of the work is done on 2D CA based structures, researchers tried different 

length/ sized structures and their symmetric and asymmetric variations. 

2. Finding out which rules or logical gates work best, e.g. instead of using XOR, if 

we use AND or a combination of AND, OR gates etc, which rules of CA gives 

better results with which combination of gates. 

3. Changing the rule selection mechanism, i.e. after each iteration a specific rule 

has to be selected from a given set of rules, this kind of PCA is also known as 

Self Programmable PCA or SPCA. 

4. Different control registers added for different purposes e.g. introducing a Sign 

Control register that decides whether to take logical inverse of the result or the 

value should be simply saved, this type of operations increases the level of 

unpredictability and hence increases the level of randomness. 

5. Hardware implementations of different CA proposed by the researchers, 

especially FPGA based implementations and their run time efficiencies. 

6. We get only one paper on 3D PCA (only for Moore neighbors) and that also does 

not discuss results in detail nor are any implementation details given. 

 

So we decided to explore 2D PCA and its variations, 3D PCA and its different variations 

like jumping between 3D PCA to 2D PCA with greater in-depth analysis of results. 

 

5.1 Proposed Methods 

 
We have proposed the following 3D PCA and variations of 2D PCA i.e. programmable 

cellular automata. 

 
1. 2D Neumann Neighbors PCA 

2. 2D Moore + Neumann Neighbors PCA 

3. 2D Neumann Moore jumping Neighbors PCA  



 

4. 3D Neumann Neighbors PCA 

5. 3D to 2D Jumping Neumann Neighbors PCA 

6. 3D Moore + Neumann Neighbors PCA 

 
 
All the above ideas are never tried before by any of the researcher except the first one 

i.e. 2D Neumann Neighbors PCA, we re-implemented the 2D Neumann Neighbors PCA 

case to use it as a base case for comparison of results. It is to be noted that this study 

compares the effect of positional changes with respect to neighbors therefore we used 

the same algorithm for all the methods. 

 

5.2 Algorithm used 

 
We applied the following steps for each and every method. 

 
1. Initialize All the Cell Values 

2. Initialize Self Control register 

3. Initialize Sign Control register 

4. Pick Each Cell, select the Rule to be applied, Apply the Rule and Update Cell 

value 

5. After Complete iteration Update the values of Registers 

6. Extract 64bits Random Number (8 x 8 in case of 2D) and 

Go for Next iteration i.e. Step 4 for 64 * N bits of Random 

where N is the Number of iterations. For 3D it will be giving 

8 x 64 i.e. 8 sets of 64 bit random numbers 

 
For all the methods proposed we will apply the Non Null 

Boundary conditions i.e. the structure wraps around for extreme cells to pick the 

neighbors. 



 

Figure 6:  2D Neumann Neighbors Illustration 

e.g. if the red boxed cell is the current cell and we want to apply rule 15 on it i.e. current 

cell will not participate and the neighbors to pick are left, top, right, bottom then the 

result will be,  xor(1,1,0,0) = 1. 

Now we will discuss each method one by one. 

 

5.2.1 2D Neumann Neighbors 

 

It is a two dimensional structure of 8 x 8 matrix, where we pick only Neumann neighbors 

i.e. immediate Non diagonal Neighbors of each cell. 

 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 6, we have the following participating neighbors, 

 

White Cell:   Current cell whose value is to be updated.  

Gray Neighbors:  Participating Neighbors (Non Diagonal Adjacent) 

Left, Top, Right and Bottom. 

 
 
 

The cell structure is shown in Fig. 7, there are two control registers  



 

Figure 7:   2D Neumann Cell Structure 

Table1:   2D Neumann CA Rules 

 
 
 
 
 
 
 
 
 
 
 

 
 

Sign Control: Sign control value decides whether we have to do a logical negation of 

result produced post XOR operation or should we store the value directly 

to the current cell. 

Self Control: Self control value decides whether the current cells value 

participates in the XOR operation or only adjacent non diagonal 

neighbors have to participate. 

 

Table 1. Shows the rules used during each iteration for calculating the cells next value. 

 
 
 
 
 
 
 
 
 
 
 
 
e.g.  Applying Rule 15 means 

Rule CL SI Left Top Right Bottom 

15 0 0 1 1 1 1 

31 0 1 1 1 1 1 

47 1 0 1 1 1 1 

63 1 1 1 1 1 1 



 

Figure 8:  2DMoore +  Neumann Neighbors Illustration 

 

 (001111)  (15)10  ==    (001111)2 

The first two zeros correspond to values of CL and SI register while the four 1’s 

shows  which neighbors are participating. 

 

5.2.2 2D Moore + Neumann Neighbors 

 

It is a two dimensional structure of 8 x 8 matrix, where we pick both the Neumann 

neighbors and Moore neighbors i.e. immediate Non diagonal Neighbors of each 

cell and diagonal neighbors as well, this increases the participating neighbors 

count and thus expected to give a better result in terms of randomness of 

generated number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 8, We have the following participating neighbors, 

 

 

 

 

+ 



 

Figure 9:  2DMoore +  Neumann Neighbors Cell Structure 

 

White Cell:    Current cell whose value is to be up dated.  

Gray Neighbors (left):  Participating Moore Neighbors (Diagonally Adjacent); 

Left-Top, Right-Bottom, Right-Top and Left-Bottom. 

Gray Neighbors (right):  Participating Neumann Neighbors, Left, Top, Right, 

Bottom 

 
 
The Cell structure is shown in Fig. 9 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are again two control registers which play the same role as in 2D 

Neumann case 

 

 

 

Rule CL SI Left Top Right Bottom Left Right Left Right 



 

Table2:   2D Moore+ Neumann CA Rules 

Figure 10:  2D  Neumann  Moore jumping Neighbors Illustration 
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iteration for calculating the cells next 

value. 

 

 

5.2.3 2D Neumann Moore jumping Neighbors 

 
Its again a two dimensional structure of 8 x 8 matrix, this time we pick between 

Neumann neighbors and Moore neighbors depending upon the newly introduced 

control register i.e. some times we pick the Moore neighbors and some times we 

pick the Neumann neighbors. 

 
 
 
 
 
 
 
 
 
 
 

 
 

In Fig. 10, we have the following participating neighbors, 

White Cell:    Current cell whose value is to be up dated.  

Top Top Bottom Bottom 

255 0 0 1 1 1 1 1 1 1 1 

511 0 1 1 1 1 1 1 1 1 1 

767 1 0 1 1 1 1 1 1 1 1 

1023 1 1 1 1 1 1 1 1 1 1 



 

Figure 11:   2D  Neumann  Moore  jumping Neighbors Cell Structure 

 

Light Gray Neighbors:  Participating Neighbors (Non Diagonal Adjacent) Left, 

Top, Right and Bottom. 

Black Neighbors:   Participating Neighbors (Diagonally Adjacent) 

Left-Top, Right-Bottom, Right-Top and Left-Bottom. 

 
The Cell structure is shown in Fig. 11 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
This time we have three two control registers, the Sign and Self control registers 

play the same role as in 2D Neumann case while the third control register is used 

for deciding whether we opt for Diagonally Adjacent or Non Diagonally Adjacent 

neighbors. 



 

Table3:   2D  Neumann  Moore  jumping CA Rules 

 
Table 3. Shows the rules used during each iteration for calculating the cells next 

value. 
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 The DI is the newly added control 
register 

 
 
 
 
 
 
 
 
 
 
 
 

5.2.4 3D Neumann Neighbors 

 
This time we are going to use a Three 

Dimensional Structure for generation of 

Random numbers, it will be an array 

Rule CL SI DI 
Left 
Top 

Right 
Top 

Left 
Bottom 

Right 
Bottom 

Left Top Right Bottom 

15 0 0 0 0 0 0 0 1 1 1 1 

496 0 0 1 1 1 1 1 0 0 0 0 

527 0 1 0 0 0 0 0 1 1 1 1 

1008 0 1 1 1 1 1 1 0 0 0 0 

1039 1 0 0 0 0 0 0 1 1 1 1 

1520 1 0 1 1 1 1 1 0 0 0 0 

1551 1 1 0 0 0 0 0 1 1 1 1 

2032 1 1 1 1 1 1 1 0 0 0 0 



 

Figure 12:  3D Lattice of cells used for all the 3D PCA Algorithms 

Figure 13:  3D  Neumann  Neighbors Illustration 

 

of 8 x 8 x 8  as shown in Fig. 12 consisting of 8 planes in which each plane has 

got 8 rows and 8 columns. 

 
 
 
 
 
 
 
 
 

 

We will pick all the 

Neumann neighbors i.e. the six non-diagonally adjacent neighbors; four on the 

XY plane while two of them on Z axis. We will be using two control registers, one 

for Self Control and the other for Sign Control. Fig 13. Shows the diagram of 

participating neighbors while Fig. 14 shows the cell structure for the 3D Neumann 

case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 13, we have the following participating neighbors, 



 

Figure 14:  3D  Neumann  Neighbors Cell Structure 

 

 
White Cell:   Current cell whose value is to be updated.  

Gray Neighbors:  Participating Neighbors (Non Diagonal Adjacent) 

Left, Top, Right, Bottom, Facing Front on Z-axis, Facing 

Back on Z-axis. 

 
The Cell structure is shown in Fig. 14 

 

 
 
 
 

 

Table 4. Shows the rules used during each iteration for calculating the cells next 

value. 

Rule CL SI Back Front Left Top Right Bottom 

63 0 0 1 1 1 1 1 1 

127 0 1 1 1 1 1 1 1 

191 1 0 1 1 1 1 1 1 



 

Table4:   3D Neumann  CA Rules 

 

 

 

 

 

 

5.2.5 3D to 2D Jumping Neumann Neighbors 

 
3D to 2D Jumping Neumann Neighbors uses a 8 x 8 x 8 lattice of cells for 

Random numbers generation, this 3D cube structure picks all the 6 adjacent 

Neumann Neighbors just like the proposed solution number 4 does but with a 

subtle variation in which it jumps to the 2D Neumann structure i.e. picking only 

the adjacent non diagonal neighbors from XY plane only, this jumping is 

dependent upon the value a third control register. 

 
Thus it could be considered as a mixture of solution two already proposed 

solutions, some times it behave like 2D Neumann CA and some times behave 

like a 3D Neumann CA, this kind of experimental jumping is done to check the 

quality of random numbers generated versus the efficiency of algorithm as 

approximately half of the times it is expected to be picking 2D Neumann 

neighbors (more efficient) and half of the time generating a random number while 

considering the z-plane neighbors (more randomness). 

 
 
 
 
 
 
 
 

255 1 1 1 1 1 1 1 1 



 

Figure 15:  3D-2D jumping  Neumann  Neighbors Illustration 

 

 
 
 
 
 
 
 
 
 
 
 
 
Participating Neighbors are as follows, 

 

White Cell:    Current cell whose value is to be updated.  

Light Gray Neighbors:  Participating Neighbors (Non Diagonal Adjacent), 

Left, Top, Right and Bottom. 

Black Neighbors:  Participating Neighbors (Non Diagonal Adjacent), 

Facing Front on Z-axis, Facing Back on Z-axis + Light 

Gray Neighbors.  

 
Light Gray Neighbors are picked in case the current iteration is calculating for 2D 

Neumann while Black Neighbors along with Light Gray Neighbors are used in 

case 3D Neumann is selected for the current iteration; the cell structure is shown 

in Fig. 16. 

 
 
 
 
 
 
 
 



 

Figure 16:  3D  to 2D Jumping Neumann  Neighbors Cell Structure 

 

Table5:   3D to 2D jumping Neumann  CA Rules 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Table 5. Shows the rules used in each iteration. 

Rule CL SI DI Back Front Left Top Right Bottom 

15 0 0 0 0 0 1 1 1 1 

127 0 0 1 1 1 1 1 1 1 

143 0 1 0 0 0 1 1 1 1 

255 0 1 1 1 1 1 1 1 1 

271 1 0 0 0 0 1 1 1 1 

383 1 0 1 1 1 1 1 1 1 

399 1 1 0 0 0 1 1 1 1 

511 1 1 1 1 1 1 1 1 1 

 

 
 
 



 

Figure 17:  3D Moore +  Neumann  Neighbors Illustration 

 

+ 

The third control register DI is used for jumping between 3D to 2D Neumann, the 

SI and DI plays the same role as in simple 3D Neumann solution. 

 

5.2.6 3D Moore + Neumann Neighbors 

 
In this last proposed scheme we opted to select the all possible neighbors of a 

3D cell, i.e. all the Diagonally Adjacent Moore neighbors along with all the Non 

Diagonally Adjacent Neumann neighbors,  In Fig 17. We show the graphical 

illustration for such a configuration. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Participating Neighbors are 

White Cell:    Current cell whose value is to be updated.  

Gray Neighbors (left):    Participating Neighbors (Diagonally Adjacent) 

Front Left-Top and Back Right-Bottom, Front Right-

Top and Back Left-Bottom, Back Left-Top and Front 

Right-Bottom, Back Right-Top and Front Left-Bottom. 

Gray Neighbors (right):    Non Diagonally adjacent Neumann 

 



 

Figure 18:  3D  Moore  + Neumann  Neighbor  Cell Structure 

 

There are just two control registers used in this scheme the SI and CI i.e. self 

control and complement control registers with the same roles as they have 

played in the schemes discussed before. 

 

The Fig. 18 shows the cell structure for 3D Moore + Neumann. 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 

Table6:   3D  Moore +  Neumann  CA Rules 

Table 6. shows the rules used in each iteration 
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Rule CL SI 
Left-
Top 

Front 

Left-
Bottom 
Front 

Right-
Top 

Front 

Right-
Bottom 
Front 

Left-
Top 
Back 

Left-
Bottom 
Back 

Right-
Top 
Back 

Right-
Bottom 
Back 

16383 0 0 1 1 1 1 1 1 1 1 

32767 0 1 1 1 1 1 1 1 1 1 

49151 1 0 1 1 1 1 1 1 1 1 

65535 1 1 1 1 1 1 1 1 1 1 

Rule CL SI Back 
 

Front 
 

Left 
 

Top 
 

Right 
 

Bottom 
 

  

16383 0 0 1 1 1 1 1 1   

32767 0 1 1 1 1 1 1 1   

49151 1 0 1 1 1 1 1 1   

65535 1 1 1 1 1 1 1 1   



 

 

 

Chapter 6 Testing of Proposed Solutions 

 

  



 

The Testing is done on DIEHARD suit of Tests; DIEHARD is Internationally Accepted 

for Randomness Testing and treated as de facto standard for testing RNGs. 

As said DIEHARD is suit of tests, it basically comprises of 18 rigorous statistical tests, 

each test checks the randomness of a series of numbers on a specific parameter 

defined. 

6.1 DIEHARD Tests Applied 

 

We applied the following tests of DIEHARD on all the proposed solutions. 

 

 

 

 

 

 

 

 

 

 

The internal workings of these tests are available with the DIEHARD documentation and 

we have briefly discussed them in chapter 2 as well, here we use all the tests as Black-

Box testing approach, we will be feeding the random numbers to these tests and then 

analyze the results obtained. 

DIEHARD requires a binary file of 32 bit integers of at least 10MB size i.e. 80 million bits 

and gives you results in a text based output file.  

Most of the tests in DIEHARD return a p-value, which is uniform on [0,1). This means 

that to qualify for attest the p-value should fall between 0 and 1 otherwise the test is 

supposed to be failed. 

 BIRTHDAY SPACINGS TEST  

 THE OVERLAPPING 5-PERMUTATION 

TEST 

 BINARY RANK TEST 

 THE BITSTREAM TEST 

 OPSO(Overlapping-Pairs-Sparse-

Occupancy) 

 OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 

 DNA 

 

 COUNT-THE-1's TEST 

 PARKING LOT TEST 

 THE MINIMUM DISTANCE TEST 

 THE 3DSPHERES TEST 

 SQEEZE test 

 OVERLAPPING SUMS test 

 RUNS test 

 CRAPS TEST 

 



 

Figure 19:  Testing Phases block diagram  

 

 These p-values are obtained by p=F(X), where F is the assumed distribution of the 

sample random variable X---often normal. But that assumed F is just an asymptotic 

approximation, for which the fit will be worst in the tails [8].  

 

6.2 Testing Process 

 

 

 

 

 

 

 

 

As Fig. 19 shows we generated 100 binary files for each proposed method we 

discussed and then applied all the DIEHARD tests on these binary files, in the next 

phase we extracted results from the DIEHARD produced text files and gathered all the 

values for analysis. 

 

  



 

 

 

 

 

 

 

 

 

 

 

Chapter 7 Analysis of Results 

  



 

Figure 20:  Snap shot of results 

 

First of all we gathered 100 set of values for each method in Excel Sheet,  

 

 

 

Then 

we 

calculated µ±2σ and µ±3σ for each method, 

and also calculated number of values falling 

in Safe Range for each Test (values >=0.25 AND values <=0.75). 



 

Figure 21:  Courtesy: en.wikipedia.org/wiki/Standard_deviation  

 
 

Figure 22:  Courtesy: IJCSNS International Journal of Computer Science and 

Network Security, VOL.10 No.4, April 2010  

 
 

7.1 Criteria 1  

 

99.6% values should fall in µ±3σ.  

95.4% values should fall in µ±2σ.  

 

 

 

 

 

This criteria is applied as the p-values generated by the DIEHARD approximates to the 

Normal distribution[2], and it is well known fact that for a normal distribution 99.6% 

values should fall in µ±3σ and 95.4% values fall in µ±2σ. 

 

7.2 Criteria 2 

 

Check number of values falling in Safe Range for each Test (values >=0.25 AND 

values <=0.75), i.e. out of 100 values per DIEHARD test it shows the count of 

how many values fall in this safe range. 

 

 

 

Applying this 

criterion takes the safest values among the p-values produced by DIEHARD test. 

 



 

Figure 23: Results and graph showing values in the range µ±3σ 

 
 

The following figure discusses the analysis when we applied Criteria 1 on the 

results gathered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An entry of “PASS” in Fig. 23 show that the values for each test falls in the range of 

µ±3σ, it is clear from the figure that 3D-Neuman case fails in just one case, this analysis 

does not give us much information as all the methods perform equivalently so we made 

the selection window further tight by checking it for  µ±2σ. 



 

Figure 24: Results and graph showing values in the range µ±2σ 

 
 

We obtained the following out come when we applied µ±2σ on all the tests for each 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This time we get two favorable methods, 2D Neumann – Moore jumping has got zero 

failures while 3D Moore + Neumann has just one failure, all the other methods are more 

failures with 3D Neumann has the maximum failures. 

 Then we applied criteria 2 to check among all the 100 values per method for each test 

falling in the safe range i.e. (values >=0.25 AND values <=0.75), this type of analysis 

considers all the p-values instead of using average and standard deviation of all the 

values. 

 

 



 

Figure 25: Values falling in the Safe Range (values >=0.25 AND values <=0.75) 

 

Fig 25. Discusses the results obtained using this approach. 

 

 

 

The right most columns shows which method qualifies maximum number of times in 

each test e.g. 2D-3D jumping Neumann qualifies with the 68 tests, so the right most 

column represents this information, similarly we calculated for all the methods and all 

the tests. At the bottom the summary is shown, 3D Von-Neumann appears 10 times in 

the rightmost column while 3D Moore + Neumann appears 9 times, so these two 

methods are the candidates from the above figure. 

 

 



 

7.3 Comparative Analysis of Results 

 

So we have the following results as best performing candidates. 

Criteria 1:   (Tests passing in µ±2σ range) 

 2D Neumann – Moore jumping 

 3D Moore + Neumann 

 

Criteria 2: (Values falling in the Safe Range, values >=0.25 AND values <=0.75) 

 3D Neumann 

 3D Moore + Neumann 

 

2D Moore-Neumann jumping does not perform well in Criteria 2 as it occurs only at 4 

places, similarly 3D Neumann which is a candidate in Criteria 2 does not perform well in 

Criteria 1 by failing at 5 places, so we can safely conclude that 3D Moore + Neumann is 

the best performing method among all the methods we discussed. 

 

7.4 Run Time Analysis of the Proposed Methods 

 

The criteria 1 and criteria 2 discussed in sections 5.1 and 5.2 solely discuss the issue 

with respect to the quality of random numbers generated as we compared the 

DIEHARD produced values and applied certain statistical operations on the results, the 

discussion remains incomplete if we do not compare the run time efficiency of methods 

among each other. 

The basic point is to measure the cost we have to pay in increasing the quality of 

randomness of a sequence i.e. how much we have to pay in terms of number of 

operations to get a better random numbers sequence. 



 

To make the things simpler we can divide the methods in to three categories,  

1. Working on pure 2D structures 

 2D Neumann Neighbors 

 2D Moore + Neumann Neighbors 

 2D Neumann Moore jumping Neighbors 

 

2. Working on pure 3D structures 

 3D Neumann Neighbors 

 3D Moore + Neumann Neighbors 

 

3. Working on 3D to 2D transition structures 

 3D to 2D Jumping Neumann Neighbors 

 

7.4.1 Main Memory Requirements 

 

Memory Requirement for pure 2D structures is common for all as we use the same data 

structure for all 2D cases; the difference is just in picking neighbors. 

One integer takes 4 bytes, so a matrix of 8 x 8 i.e. 64 integers, would take 64 x 4 = 256 

bytes of main memory. 

For pure 3D cases and transition cases we used the grid of 8 x 8 x 8 i.e. 512 integers, 

would take 2048 bytes of main memory. 

The memory requirements will remain constant during complete execution as after each 

iteration the generated numbers are flushed to the binary file. 

 

 

 



 

7.4.2 Number of operations per iteration 

 

For 2D cases we have to go through each cell thus requiring a two level nested loops, 

outer for rows and inner for columns, plus we need to pick 4 neighbors in case of 

Neumann, and 8 neighbors in case of combination of Neumann and Moore, similarly 

Neumann Moore jumping also requires just 4 neighbors to be picked (either Neumann’s 

or Moore’s), the cost of XOR operation and writing to binary file remains same for all the 

cases, thus for a 2D Neumann PCA with Self Cell participating we can calculate the 

running time as follows, 

 

The temporary variables used to store intermediate result represent the intermediate 

cost and that will be constant for all the cases with no significant increase in the run time 

of algorithm. 

 
Exact Running Time/ Time Complexity = c1m + c2n + 5c3mn + 5c4mn + c5mn  

Order of Growth= O(mn) 

As we have worked on 8 x 8 grid we have, m = n therefore Order of Growth is O(n2), 

this will be the case for all the 2D cases as the maximum order of growth will not go 

beyond O(n2). 

 
For 3D structures we have to apply 3 nested loops, first for the plane, second for the 

rows and third for the columns to iterate through each cell, the Neumann neighbors of 

each 3D cell be 6 while for Neumann + Moore the neighbors are 10 in number. 

Statement  Cost  Time  

for (int rows = 1; rows <=8; rows++)  C1  m  

for (int cols = 1; cols<=8; cols++)  C2  n  

Pick all the five values, the white cell + all Gray 
neighbors  

C3  5mn  

Find XOR (five values)  C4  5mn  

Update the White Cell C5 mn 



 

Thus for 3D Neumann we can calculate the cost as follows 

 
Exact Running Time = c0p + c1m + c2n + 7c3pmn + 7c4pmn + c5pmn 

Order of Growth= O(pmn) 

 
As we have worked on 8 x 8 x 8 grid we have, p = m = n therefore Order of Growth is 

O(n3), similarly all the 3D cases will have the same order of growth as maximum order 

of growth will not jump beyond O(n3).  

In case of 3D to 2D Jumping Neumann Neighbors, it is expected that 50% of the time it 

behaves like 3D and 50% of time behaves like 2D, thus the running cost will be 

calculated by 0.5 x Cost 2D Neumann + 0.5 x Cost 3D Neumann. 

 

 

 

 

 

 

 

 

Statement  Cost  Time  

for (int planes = 1; planes <=8; planes++) C0 p 

for (int rows = 1; rows <=8; rows++)  C1  m  

for (int cols = 1; cols<=8; cols++)  C2  n  

Pick all the seven values, the white cell + all Gray 
neighbors  

C3  7pmn 

Find XOR (seven values)  C4  7pmn  

Update the White Cell C5 pmn 



 

Table7:  Run time cost and order of growth 

 

 

Table 7 summarizes the run time calculations and order of growth for all the proposed 

methods. 

Method 
Run time = No. of Operations per 

iteration x Cost 

Order 

of 

Growth 

2D Neumann 
 

c1m + c2n + 5c3mn + 5c4mn + c5mn 

 

O(N2) 

 
2D Neumann 

Moore 
jumping 

 

c1m + c2n + 5c3mn + 5c4mn + c5mn 

 

O(N2) 

2D Moore + 
Neumann 

c1m + c2n + 9c3mn + 9c4mn + c5mn 

 

O(N2) 

 
3D Neumann 

 

c0p + c1m + c2n + 7c3pmn + 7c4pmn 

+ c5pmn 
O(N3) 

3D 
Moore+
Neuman 

 

c0p + c1m + c2n + 15c3pmn + 

15c4pmn + c5pmn 

 

O(N3) 

 
3D to 2D 

jumping 
Neuman

n 
 

0.5*( c0p + c1m + c2n + 7c3pmn + 

7c4pmn + c5pmn) + 0.5*( c1m + c2n + 

5c3mn + 5c4mn + c5mn) 

O(N3) 

half of 

iterations 

O(N2) 

half of 

iterations  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 Conclusion and Future Work 

  



 

8.1 Conclusion 

 

After implementing all the six methods and analysis of DIEHARD results we applied the 

two criteria discussed in the previous section, the first criteria is about checking number 

of values falling in the range of standard deviation from twice of mean, while the second 

criteria is to find all the values passing in the safe window i.e. in between the range of 

0.25 and 0.75. 

Applying the discussed criteria, the most successful candidate with maximum number of 

values falling in the safe range and just one less than the maximum in the µ±2σ range is 

3D Moore + Neumann, the computational cost of this method is just O(N3) with 2048MB 

memory requirements. 

As concluding remarks we suggest 3D Moore + Neumann method for better quality 

random numbers generation using programmable cellular automata approach, it 

combines the properties of both Neumann and Moore neighbors at the same time in a 

three dimensional space. 

This also suggests that in general the more number of non-correlated neighbors you 

pick the more randomness you get but at the cost of increased processing time. 

Although we have chosen the best technique in terms of quality of randomness but the 

requirements of application at hand could be a deciding factor as some applications 

might require lesser randomness quality but should be efficient, if this is the case then 

the detail results provided in the appendix and analysis chapter can be consulted to pick 

the better suited PRNG. 

  



 

8.2 Future Work 

 

The work done in this research study can be further extended using the following 

potential research paths. 

1. Implementation of other structural organizations that are not explored, various 

other combinations of Moore and Neumann and their joint schemes can be 

explored for better results. 

2. Strategies proposed in this work can be tested for a better designed algorithm 

working with different logical operations other than XOR. 

3. Implementing the same concepts for r + 2 adjacent neighbors, the whole 

literature survey suggests that all of the researchers went for r + 1 neighbors i.e. 

immediately adjacent neighbors of the current cell, no work is found on r + 2 or r 

+ 3 neighbors, what effect would be on the results if we consider a larger set of 

neighbors. 

4. Testing the performance of presented solutions on Hardware implementations, 

specifically the run time efficiencies and complexities involved if the solution is 

implemented in FPGA. 

 

The points discussed above shows that there is a lot of potential in the field of Random 

Numbers Generation using Cellular Automata, one can easily opt any path and may find 

better results in terms of quality of random numbers and in terms of efficiency of a 

generator. 
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Appendix A 

Important piece of code explained here (for 3D Moore + Neumann Method) 

Data structure to hold the random numbers and register values for the SI and DI control 

registers 

int random_array [8][8][8]; 

int final_randNo [8][8][8]; 

int SI[64]; 

int CI[64]; 

The master loop calling doing the initialization phase and calling function which 

generates the random number sequences. 

for (iteration =1; iteration<=cycles; iteration++) 

 { 

    initialize_array(); 

    initialize_SI(); 

    initialize_CI(); 

    generate_random();            //This call gives 64bits of Random 

 } 

The generate_random() function, 

void generate_random(void) 

{ 

int SI_val, CI_val; 

    int control_index=0; 

         

 int plane, row, col; 

   for (plane=0; plane<=7; plane++) 

   { 

  for (row=0; row<=7; row++) 

  { 



 

    for (col=0; col<=7; col++) 

    { 

      SI_val = SI[control_index]; 

      CI_val = CI[control_index]; 

      control_index++; 

      if (control_index == 64) control_index =0; 

     if (SI_val == 0 && CI_val == 0) 

    final_randNo[plane][row][col]= applyRule1023(plane,row, col); 

     if (SI_val == 1 && CI_val == 0) 

    final_randNo[plane][row][col]=  applyRule2047(plane,row, col); 

     if (SI_val == 0 && CI_val == 1) 

    final_randNo[plane][row][col]=  applyRule3071(plane,row, col); 

     if (SI_val == 1 && CI_val == 1) 

    final_randNo[plane][row][col]=  applyRule4095(plane,row, col); 

 

     } } } 

 

The Cellular Automata Rules Applied (as an example coding for rule 1023 is shown) 

int applyRule1023(int plane, int row, int col) 

{ 

 //Pick 10NB XOR them and update cell val, 6 Normal + 4 Diagonal 

 int n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, val, val1, val2, val3, val4, val5; 

 int temprow, tempcol, tempplane; 

 int tempval1, tempval2, tempval3, tempval4, tempval5; 

 int val6, val7, val8, val9, val10; 

   if (col==0) 

    n1 = final_randNo[plane][row][7]; 

   else 



 

    n1 = final_randNo[plane][row][col-1]; 

   if (col==7) 

    n2 = final_randNo[plane][row][0]; 

   else 

    n2 = final_randNo[plane][row][col+1]; 

   if (row==0) 

    n3 = final_randNo[plane][7][col]; 

   else 

    n3 = final_randNo[plane][row-1][col]; 

   if (row==7) 

    n4 = final_randNo[plane][0][col]; 

   else 

    n4 = final_randNo[plane][row+1][col]; 

 if (plane==0) 

    n5 = final_randNo[7][row][col]; 

   else 

    n5 = final_randNo[plane-1][row][col]; 

   if (plane==7) 

    n6 = final_randNo[0][row][col]; 

   else 

    n6 = final_randNo[plane+1][row][col]; 

// Calculating Indexes for Diagonal Neighbors 

   //Left Top Diagonal 

   temprow = row-1; 

   tempcol = col-1; 

   tempplane = plane-1; 

   if (temprow<0) temprow=7; 

   if (tempcol<0) tempcol=7; 



 

   if (tempplane<0) tempplane = 7; 

   n7 = final_randNo[tempplane][temprow][tempcol]; 

   //Left Bottom Diagonal 

   temprow = row+1; 

   tempcol = col-1; 

   tempplane = plane+1; 

   if (temprow>7) temprow=0; 

   if (tempcol<0) tempcol=7; 

   if (tempplane>7) tempplane = 0; 

   n8 = final_randNo[tempplane][temprow][tempcol]; 

   //Right Top Diagonal 

   temprow = row-1; 

   tempcol = col+1; 

   tempplane= plane-1; 

   if (temprow<0) temprow=7; 

   if (tempcol>7) tempcol=0; 

   if (tempplane<0) tempplane = 7; 

   n9 = final_randNo[tempplane][temprow][tempcol]; 

   //Right Bottom Diagonal 

   temprow = row+1; 

   tempcol = col+1; 

   tempplane = plane+1; 

   if (temprow>7) temprow=0; 

   if (tempcol>7) tempcol=0; 

   if (tempplane>7) tempplane =0; 

   n10 = final_randNo[tempplane][temprow][tempcol]; 

   val1 = calc_xor(n1, n2); 

   val2 = calc_xor(n3, n4); 



 

   val3 = calc_xor(n5, n6); 

   val4 = calc_xor(n7, n8); 

   val5 = calc_xor(n9, n10); 

   tempval1 =  calc_xor(val1, val2); 

   tempval2 = calc_xor(val3, val4); 

   tempval3 = calc_xor(val5, val6); 

   tempval4 = calc_xor(val7, val8); 

   tempval5 = calc_xor(val9, val10); 

   val =  calc_xor(tempval1, tempval2); 

   val =  calc_xor(val, tempval3); 

   val =  calc_xor(val, tempval4); 

   val =  calc_xor(val, tempval5); 

   return val; 

 

} 

 

  



 

Appendix B 

2D Neumann Neighbors Results for µ±3σ 
DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.37901336 1.4573814 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.468926744 1.577111184 Pass 

BINARY RANK TEST for 31x31 matrices 1 1 Pass 

BINARY RANK TEST for 32x32 matrices 1 1 Pass 

BINARY RANK TEST for 6x8 matrices -0.468123509 1.387819949 Pass 

THE BITSTREAM TEST                           0.64739095 0.96889153 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.314224618 0.747193078 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.356984112 0.709225745 Pass 

DNA                       0.357390793 0.603823885 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.277511751 1.565505631 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.019845513 1.435136513 Pass 

COUNT-THE-1's TEST for specific bytes 0.386797919 0.716937619 Pass 

PARKING LOT TEST                       -0.229618712 1.165533792 Pass 

THE MINIMUM DISTANCE TEST                        -0.228734204 1.576438724 Pass 

THE 3DSPHERES TEST                                -0.495386736 1.319387096 Pass 

SQEEZE test                                   0.735636176 1.159628904 Pass 

OVERLAPPING SUMS test                         -0.361506123 1.304533283 Pass 

runs down -0.165312854 1.232009374 Pass 

runs up -0.392507335 1.248203295 Pass 

Craps Wins 0.167254054 1.207466546 Pass 

Craps Throws/Game -0.280681021 1.254041701 Pass 



 

2D Neumann Neighbors Results for µ±2σ 
 
DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.072947567 1.151315607 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.127920423 1.236104863 Pass 

BINARY RANK TEST for 31x31 matrices 1 1 Pass 

BINARY RANK TEST for 32x32 matrices 1 1 Pass 

BINARY RANK TEST for 6x8 matrices -0.158799599 1.078496039 Pass 

THE BITSTREAM TEST                           0.70097438 0.9153081 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.386386028 0.675031668 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.415691051 0.650518806 Pass 

DNA                       0.398462975 0.562751703 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) 0.029657813 1.258336067 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) 0.222651491 1.192639509 Fail 

COUNT-THE-1's TEST for specific bytes 0.441821202 0.661914335 Pass 

PARKING LOT TEST                       0.002906705 0.933008375 Pass 

THE MINIMUM DISTANCE TEST                        0.07212795 1.27557657 Pass 

THE 3DSPHERES TEST                                -0.192924431 1.016924791 Pass 

SQEEZE test                                   0.806301631 1.088963449 Fail 

OVERLAPPING SUMS test                         -0.083832889 1.026860049 Pass 

runs down 0.067574184 0.999122336 Pass 

runs up -0.119055563 0.974751523 Pass 

Craps Wins 0.340622803 1.034097797 Pass 

Craps Throws/Game -0.024893901 0.998254581 Pass 



 

2D Moore Neighbors Results for µ±3σ 
 

DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.405930619 1.281688619 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.450601672 1.496250472 Pass 

BINARY RANK TEST for 31x31 matrices -0.03108691 1.26347067 Pass 

BINARY RANK TEST for 32x32 matrices -0.04078692 1.24184764 Pass 

BINARY RANK TEST for 6x8 matrices -0.314643493 1.242396373 Pass 

THE BITSTREAM TEST                           0.308041156 0.707091764 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) -0.064900167 1.284560629 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) -0.132204355 1.298127153 Pass 

DNA                       -0.104396892 1.290750123 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.442939472 1.516708272 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) 0.135512226 1.278446094 Pass 

COUNT-THE-1's TEST for specific bytes 0.372058966 0.662507546 Pass 

PARKING LOT TEST                       -0.347835562 1.279498442 Pass 

THE MINIMUM DISTANCE TEST                        -0.41950569 1.35722649 Pass 

THE 3DSPHERES TEST                                -0.240050889 1.099710969 Pass 

SQEEZE test                                   -0.369980803 0.944059443 Pass 

OVERLAPPING SUMS test                         -0.173670267 1.381949307 Pass 

runs down -0.321742978 1.240430418 Pass 

runs up -0.341292964 1.450865524 Pass 

Craps Wins -0.408912737 1.698362897 Pass 

Craps Throws/Game -0.231027673 1.137971113 Pass 

 



 

2D Moore Neighbors Results for µ±2σ 
 
DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.124660746 1.000418746 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.126126315 1.171775115 Pass 

BINARY RANK TEST for 31x31 matrices 0.184672687 1.047711073 Pass 

BINARY RANK TEST for 32x32 matrices 0.172985507 1.028075213 Pass 

BINARY RANK TEST for 6x8 matrices -0.055136849 0.982889729 Pass 

THE BITSTREAM TEST                           0.374549591 0.640583329 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.160009965 1.059650496 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.106184229 1.059738568 Pass 

DNA                       0.12812761 1.05822562 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.116331515 1.190100315 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) 0.326001204 1.087957116 Pass 

COUNT-THE-1's TEST for specific bytes 0.420467063 0.614099449 Pass 

PARKING LOT TEST                       -0.076613228 1.008276108 Pass 

THE MINIMUM DISTANCE TEST                        -0.12338366 1.06110446 Pass 

THE 3DSPHERES TEST                                -0.016757246 0.876417326 Pass 

SQEEZE test                                   -0.150974095 0.725052735 Pass 

OVERLAPPING SUMS test                         0.085599662 1.122679378 Fail 

runs down -0.061380745 0.980068185 Pass 

runs up -0.042599883 1.152172443 Pass 

Craps Wins -0.057700131 1.347150291 Pass 

Craps Throws/Game -0.002861209 0.909804649 Fail 

 



 

2D Neumann + Moore jumping Neighbors Results for µ±3σ 
 
DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.492415371 1.458226971 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.477770625 1.471587345 Pass 

BINARY RANK TEST for 31x31 matrices 0.002145266 1.208466334 Pass 

BINARY RANK TEST for 32x32 matrices -0.092559753 1.117303353 Pass 

BINARY RANK TEST for 6x8 matrices -0.439251463 1.294689783 Pass 

THE BITSTREAM TEST                           0.385449873 0.681850207 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.283655443 1.150127121 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) -0.073994631 1.221349162 Pass 

DNA                       -0.056520442 1.22619266 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) 0.096587341 1.129198019 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.158886658 1.336438418 Pass 

COUNT-THE-1's TEST for specific bytes 0.344986305 0.687405765 Pass 

PARKING LOT TEST                       -0.292434096 1.363166336 Pass 

THE MINIMUM DISTANCE TEST                        -0.253056069 1.553231349 Pass 

THE 3DSPHERES TEST                                -0.312896071 1.367575591 Pass 

SQEEZE test                                   -0.007536914 1.381652994 Pass 

OVERLAPPING SUMS test                         -0.205477795 1.374255955 Pass 

runs down -0.332370843 1.201641243 Pass 

runs up -0.381712114 1.309248594 Pass 

Craps Wins -0.356770545 1.352534625 Pass 

Craps Throws/Game -0.125391412 1.445069812 Pass 

 



 

2D Neumann + Moore jumping Neighbors Results for µ±2σ 
 
DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.167308314 1.133119914 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.15287763 1.14669435 Pass 

BINARY RANK TEST for 31x31 matrices 0.203198777 1.007412823 Pass 

BINARY RANK TEST for 32x32 matrices 0.109084098 0.915659502 Pass 

BINARY RANK TEST for 6x8 matrices -0.150261255 1.005699575 Pass 

THE BITSTREAM TEST                           0.434849929 0.632450151 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.428067389 1.005715175 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.141896001 1.00545853 Pass 

DNA                       0.157265075 1.012407143 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) 0.26868912 0.95709624 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) 0.090334188 1.087217572 Pass 

COUNT-THE-1's TEST for specific bytes 0.402056215 0.630335855 Pass 

PARKING LOT TEST                       -0.016500691 1.087232931 Pass 

THE MINIMUM DISTANCE TEST                        0.047991834 1.252183446 Pass 

THE 3DSPHERES TEST                                -0.032817461 1.087496981 Pass 

SQEEZE test                                   0.223994737 1.150121343 Pass 

OVERLAPPING SUMS test                         0.057811163 1.110966997 Pass 

runs down -0.076702162 0.945972562 Pass 

runs up -0.099885329 1.027421809 Pass 

Craps Wins -0.07188635 1.06765043 Pass 

Craps Throws/Game 0.136352125 1.183326275 Pass 

 



 

Jumping 2D-3D Neumann Neighbors Results for µ±3σ 

 

DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.284166685 1.269533085 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.236278358 1.635656958 Pass 

BINARY RANK TEST for 31x31 matrices -0.13134028 1.1971842 Pass 

BINARY RANK TEST for 32x32 matrices -0.028839558 1.124761558 Pass 

BINARY RANK TEST for 6x8 matrices -0.185201521 1.279951361 Pass 

THE BITSTREAM TEST                           0.310501995 0.612340325 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.353045146 0.746977115 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.398038539 0.645760318 Pass 

DNA                       0.372102329 0.68452451 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.552849191 1.344949431 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.445457402 1.250162282 Pass 

COUNT-THE-1's TEST for specific bytes 0.365247026 0.726112433 Pass 

PARKING LOT TEST                       -0.327767566 1.405126046 Pass 

THE MINIMUM DISTANCE TEST                        -0.376181538 1.404031858 Pass 

THE 3DSPHERES TEST                                -0.452852651 1.460075291 Pass 

SQEEZE test                                   -0.162542352 1.340220752 Pass 

OVERLAPPING SUMS test                         -0.300312996 1.192523236 Pass 

runs down -0.335455436 1.388049276 Pass 

runs up -0.437017668 1.414065588 Pass 

Craps Wins -0.105606359 1.498981639 Pass 

Craps Throws/Game 0.020667064 1.304900456 Pass 

 



 

Jumping 2D-3D Neumann Neighbors Results for µ±2σ 
 
 

DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.025216724 1.010583124 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  0.075710861 1.323667739 Fail 

BINARY RANK TEST for 31x31 matrices 0.090080467 0.975763453 Pass 

BINARY RANK TEST for 32x32 matrices 0.163427295 0.932494705 Fail 

BINARY RANK TEST for 6x8 matrices 0.058990626 1.035759214 Pass 

THE BITSTREAM TEST                           0.360808383 0.562033937 Fail 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.418700474 0.681321787 Fail 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.439325502 0.604473355 Pass 

DNA                       0.424172692 0.632454146 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.236549421 1.028649661 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.162854121 0.967559001 Pass 

COUNT-THE-1's TEST for specific bytes 0.425391261 0.665968199 Pass 

PARKING LOT TEST                       -0.038951964 1.116310444 Pass 

THE MINIMUM DISTANCE TEST                        -0.079479305 1.107329625 Pass 

THE 3DSPHERES TEST                                -0.134031327 1.141253967 Pass 

SQEEZE test                                   0.087918165 1.089760235 Pass 

OVERLAPPING SUMS test                         -0.051506958 0.943717198 Pass 

runs down -0.04820465 1.10079849 Pass 

runs up -0.128503792 1.105551712 Pass 

Craps Wins 0.161824974 1.231550306 Pass 

Craps Throws/Game 0.234705963 1.090861557 Pass 

 



 

3D Neumann Neighbors Results for µ±3σ 
 

DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.435741614 1.425704574 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.472007462 0.992979062 Pass 

BINARY RANK TEST for 31x31 matrices -0.044220687 1.139097487 Pass 

BINARY RANK TEST for 32x32 matrices -0.046068254 1.139632974 Pass 

BINARY RANK TEST for 6x8 matrices -0.126140145 1.297216305 Pass 

THE BITSTREAM TEST                           0.353253297 0.661098503 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.255205702 0.686328167 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.427632583 0.64652256 Pass 

DNA                       0.363183714 0.627617834 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.312142744 1.031130424 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.26370657 0.60783529 Fail 

COUNT-THE-1's TEST for specific bytes 0.389302573 0.759557811 Pass 

PARKING LOT TEST                       -0.429513575 1.310961175 Pass 

THE MINIMUM DISTANCE TEST                        -0.35842469 1.27966301 Pass 

THE 3DSPHERES TEST                                -0.376849976 1.344027976 Pass 

SQEEZE test                                   0.119969075 1.060244365 Pass 

OVERLAPPING SUMS test                         -0.42305232 1.27819208 Pass 

runs down -0.448259736 1.314112296 Pass 

runs up -0.312251235 1.417887235 Pass 

Craps Wins -0.273826748 1.313456508 Pass 

Craps Throws/Game -0.066707395 1.400352675 Pass 



 

3D Neumann Neighbors Results for µ±2σ 
 
DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.125500582 1.115463542 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.227843042 0.748814642 Fail 

BINARY RANK TEST for 31x31 matrices 0.152999009 0.941877791 Fail 

BINARY RANK TEST for 32x32 matrices 0.151548618 0.942016102 Pass 

BINARY RANK TEST for 6x8 matrices 0.11108593 1.05999023 Pass 

THE BITSTREAM TEST                           0.404560831 0.609790969 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.327059447 0.614474423 Fail 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.464114246 0.610040897 Pass 

DNA                       0.407256067 0.583545481 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.088263882 0.807251562 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.118449593 0.462578313 Fail 

COUNT-THE-1's TEST for specific bytes 0.45101178 0.697848604 Pass 

PARKING LOT TEST                       -0.13943445 1.02088205 Pass 

THE MINIMUM DISTANCE TEST                        -0.085410074 1.006648394 Pass 

THE 3DSPHERES TEST                                -0.090036984 1.057214984 Pass 

SQEEZE test                                   0.276681623 0.903531817 Fail 

OVERLAPPING SUMS test                         -0.139511587 0.994651347 Pass 

runs down -0.154531064 1.020383624 Pass 

runs up -0.023894824 1.129530824 Pass 

Craps Wins -0.009279539 1.048909299 Pass 

Craps Throws/Game 0.177802617 1.155842663 Pass 

 



 

3D Neumann + Moore Neighbors Results for µ±3σ 
 
DIEHARD Test Applied 

 Avg - (3*Stdev) 

Avg + 

(3*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.362109399 1.266893879 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.56245372 1.41907132 Pass 

BINARY RANK TEST for 31x31 matrices 0.134424213 1.109243787 Pass 

BINARY RANK TEST for 32x32 matrices -0.080318823 1.221617143 Pass 

BINARY RANK TEST for 6x8 matrices -0.429557295 1.502997695 Pass 

THE BITSTREAM TEST                           0.255794304 0.625934056 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.266061272 0.694059771 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.373966009 0.58667942 Pass 

DNA                       0.377457885 0.614176179 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) -0.239838667 1.356826667 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) -0.207017927 1.156700007 Pass 

COUNT-THE-1's TEST for specific bytes 0.3960481 0.69391325 Pass 

PARKING LOT TEST                       -0.403298639 1.430999359 Pass 

THE MINIMUM DISTANCE TEST                        -0.275662406 1.421238886 Pass 

THE 3DSPHERES TEST                                -0.399816278 1.040410598 Pass 

SQEEZE test                                   -0.007541349 1.324701509 Pass 

OVERLAPPING SUMS test                         -0.45990008 1.39001168 Pass 

runs down -0.291639118 1.367565118 Pass 

runs up -0.423079908 1.312661828 Pass 

Craps Wins -0.342775048 0.946304648 Pass 

Craps Throws/Game -0.310330192 1.212486672 Pass 



 

3D Neumann + Moore Neighbors Results for µ±2σ 
 

DIEHARD Test Applied 

 Avg - (2*Stdev) 

Avg + 

(2*Stdev) 

Test falling 

in the 

Range 

BIRTHDAY SPACINGS TEST                  -0.090608852 0.995393332 Pass 

THE OVERLAPPING 5-PERMUTATION TEST                  -0.232199547 1.088817147 Pass 

BINARY RANK TEST for 31x31 matrices 0.296894142 0.946773858 Pass 

BINARY RANK TEST for 32x32 matrices 0.136670504 1.004627816 Pass 

BINARY RANK TEST for 6x8 matrices -0.107464797 1.180905197 Pass 

THE BITSTREAM TEST                           0.317484263 0.564244097 Pass 

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.337394356 0.622726688 Pass 

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.409418244 0.551227185 Pass 

DNA                       0.416910934 0.57472313 Pass 

COUNT-THE-1's TEST on a stream of bytes (1st 

Set of Bytes) 0.026272222 1.090715778 Pass 

COUNT-THE-1's TEST on a stream of bytes (2nd 

Set of Bytes) 0.020268395 0.929413685 Pass 

COUNT-THE-1's TEST for specific bytes 0.445692292 0.644269058 Pass 

PARKING LOT TEST                       -0.097582306 1.125283026 Pass 

THE MINIMUM DISTANCE TEST                        0.007154476 1.138422004 Pass 

THE 3DSPHERES TEST                                -0.159778465 0.800372785 Fail 

SQEEZE test                                   0.214499128 1.102661032 Pass 

OVERLAPPING SUMS test                         -0.151581453 1.081693053 Pass 

runs down -0.015105078 1.091031078 Pass 

runs up -0.133789618 1.023371538 Pass 

Craps Wins -0.127928432 0.731458032 Pass 

Craps Throws/Game -0.056527381 0.958683861 Pass 



 

Summary of results for µ±3σ 

 

 

 
 

 
No of Passes Avg + - 3 Std. Dev 99% Values Fall 

 

 

Jumping 2D-
3D Rand3DVonNeuman 

3D Moore + 
Neumann 2D Moore 

2D Von 
Neumann 

Moore Jumping 
2D Von 

Neumann 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Fail Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

Failures 0 1 0 0 0 0 



 

Summary of results for µ±2σ 
 

  
No of Passes Avg + - 2 Std. Dev 95% Values Fall 

 

 

Jumping 2D-
3D Rand3DVonNeuman 

3D Moore + 
Neumann 2D Moore 

2D Von 
Neumann 

Moore Jumping 
2D Von 

Neumann 

 
Pass Pass Pass Pass Pass Pass 

 
Fail Fail Pass Pass Pass Pass 

 
Pass Fail Pass Pass Pass Pass 

 
Fail Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Fail Pass Pass Pass Pass Pass 

 
Fail Fail Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Fail Pass Pass Pass Fail 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Fail Pass Pass Pass 

 
Pass Fail Pass Pass Pass Fail 

 
Pass Pass Pass Fail Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Pass Pass Pass 

 
Pass Pass Pass Fail Pass Pass 

Failures 4 5 1 2 0 2 

 
  



 

Appendix C 

 
Results for Safe range value (values >=0.25 AND values <=0.75) 
DIEHARD Tests Name used in abbreviated form. 

 
All 100 values Comparison (values >=0.25 AND values <=0.75) Safe Range 

 

1 2 3 4 5 6 

  
Jumping 
2D-3D 

Rand 3D 
Von 
Neumann 

3D Moore 
+ 

Neumann 
2D Moore 
Neighbours 

2D Von 
Neumann 
Moore 
Jump N 

2D Von 
Neumann 
Neighbors 

BST 68 40 56 52 44 56 

O5PT 28 24 36 36 36 28 

BR31 80 84 84 72 68 0 

BR32 84 76 72 76 80 0 

BR6X8 60 60 44 56 52 36 

BS 100 100 100 100 100 8 

OPSO 100 100 100 76 80 100 

OQSO 100 100 100 76 80 100 

DNA    100 100 100 76 80 100 

CT1TSB-1 40 52 48 40 80 28 

CT1TSB-2 48 20 72 60 68 40 

CT1TSB 100 100 100 100 100 100 

PLT 48 40 40 52 60 64 

MDT 48 64 52 44 28 32 

3DST 36 48 48 72 52 48 

ST 44 84 48 40 44 0 

OST 56 56 52 48 52 60 

RD 64 48 56 56 56 60 

RU 40 48 52 44 40 52 

CW 36 64 56 24 52 64 

CTG 60 48 44 64 52 56 

       

       

  
Jumping 
2D-3D 

Rand 3D 
Von 
Neumann 

3D Moore 
+ 

Neumann 
2D Moore 
Neighbours 

2D Von 
Neumann 
Moore 
Jump N 

2D Von 
Neumann 
Neighbors 

Max Occurance 9 10 9 5 4 8 

 



 

Appendix D 

Sample of Binary file (Snap shot taken for 3D Moore + Neumann Method) 
 

 

 

  



 

Appendix E 

 

Sample of DIEHARD Output file (Snap shot taken for 3D Moore + Neumann Method) 

 
BIRTHDAY SPACINGS TEST, M= 512 N=2**24 LAMBDA=  2.0000 
           Results for file1           
                   For a sample of size 500:     mean    
           file1           using bits  1 to 24   2.068 
  duplicate       number       number  
  spacings       observed     expected 
        0          67.       67.668 
        1         118.      135.335 
        2         143.      135.335 
        3         103.       90.224 
        4          40.       45.112 
        5          17.       18.045 
  6 to INF         12.        8.282 
 Chisquare with  6 d.o.f. =     6.78 p-value=  .658276 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  2 to 25   1.938 
  duplicate       number       number  
  spacings       observed     expected 
        0          60.       67.668 
        1         148.      135.335 
        2         145.      135.335 
        3          92.       90.224 
        4          27.       45.112 
        5          22.       18.045 
  6 to INF          6.        8.282 
 Chisquare with  6 d.o.f. =    11.55 p-value=  .927114 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  3 to 26   1.956 
  duplicate       number       number  
  spacings       observed     expected 
        0          71.       67.668 
        1         142.      135.335 
        2         124.      135.335 
        3          99.       90.224 
        4          38.       45.112 
        5          21.       18.045 
  6 to INF          5.        8.282 
 Chisquare with  6 d.o.f. =     5.20 p-value=  .481707 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  4 to 27   1.960 
  duplicate       number       number  
  spacings       observed     expected 



 

        0          58.       67.668 
        1         137.      135.335 
        2         158.      135.335 
        3          90.       90.224 
        4          41.       45.112 
        5          10.       18.045 
  6 to INF          6.        8.282 
 Chisquare with  6 d.o.f. =     9.79 p-value=  .866126 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  5 to 28   2.116 
  duplicate       number       number  
  spacings       observed     expected 
        0          68.       67.668 
        1         133.      135.335 
        2         123.      135.335 
        3          83.       90.224 
        4          53.       45.112 
        5          27.       18.045 
  6 to INF         13.        8.282 
 Chisquare with  6 d.o.f. =    10.26 p-value=  .885733 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  6 to 29   1.976 
  duplicate       number       number  
  spacings       observed     expected 
        0          72.       67.668 
        1         133.      135.335 
        2         130.      135.335 
        3          98.       90.224 
        4          42.       45.112 
        5          19.       18.045 
  6 to INF          6.        8.282 
 Chisquare with  6 d.o.f. =     2.09 p-value=  .088971 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  7 to 30   1.990 
  duplicate       number       number  
  spacings       observed     expected 
        0          59.       67.668 
        1         148.      135.335 
        2         141.      135.335 
        3          77.       90.224 
        4          51.       45.112 
        5          15.       18.045 
  6 to INF          9.        8.282 
 Chisquare with  6 d.o.f. =     5.82 p-value=  .555793 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  8 to 31   2.032 
  duplicate       number       number  



 

  spacings       observed     expected 
        0          62.       67.668 
        1         137.      135.335 
        2         140.      135.335 
        3          88.       90.224 
        4          41.       45.112 
        5          22.       18.045 
  6 to INF         10.        8.282 
 Chisquare with  6 d.o.f. =     2.31 p-value=  .110796 
  ::::::::::::::::::::::::::::::::::::::::: 
                   For a sample of size 500:     mean    
           file1           using bits  9 to 32   2.090 
  duplicate       number       number  
  spacings       observed     expected 
        0          47.       67.668 
        1         148.      135.335 
        2         139.      135.335 
        3          85.       90.224 
        4          52.       45.112 
        5          18.       18.045 
  6 to INF         11.        8.282 
 Chisquare with  6 d.o.f. =     9.84 p-value=  .868594 
  ::::::::::::::::::::::::::::::::::::::::: 
   The 9 p-values were 
        .658276   .927114   .481707   .866126   .885733 
        .088971   .555793   .110796   .868594 
  A KSTEST for the 9 p-values yields  .691006 
 
           OPERM5 test for file file1           
     For a sample of 1,000,000 consecutive 5-tuples, 
 chisquare for 99 degrees of freedom= 81.134; p-value= .095538 
           OPERM5 test for file file1           
     For a sample of 1,000,000 consecutive 5-tuples, 
 chisquare for 99 degrees of freedom= 94.586; p-value= .393169 
 
  Binary rank test for file1           
         Rank test for 31x31 binary matrices: 
        rows from leftmost 31 bits of each 32-bit integer 
      rank   observed  expected (o-e)^2/e  sum 
        28       195     211.4  1.274968    1.275 
        29      5161    5134.0   .141886    1.417 
        30     23196   23103.0   .373989    1.791 
        31     11448   11551.5   .927783    2.719 
  chisquare= 2.719 for 3 d. of f.; p-value= .612521 
 

   Binary rank test for file1           

         Rank test for 32x32 binary matrices: 

        rows from leftmost 32 bits of each 32-bit integer 



 

      rank   observed  expected (o-e)^2/e  sum 

        29       195     211.4  1.274968    1.275 

        30      5107    5134.0   .142102    1.417 

        31     23086   23103.0   .012578    1.430 

        32     11612   11551.5   .316607    1.746 

  chisquare= 1.746 for 3 d. of f.; p-value= .466475 

 

      Binary Rank Test for file1           

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  1 to  8 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          932       944.3        .160        .160 

          r =5        22075     21743.9       5.042       5.202 

          r =6        76993     77311.8       1.315       6.517 

                        p=1-exp(-SUM/2)= .96155 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  2 to  9 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          922       944.3        .527        .527 

          r =5        21848     21743.9        .498       1.025 

          r =6        77230     77311.8        .087       1.112 

                        p=1-exp(-SUM/2)= .42639 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           



 

     b-rank test for bits  3 to 10 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          952       944.3        .063        .063 

          r =5        21952     21743.9       1.992       2.054 

          r =6        77096     77311.8        .602       2.657 

                        p=1-exp(-SUM/2)= .73509 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  4 to 11 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          965       944.3        .454        .454 

          r =5        21562     21743.9       1.522       1.975 

          r =6        77473     77311.8        .336       2.312 

                        p=1-exp(-SUM/2)= .68518 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  5 to 12 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          969       944.3        .646        .646 

          r =5        21465     21743.9       3.577       4.223 

          r =6        77566     77311.8        .836       5.059 

                        p=1-exp(-SUM/2)= .92031 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  6 to 13 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 



 

          r<=4          945       944.3        .001        .001 

          r =5        21674     21743.9        .225        .225 

          r =6        77381     77311.8        .062        .287 

                        p=1-exp(-SUM/2)= .13375 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  7 to 14 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          976       944.3       1.064       1.064 

          r =5        21475     21743.9       3.325       4.389 

          r =6        77549     77311.8        .728       5.117 

                        p=1-exp(-SUM/2)= .92259 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  8 to 15 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          924       944.3        .436        .436 

          r =5        21936     21743.9       1.697       2.134 

          r =6        77140     77311.8        .382       2.515 

                        p=1-exp(-SUM/2)= .71569 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits  9 to 16 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          961       944.3        .295        .295 

          r =5        22042     21743.9       4.087       4.382 



 

          r =6        76997     77311.8       1.282       5.664 

                        p=1-exp(-SUM/2)= .94110 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 10 to 17 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          954       944.3        .100        .100 

          r =5        21496     21743.9       2.826       2.926 

          r =6        77550     77311.8        .734       3.660 

                        p=1-exp(-SUM/2)= .83957 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 11 to 18 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          905       944.3       1.636       1.636 

          r =5        21575     21743.9       1.312       2.948 

          r =6        77520     77311.8        .561       3.508 

                        p=1-exp(-SUM/2)= .82695 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 12 to 19 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          954       944.3        .100        .100 

          r =5        21935     21743.9       1.680       1.779 

          r =6        77111     77311.8        .522       2.301 

                        p=1-exp(-SUM/2)= .68347 



 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 13 to 20 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          934       944.3        .112        .112 

          r =5        21884     21743.9        .903       1.015 

          r =6        77182     77311.8        .218       1.233 

                        p=1-exp(-SUM/2)= .46017 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 14 to 21 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          962       944.3        .332        .332 

          r =5        21859     21743.9        .609        .941 

          r =6        77179     77311.8        .228       1.169 

                        p=1-exp(-SUM/2)= .44265 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 15 to 22 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          948       944.3        .014        .014 

          r =5        21705     21743.9        .070        .084 

          r =6        77347     77311.8        .016        .100 

                        p=1-exp(-SUM/2)= .04882 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           



 

     b-rank test for bits 16 to 23 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          901       944.3       1.986       1.986 

          r =5        21797     21743.9        .130       2.115 

          r =6        77302     77311.8        .001       2.117 

                        p=1-exp(-SUM/2)= .65294 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 17 to 24 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          876       944.3       4.940       4.940 

          r =5        21771     21743.9        .034       4.974 

          r =6        77353     77311.8        .022       4.996 

                        p=1-exp(-SUM/2)= .91775 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 18 to 25 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          919       944.3        .678        .678 

          r =5        21678     21743.9        .200        .878 

          r =6        77403     77311.8        .108        .985 

                        p=1-exp(-SUM/2)= .38897 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 19 to 26 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 



 

          r<=4          959       944.3        .229        .229 

          r =5        21604     21743.9        .900       1.129 

          r =6        77437     77311.8        .203       1.332 

                        p=1-exp(-SUM/2)= .48615 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 20 to 27 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          904       944.3       1.720       1.720 

          r =5        21675     21743.9        .218       1.938 

          r =6        77421     77311.8        .154       2.093 

                        p=1-exp(-SUM/2)= .64876 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 21 to 28 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          895       944.3       2.574       2.574 

          r =5        21801     21743.9        .150       2.724 

          r =6        77304     77311.8        .001       2.725 

                        p=1-exp(-SUM/2)= .74394 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 22 to 29 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          932       944.3        .160        .160 

          r =5        21729     21743.9        .010        .170 



 

          r =6        77339     77311.8        .010        .180 

                        p=1-exp(-SUM/2)= .08608 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 23 to 30 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          967       944.3        .546        .546 

          r =5        21710     21743.9        .053        .598 

          r =6        77323     77311.8        .002        .600 

                        p=1-exp(-SUM/2)= .25922 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 24 to 31 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          920       944.3        .625        .625 

          r =5        21709     21743.9        .056        .681 

          r =6        77371     77311.8        .045        .727 

                        p=1-exp(-SUM/2)= .30467 

        Rank of a 6x8 binary matrix, 

     rows formed from eight bits of the RNG file1           

     b-rank test for bits 25 to 32 

                     OBSERVED   EXPECTED     (O-E)^2/E      SUM 

          r<=4          946       944.3        .003        .003 

          r =5        21697     21743.9        .101        .104 

          r =6        77357     77311.8        .026        .131 

                        p=1-exp(-SUM/2)= .06323 



 

   TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices 

 These should be 25 uniform [0,1] random variables: 

     .961546     .426393     .735095     .685179     .920306 

     .133747     .922587     .715689     .941104     .839569 

     .826948     .683471     .460169     .442649     .048820 

     .652939     .917749     .388968     .486151     .648756 

     .743944     .086080     .259218     .304666     .063231 

   brank test summary for file1           

       The KS test for those 25 supposed UNI's yields 

                    KS p-value= .670466 

THE OVERLAPPING 20-tuples BITSTREAM  TEST, 20 BITS PER WORD, N words 

   This test uses N=2^21 and samples the bitstream 20 times. 

  No. missing words should average  141909. with sigma=428. 

--------------------------------------------------------- 

 tst no  1:  141373 missing words,   -1.25 sigmas from mean, p-value= .10508 

 tst no  2:  141963 missing words,     .13 sigmas from mean, p-value= .54990 

 tst no  3:  142320 missing words,     .96 sigmas from mean, p-value= .83135 

 tst no  4:  142154 missing words,     .57 sigmas from mean, p-value= .71622 

 tst no  5:  142078 missing words,     .39 sigmas from mean, p-value= .65324 

 tst no  6:  141919 missing words,     .02 sigmas from mean, p-value= .50901 

 tst no  7:  142436 missing words,    1.23 sigmas from mean, p-value= .89075 

 tst no  8:  141492 missing words,    -.98 sigmas from mean, p-value= .16476 

 tst no  9:  141610 missing words,    -.70 sigmas from mean, p-value= .24216 

 tst no 10:  142457 missing words,    1.28 sigmas from mean, p-value= .89966 

 tst no 11:  141985 missing words,     .18 sigmas from mean, p-value= .57017 

 tst no 12:  141711 missing words,    -.46 sigmas from mean, p-value= .32154 



 

 tst no 13:  141792 missing words,    -.27 sigmas from mean, p-value= .39199 

 tst no 14:  141981 missing words,     .17 sigmas from mean, p-value= .56650 

 tst no 15:  141545 missing words,    -.85 sigmas from mean, p-value= .19732 

 tst no 16:  142313 missing words,     .94 sigmas from mean, p-value= .82720 

 tst no 17:  142317 missing words,     .95 sigmas from mean, p-value= .82958 

 tst no 18:  142655 missing words,    1.74 sigmas from mean, p-value= .95927 

 tst no 19:  141925 missing words,     .04 sigmas from mean, p-value= .51460 

 tst no 20:  141489 missing words,    -.98 sigmas from mean, p-value= .16303 

 

OPSO test for generator file1           

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

 

    OPSO for file1           using bits 23 to 32        142263  1.220  .8887 

    OPSO for file1           using bits 22 to 31        141778  -.453  .3253 

    OPSO for file1           using bits 21 to 30        141893  -.056  .4775 

    OPSO for file1           using bits 20 to 29        141881  -.098  .4611 

    OPSO for file1           using bits 19 to 28        141745  -.567  .2855 

    OPSO for file1           using bits 18 to 27        141796  -.391  .3480 

    OPSO for file1           using bits 17 to 26        142021   .385  .6499 

    OPSO for file1           using bits 16 to 25        141711  -.684  .2470 

    OPSO for file1           using bits 15 to 24        141651  -.891  .1865 

    OPSO for file1           using bits 14 to 23        141793  -.401  .3442 

    OPSO for file1           using bits 13 to 22        141866  -.149  .4406 

    OPSO for file1           using bits 12 to 21        141986   .264  .6043 

    OPSO for file1           using bits 11 to 20        141616 -1.011  .1559 

    OPSO for file1           using bits 10 to 19        141921   .040  .5161 



 

    OPSO for file1           using bits  9 to 18        141857  -.180  .4284 

    OPSO for file1           using bits  8 to 17        142073   .564  .7138 

    OPSO for file1           using bits  7 to 16        141483 -1.470  .0708 

    OPSO for file1           using bits  6 to 15        141471 -1.511  .0653 

    OPSO for file1           using bits  5 to 14        141986   .264  .6043 

    OPSO for file1           using bits  4 to 13        141602 -1.060  .1446 

    OPSO for file1           using bits  3 to 12        141685  -.774  .2196 

    OPSO for file1           using bits  2 to 11        141473 -1.505  .0662 

    OPSO for file1           using bits  1 to 10        141567 -1.180  .1189 

 OQSO test for generator file1           

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

    OQSO for file1           using bits 28 to 32        141863  -.157  .4376 

    OQSO for file1           using bits 27 to 31        142315  1.375  .9155 

    OQSO for file1           using bits 26 to 30        141982   .246  .5973 

    OQSO for file1           using bits 25 to 29        142036   .429  .6662 

    OQSO for file1           using bits 24 to 28        142131   .751  .7738 

    OQSO for file1           using bits 23 to 27        142027   .399  .6550 

    OQSO for file1           using bits 22 to 26        142093   .623  .7332 

    OQSO for file1           using bits 21 to 25        142086   .599  .7254 

    OQSO for file1           using bits 20 to 24        141587 -1.093  .1373 

    OQSO for file1           using bits 19 to 23        142192   .958  .8310 

    OQSO for file1           using bits 18 to 22        141632  -.940  .1736 

    OQSO for file1           using bits 17 to 21        141389 -1.764  .0389 

    OQSO for file1           using bits 16 to 20        142029   .406  .6575 

    OQSO for file1           using bits 15 to 19        141930   .070  .5279 

    OQSO for file1           using bits 14 to 18        141778  -.445  .3281 



 

    OQSO for file1           using bits 13 to 17        142085   .595  .7242 

    OQSO for file1           using bits 12 to 16        141945   .121  .5481 

    OQSO for file1           using bits 11 to 15        142048   .470  .6808 

    OQSO for file1           using bits 10 to 14        141764  -.493  .3111 

    OQSO for file1           using bits  9 to 13        142145   .799  .7878 

    OQSO for file1           using bits  8 to 12        141706  -.689  .2453 

    OQSO for file1           using bits  7 to 11        142063   .521  .6988 

    OQSO for file1           using bits  6 to 10        141460 -1.523  .0639 

    OQSO for file1           using bits  5 to  9        142149   .812  .7917 

    OQSO for file1           using bits  4 to  8        141911   .006  .5023 

    OQSO for file1           using bits  3 to  7        142017   .365  .6424 

    OQSO for file1           using bits  2 to  6        141732  -.601  .2739 

    OQSO for file1           using bits  1 to  5        141645  -.896  .1851 

  DNA test for generator file1           

  Output: No. missing words (mw), equiv normal variate (z), p-value (p) 

     DNA for file1           using bits 20 to 21        141539 -1.092  .1373 

     DNA for file1           using bits 19 to 20        142153   .719  .7639 

     DNA for file1           using bits 18 to 19        142427  1.527  .9366 

     DNA for file1           using bits 17 to 18        141747  -.479  .3160 

     DNA for file1           using bits 16 to 17        142454  1.607  .9459 

     DNA for file1           using bits 15 to 16        142369  1.356  .9124 

     DNA for file1           using bits 14 to 15        142260  1.034  .8495 

     DNA for file1           using bits 13 to 14        141607  -.892  .1862 

     DNA for file1           using bits 12 to 13        141859  -.148  .4410 

     DNA for file1           using bits 11 to 12        141649  -.768  .2213 

     DNA for file1           using bits 10 to 11        141656  -.747  .2274 



 

     DNA for file1           using bits  9 to 10        141961   .152  .5606 

     DNA for file1           using bits  8 to  9        141525 -1.134  .1285 

     DNA for file1           using bits  7 to  8        142007   .288  .6134 

     DNA for file1           using bits  6 to  7        142050   .415  .6609 

     DNA for file1           using bits  5 to  6        142105   .577  .7181 

     DNA for file1           using bits  4 to  5        141334 -1.697  .0448 

     DNA for file1           using bits  3 to  4        141754  -.458  .3234 

     DNA for file1           using bits  2 to  3        141784  -.370  .3558 

     DNA for file1           using bits  1 to  2        141747  -.479  .3160 

 

  Test results for file1           

 Chi-square with 5^5-5^4=2500 d.of f. for sample size:2560000 

                               chisquare  equiv normal  p-value 

  Results fo COUNT-THE-1's in successive bytes: 

 byte stream for file1            2405.69     -1.334      .091132 

 byte stream for file1            2502.18       .031      .512312 

 

Results for COUNT-THE-1's in specified bytes: 

           bits  1 to  8  2485.26      -.208      .417458 

           bits  2 to  9  2533.00       .467      .679619 

           bits  3 to 10  2459.37      -.575      .282770 

           bits  4 to 11  2523.00       .325      .627492 

           bits  5 to 12  2423.42     -1.083      .139397 

           bits  6 to 13  2490.86      -.129      .448556 

           bits  7 to 14  2518.10       .256      .600999 

           bits  8 to 15  2656.09      2.207      .986360 



 

           bits  9 to 16  2614.31      1.617      .947014 

           bits 10 to 17  2429.86      -.992      .160633 

 

      CDPARK: result of ten tests on file file1           

            Of 12,000 tries, the average no. of successes 

                 should be 3523 with sigma=21.9 

            Successes: 3522    z-score:  -.046 p-value: .481790 

            Successes: 3537    z-score:   .639 p-value: .738676 

            Successes: 3526    z-score:   .137 p-value: .554479 

            Successes: 3534    z-score:   .502 p-value: .692266 

            Successes: 3505    z-score:  -.822 p-value: .205562 

            Successes: 3546    z-score:  1.050 p-value: .853193 

            Successes: 3536    z-score:   .594 p-value: .723613 

            Successes: 3513    z-score:  -.457 p-value: .323972 

            Successes: 3562    z-score:  1.781 p-value: .962529 

            Successes: 3526    z-score:   .137 p-value: .554479 

  

           square size   avg. no.  parked   sample sigma 

             100.            3530.700       15.411 

            KSTEST for the above 10: p=  .638628 

 

       This is the MINIMUM DISTANCE test 

              for random integers in the file file1           

     Sample no.    d^2     avg     equiv uni             

           5    1.3638   1.0519     .746056 

          10     .6086    .7828     .457574 



 

          15     .3159    .6406     .272010 

          20     .1821    .9221     .167223 

          25     .0348    .8639     .034414 

          30     .0262    .8330     .026021 

          35     .8224   1.0543     .562435 

          40     .9775   1.1022     .625586 

          45     .0502   1.0318     .049235 

          50     .9500    .9946     .615120 

          55     .2766    .9520     .242659 

          60     .0701    .8943     .068018 

          65     .2568    .8797     .227451 

          70    3.7634    .8857     .977230 

          75    7.1344    .9775     .999231 

          80    1.3870    .9895     .751923 

          85     .5250   1.0089     .409974 

          90    2.8711   1.0000     .944175 

          95     .0495   1.0115     .048536 

         100    2.0191   1.0343     .868568 

     MINIMUM DISTANCE TEST for file1           

          Result of KS test on 20 transformed mindist^2's: 

                                  p-value= .533812 



 

             The 3DSPHERES test for file file1           

 sample no:  1     r^3=  38.193     p-value= .72004 

 sample no:  2     r^3=  65.735     p-value= .88821 

 sample no:  3     r^3=  24.364     p-value= .55609 

 sample no:  4     r^3=  12.159     p-value= .33323 

 sample no:  5     r^3=  10.890     p-value= .30441 

 sample no:  6     r^3=  23.250     p-value= .53929 

 sample no:  7     r^3=  77.702     p-value= .92499 

 sample no:  8     r^3=   2.731     p-value= .08700 

 sample no:  9     r^3=  25.410     p-value= .57131 

 sample no: 10     r^3=  20.434     p-value= .49396 

 sample no: 11     r^3=   9.450     p-value= .27021 

 sample no: 12     r^3=   6.442     p-value= .19323 

 sample no: 13     r^3=  11.870     p-value= .32676 

 sample no: 14     r^3=   1.689     p-value= .05474 

 sample no: 15     r^3=  92.819     p-value= .95468 

 sample no: 16     r^3=   6.956     p-value= .20694 

 sample no: 17     r^3=  11.314     p-value= .31418 

 sample no: 18     r^3=  31.576     p-value= .65095 

 sample no: 19     r^3=   2.126     p-value= .06841 

 sample no: 20     r^3=  30.239     p-value= .63504 

  A KS test is applied to those 20 p-values. 

--------------------------------------------------------- 

       3DSPHERES test for file file1                p-value= .241794 



 

   RESULTS OF SQUEEZE TEST FOR file1           

         Table of standardized frequency counts 

     ( (obs-exp)/sqrt(exp) )^2 

        for j taking values <=6,7,8,...,47,>=48: 

     2.7      .5      .8    -2.4     -.5     -.1 

      .7    -1.1      .1     -.4    -1.9    -1.6 

     1.2      .6     -.8     -.7     1.0     -.2 

      .8    -1.6     -.8      .2     1.5     1.5 

     -.2      .9      .0    -1.7     2.9     1.3 

      .7      .4    -1.1      .9     -.5     1.3 

      .3      .5      .1     -.1      .9      .0 

     2.7 

           Chi-square with 42 degrees of freedom: 62.622 

              z-score=  2.250  p-value= .978858 

 

    Test no.  1      p-value  .430451 

                Test no.  2      p-value  .217270 

                Test no.  3      p-value  .622948 

                Test no.  4      p-value  .057847 

                Test no.  5      p-value  .793093 

                Test no.  6      p-value  .142356 

                Test no.  7      p-value  .004947 

                Test no.  8      p-value  .792843 

                Test no.  9      p-value  .983215 

                Test no. 10      p-value  .974643 

   Results of the OSUM test for file1           



 

        KSTEST on the above 10 p-values:  .638171 

 

        Run test for file1          : 

       runs up; ks test for 10 p's: .949285 

     runs down; ks test for 10 p's: .135459 

                 Run test for file1          : 

       runs up; ks test for 10 p's: .109780 

     runs down; ks test for 10 p's: .911528 

                Results of craps test for file1           

  No. of wins:  Observed Expected 

                                98561    98585.86 

                  98561= No. of wins, z-score= -.111 pvalue= .45573 

   Analysis of Throws-per-Game: 

 Chisq=  15.24 for 20 degrees of freedom, p=  .23739 

               Throws Observed Expected  Chisq     Sum 

                  1    66795    66666.7    .247     .247 

                  2    37579    37654.3    .151     .398 

                  3    27003    26954.7    .086     .484 

                  4    19205    19313.5    .609    1.093 

                  5    13753    13851.4    .699    1.793 

                  6    10135     9943.5   3.686    5.479 

                  7     7128     7145.0    .041    5.520 

                  8     5035     5139.1   2.108    7.627 

                  9     3695     3699.9    .006    7.633 

                 10     2733     2666.3   1.669    9.302 

                 11     1867     1923.3   1.650   10.952 



 

                 12     1370     1388.7    .253   11.205 

                 13     1025     1003.7    .451   11.656 

                 14      726      726.1    .000   11.656 

                 15      516      525.8    .184   11.840 

                 16      404      381.2   1.370   13.210 

                 17      297      276.5   1.514   14.724 

                 18      206      200.8    .133   14.857 

                 19      140      146.0    .245   15.102 

                 20      107      106.2    .006   15.108 

                 21      281      287.1    .130   15.238 

            SUMMARY  FOR file1           

                p-value for no. of wins: .455735 

                p-value for throws/game: .237386 

 


