
v

High Quality Random Number Generator using

Programmable Cellular Automata

By

Azfar Shakeel Khan
2007-NUST-MS-PhD IT-23

Supervisor

Dr. Nazar Abbas Saqib
Associate Professor

NUST- SEECS

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Technology (MS IT)

in

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(April 2011)

APPROVAL

vi

It is certified that the contents and form of thesis entitled “High Quality Random Number

Generator using Programmable Cellular Automata” submitted by Mr. Azfar Shakeel Khan

have been found satisfactory for the requirement of the degree.

Advisor: Dr. Nazar Abbas Saqib

Signature: ___________________

Date: _______________________

Committee Member1: Dr. Fauzan Mirza

 Signature

 Date:

Committee Member2: Dr. Zahid

Anwar

 Signature

 Date:

 Committee Member3: Mr. Ammar Karim

Signature

vii

 Date:

Abstract

Random Numbers have applications in a number of computer sciences domains

specifically in computer security algorithms they play a vital role. One of the

techniques to generate a random number is to follow an algorithm which tries to

generate random numbers as close as a true random number generator source,

this algorithm based random number generation is known as Pseudo random

Number Generation (PRNG). In this research we studied existing techniques of

Cellular Automata (CA) based Pseudo Random generator (PRNG) and

proposed 5 different variations in the existing algorithm, modified the CA rules as

per requirement for the proposed techniques i.e. 3D Neuman and Moore

neighborhood, 2D to 3D jumping Neuman and 2D Neuman and Moore jumping

neighborhoods. In all the cases Neuman neighborhood means non diagonal

adjacent neighbors while Moore neighborhood means diagonally adjacent

neighbors. CA rules define which neighbors participate in the current cycle for

random number generation.

We implemented the simulation code in C++ and tested the outputs in

internationally accepted standard for Random Numbers “DIEHARD”, the

analysis of the results are made as per recommendations of ANSI standards

and it is discussed which of the above techniques can be declared to be best in

terms of quality of randomness in random numbers generation.

viii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person nor material which to a substantial extent has been accepted for the

award of any degree or diploma at SEECS or at any other educational institute,

except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked at

SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and

conception or in style, presentation and linguistics which has been

acknowledged.

 Author Name: Azfar Shakeel Khan

 Signature:

ix

Acknowledgments

First and foremost, I am immensely thankful to Almighty Allah for letting me

pursue and fulfill my dreams. Nothing could have been possible without His

blessings.

I am deeply indebted to my supervisor, Dr Nazar Abbas Saqib, for providing me

the supervision, motivation and encouragement throughout the span of my work.

His insight, breadth of knowledge, and enthusiasm has been invaluable. Without

his care and able guidance, I would not have been able to complete my thesis.

I am also grateful to my committee members, Dr Fauzan Mirza, Dr Zahid Anwar

and Mr. Ammar Karim for their valuable suggestions and guidance in my

research. They were abundantly helpful, and I owe a lot to them.

I am thankful to National University of Science and Technology (NUST),

Pakistan for providing me scholarship due to which I carried out my research

activities with good mind set.

Azfar Shakeel Khan

x

Table of Contents

Chapter 1 Introduction ... i

1.1 Random Number .. ii

1.2 Motivation .. ii

1.3 Problem Statement .. iii

1.4 Goals and Objectives of the Research... iii

1.5 Scope of the Research ... iv

1.6 Thesis outline ... iv

Chapter 2 Background ... vi

2.1 Types of random Numbers .. vii

2.2 DIEHARD Test and its Details ... xii

2.2.1 DIEHARD Tests Applied ... xiii

2.3 Simulation Environment .. xvii

Chapter 3 Literature Review/ Related work .. xviii

3.1 Literature Review ... xix

3.2 Related Work .. xxi

Chapter 4 Methodology ... xxv

4.1 Literature Survey Phase ... xxvi

4.2 Idea Generation Phase ... xxvi

4.3 Proposed Solution Implementation Phase ... xxvi

4.4 Testing Phase ... xxvii

4.5 Analysis of Results Phase ... xxvii

4.6 Assumptions .. xxvii

Chapter 5 Proposed Solutions .. xxix

5.1 Proposed Methods.. xxx

xi

5.2 Algorithm used ... xxxi

5.2.1 2D Neumann Neighbors ... xxxii

5.2.2 2D Moore + Neumann Neighbors .. xxxiv

5.2.3 2D Neumann Moore jumping Neighbors .. xxxvi

5.2.4 3D Neumann Neighbors .. xxxviii

5.2.5 3D to 2D Jumping Neumann Neighbors .. xli

5.2.6 3D Moore + Neumann Neighbors ... xliv

Chapter 6 Testing of Proposed Solutions .. xlvii

6.1 DIEHARD Tests Applied .. xlviii

6.2 Testing Process .. xlix

Chapter 7 Analysis of Results .. l

7.1 Criteria 1 ... lii

7.2 Criteria 2 ... lii

7.3 Comparative Analysis of Results .. lvi

7.4 Run Time Analysis of the Proposed Methods .. lvi

7.4.1 Main Memory Requirements ... lvii

7.4.2 Number of operations per iteration ... lviii

Chapter 8 Conclusion and Future Work ... lxi

8.1 Conclusion .. lxii

8.2 Future Work ... lxiii

References ... lxiv

Appendix A ... lxvi

Appendix B ... lxxi

Appendix C .. lxxxv

Appendix D ... lxxxvi

Appendix E .. lxxxvii

xii

List of Figures

Figure 1: Random Number Generator ... xi

Figure 2: CA Rules Implemented for 2D-PCA .. xxi

Figure 3: 2D-PCA Structure ... xxii

Figure 4: Results for Different Logical Operations with CA Rules .. xxiii

Figure 5:DIEHARD Results Compared using Safe Window Range xxiv

Figure 6: 2D Neumann Neighbors Illustration .. xxxii

Figure 7: 2D Neumann Cell Structure ... xxxiii

Figure 8: 2DMoore + Neumann Neighbors Illustration .. xxxiv

Figure 9: 2DMoore + Neumann Neighbors Cell Structure .. xxxv

Figure 10: 2D Neumann Moore jumping Neighbors Illustration ... xxxvi

Figure 11: 2D Neumann Moore jumping Neighbors Cell Structure xxxvii

Figure 12: 3D Lattice of cells used for all the 3D PCA Algorithms xxxix

Figure 13: 3D Neumann Neighbors Illustration ... xxxix

Figure 14: 3D Neumann Neighbors Cell Structure .. xl

Figure 15: 3D-2D jumping Neumann Neighbors Illustration ... xlii

Figure 16: 3D to 2D Jumping Neumann Neighbors Cell Structure ... xliii

Figure 17: 3D Moore + Neumann Neighbors Illustration ... xliv

Figure 18: 3D Moore + Neumann Neighbor Cell Structure ... xlv

Figure 19: Testing Phases block diagram .. xlix

Figure 20: Snap shot of results ... li

Figure 21: Courtesy: en.wikipedia.org/wiki/Standard_deviation .. lii

Figure 22: Courtesy: IJCSNS International Journal of Computer Science and Network Security,

VOL.10 No.4, April 2010 .. lii

Figure 23: Results and graph showing values in the range µ±3σ ...liii

Figure 24: Results and graph showing values in the range µ±2σ ... liv

Figure 25: Values falling in the Safe Range (values >=0.25 AND values <=0.75) lv

file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692162
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692163
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692164
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692165
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692166
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692167
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692168
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692169
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692170
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692171
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692172
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692173
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692174
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692175
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692176
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692177
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692178
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692179
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692180
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692181
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692182
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692183
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692183
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692184
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692185
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Thesis%20WriteUp/Azfar%20Thesis%20Document.docx%23_Toc291692186

Chapter 1 Introduction

1.1 Random Number

Random numbers have applications in many areas from simulation, game-playing,

cryptography, statistical sampling, and evaluation of multiple integrals, particle transport

calculations, and computations in statistical physics, to name a few.

Random numbers are numbers that occur in a sequence such that two conditions are

met, first the values are uniformly distributed over a defined interval or set, and secondly

it is impossible to predict future values based on past or present ones. Random

numbers are important in statistical analysis and probability theory.

Although it may look simple at first sight to give a definition of what a random number is,

it proves to be quite difficult in practice.

A random number is a number generated by a process, whose outcome is

unpredictable, and which cannot be sub sequentially reliably reproduced. This definition

works fine provided that one has some kind of a black box, such a black box is usually

called a random number generator that fulfills this task.

However, if one were to be given a number, it is simply impossible to verify whether it

was produced by a random number generator or not. In order to study the randomness

of the output of such a generator, it is hence absolutely essential to consider sequences

of numbers.

It is quite straightforward to define whether a sequence of infinite length is random or

not. This sequence is random if the quantity of information it contains in the sense of

Shannon's information theory is also infinite.

1.2 Motivation

As the discussions made in the above sections, there are lot of applications in the

domain of computer sciences, IT and other fields of research where random numbers

play a vital role, studying existing solutions to generate a random sequence and what

possibilities are there to improve the quality of randomness and efficiency of random

number generators is a vast and interesting topic, its very motivating to find a new or

better random number generator or discovering better technique for implementing the

existing solutions as this addition in the knowledge domain has practical applications

and can be useful for many other applications.

1.3 Problem Statement

After doing a comprehensive literature survey, understanding of what random numbers

are, their properties, testing quality of randomness we have selected the topic of

Cellular Automata to work on, there is vast scope in the filed of cellular automata

specifically with respect to the two and three dimensional structures as very less people

have worked on this area and comprehensive results specifically with respect to a three

dimensional cellular automata are not found in the literature, So we have decided to

narrow down the area of interest, following statement can be treated as our problem

statement.

“High Quality PRNG exploring 3D PCA Structure and possibilities for 2D to 3D jumping

PCA”

1.4 Goals and Objectives of the Research

The objectives of the research is to add new ideas with respect to neighbor selection

criteria in programmable cellular automata and their impact on the quality of

randomness, one of the goals is finding a better random generator than the existing

solutions, this opens a new track of research for the future as well as all possible

neighborhood combinations can not be covered in a single research.

Our specific goals to be achieved are

 Implementation and Results for 2-D PCA [both for von Neumann and Moore

neighborhood].

 3-D PCA Implementation with All Neighbors.

 2-D to 3-D jumping PCA where the Z- Neighbors are selected depending on the

z-index control register, this area is never explored before.

1.5 Scope of the Research

The scope of this research is limited to programmable cellular automata for 3D

lattice of cells and its variations for 3D to 2D jumping, both the Neumann and Moore

neighbors are considered, the work studies choosing different neighbors and their

effect on the quality of random number sequence generated, this work does not

include FPGA implementation details and their hardware complexities due to limited

amount of time.

1.6 Thesis outline

The document has the following chapters.

Chapter 2: Background and Experimental Setup

 Discuses in general about the types of random numbers, various commonly used

generators and about Cellular Automata generators, it also describes about the

background needed for testing and simulation environment we used to accomplish

the proposed solutions.

Chapter 3: Literature Review/ Related work

Discuses the most relevant research papers regarding the programmable cellular

automata, the authors approach and the results they found.

Chapter 4: Methodology

Discuss the work flow and steps taken to accomplish this research work.

Chapter 5: Proposed Solutions

Detail discussion about the solutions proposed, the algorithm, mechanism of

working for picking different neighbors and the programmable cellular automat rules

applied.

Chapter 6: Testing of Proposed Solutions

 In this chapter testing strategy is discussed, the tests we applied and the process

of testing of proposed random number generators is explained.

Chapter 7: Analysis of Results

This chapter describes the analysis of all the results we got as a result of testing;

the criteria of analysis, memory and run time cost comparisons are also discussed.

Chapter 8: Conclusion and Future Work

This chapter gives the concluding remarks, which random number generator is the

best among the proposed methods and also what future work can be done if some

one wants to extend this piece of work.

At the end of report the Appendices discuss important code and data structures,

DIEHARD dumps and detail results of each implemented solution.

Chapter 2 Background

In this chapter first we will discuss some background about types of random numbers

and commonly used random number generators and then the tools and technologies

required to accomplish the implementation of our proposed solutions, for simulation of

each proposed generator we used standard C++ complier, for testing the DIEHARD tool

is used and for comparison of results, calculating means and standard deviations and

other analysis Microsoft Excel is used.

2.1 Types of random Numbers

In this section we briefly discuss the major categories of Random Number generators.

2.1.1 True Random Numbers or Physical Random-Number Generators

Games of chance are the classic examples of random processes, and the first choice

would be to use traditional gambling devices as random-number generators.

Unfortunately, these devices are rather slow, especially since the typical computer

application may require millions of numbers per second. Also, the numbers obtained

from such devices are not always truly random e.g. cards may be imperfectly shuffled,

dice and wheels may not be balanced, the random sequence obtained through the

physical sources are thus know as physical random numbers or true random numbers,

other physical phenomenon can also be considered in this regard, like the little

variations in somebody's mouse movements or in the amount of time between

keystrokes, a really good physical phenomenon to use is a radioactive source. The

points in time at which a radioactive source decays are completely unpredictable, and

they can quite easily be detected and fed into a computer. Another suitable physical

phenomenon is atmospheric noise, which is quite easy to pick up with a normal radio.

Similarly background noise from an office or laboratory or even from a car engine can

also be used as source.

One important shortcoming of any physical generator is the lack of reproducibility.

2.1.2 Pseudo Random Number Generators or Arithmetical Random

Generators

The most common method of generating pseudo-random numbers on the computer

uses a recursive technique called the linear-congruential, or Lehmer, generator. The

sequence is defined on the set of integers by the recursion formula

 Xn+1 = AXn + C (MOD m)

One method to improve the pseudo-random number generators is to use a combination

of two or more unrelated generators.

Some other well known PRNG techniques are discussed below very briefly.

Linear Feed back Shift Registers (LFSR)

A feedback shift register is made up of two parts: a shift register and a feedback

function. The shift register is a sequence of bits. (The length of a shift register is figured

in bits; if it is n bits long, it is called an n-bit shift register.) Each time a bit is needed, all

of the bits in the shift register are shifted 1 bit to the right. The new left-most bit is

computed as a function of the other bits in the register. The output of the shift register is

1 bit, often the least significant bit. The period of a shift register is the length of the

output sequence before it starts repeating.

The simplest kind of feedback shift register is a linear feedback shift register, or LFSR.

The feedback function is simply the XOR of certain bits in the register; the list of these

bits is called a tap sequence. Sometimes this is called a Fibonacci configuration.

Geffe Generator

This key stream generator uses three LFSRs, combined in a nonlinear manner

Two of the LFSRs are inputs into a multiplexer, and the third LFSR controls the output

of the multiplexer. If a1, a2, and a3 are the outputs of the three LFSRs, the output of the

Geffe generator can be described by

b = (a1 ^ a2) • ((¬ a1) ^ a3)

a variation is known as Generalized Gaffe Generator, Instead of choosing between two

LFSRs, this scheme chooses between k LFSRs, as long as k is a power of 2. There are

k + 1 LFSRs total. LFSR-1 must be clocked log2k times faster than the other k LFSRs.

Similar other variations of using LFSR in different combinations are, Jennings

Generator, Beth-Piper Stop-and-Go Generator, Alternating Stop-and-Go Generator and

Bilateral Stop-and-Go Generator.

Self-Decimated Generators

Self-decimated generators are generators that control their own clock. When the output

of the LFSR is 0, the LFSR is clothe LFSR is clocked d times. When the output of the

LFSR is 1, the LFSR is clocked k times.

Shrinking Generator

The shrinking generator uses a different form of clock control than the previous

generators. Take two LFSRs: LFSR-1 and LFSR-2. Clock both of them. If the output of

LFSR-1 is 1, then the output of the generator is LFSR-2. If the output of LFSR-1 is 0,

discard the two bits, clock both LFSRs, and try again.

A5

A5 is the stream cipher used to encrypt GSM (Group Special Mobile). A5 consists of

three LFSRs; the register lengths are 19, 22, and 23; all the feedback polynomials are

sparse. The output is the XOR of the three LFSRs. A5 uses variable clock control. Each

register is clocked based on its own middle bit, XORed with the inverse threshold

function of the middle bits of all three registers. Usually, two of the LFSRs clock in each

round.

Additive Generators

Additive generators (sometimes called lagged Fibonacci generators) are extremely

efficient because they produce random words instead of random bits, basically these

are the combinations of techniques discussed above, Fish, Pike and Mush are some of

the examples of additive generators.

2.1.3 Properties of a Good Random Number Generator

If we go through the literature about random number generators and their qualities we

get the following points for a good random generator to have:

 Random pattern : Passes statistical tests of randomness

 Long period : Goes as long as possible before repeating

 Efficiency : Executes rapidly and requires little storage

 Repeatability : Produces same sequence if started with same initializations

 Portability : Capable of producing same results on different computers

2.1.4 The Cellular Automata and its types

The concept of Cellular Automata (CA) was initiated in the early 1950's by J. Von

Neumann and Stan Ulam, Cellular automata can be viewed as a simple model of a

spatially extended decentralized system made up of a number of individual components

(cells). The communication between constituent cells is limited to local interaction.

Each individual cell is in a specific state which changes over time depending on the

states of its local neighbors.

The reason behind the popularity of cellular automata is their simplicity in understanding

and implementation, different structural variations of CA have been proposed in their

designs and analysis of the CA to make it versatile for modeling purposes.

The two variations of neighborhood are termed as Von Neumann and Moore

neighborhood, Neumann means adjacent Non Diagonal and Moore means adjacent

Diagonal neighbors.

Cellular automata on multi-dimensional grids have also been proposed. The grids have

either null or periodic boundary. In null boundary configurations the boundary cells are

assumed to have `null' dependency. A periodic boundary is one in which the grid is

considered to be folded.

The nature of next state functions also varies significantly; researchers have defined the

rule set according to the design requirements of the applications. Also there are some

standard rule sets, in all cases, the output of next state depends upon the output of the

previous state.

In general a random number generator can be treated as a block box to which we give

initial seed and it is assumed to give random number sequence as output for a desired

length.

Seed and initialization parameters Random number sequence

Random Number

Generator

Figure 1: Random Number Generator

The multidimensional grid of a cellular automata can be found in various forms like 1D

cellular automata, where the cells are placed adjacent to each other in linear fashion,

2D cellular automata where the lattice of cells are placed in a matrix structure that can

be viewed in rows and columns, similarly in 3D cellular automata the structure can be

viewed in the form of planes, rows and columns.

In each configuration each cell has certain neighbors, the number of neighbors

considered is known as the radius, thus a radius of 1 means adjacent left and right

neighbors in case of 1D cellular automata and four neighbors i.e. left, top, right, bottom

in case of 2D cellular structure.

When we talk about a cellular automaton greater than one dimension there is also

concept of Neumann and Moore neighbors in cellular automata, the Non Diagonally

adjacent neighbors are known as Neumann while the diagonally adjacent neighbors are

known as Moore neighbors.

2.2 DIEHARD Test and its Details

DIEHARD is Internationally Accepted for Randomness Testing and treated as de

facto standard for testing RNGs.

DIEHARD is suit of tests, it basically comprises of 18 rigorous statistical tests, each test

checks the randomness of a series of numbers on a specific parameter defined.

Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1) if the

input file contains truly independent random bits. Those p-values are obtained by

p=F(X), where F is the assumed distribution of the sample random variable X, which is

often normal.

2.2.1 DIEHARD Tests Applied

We applied the following tests of DIEHARD on all the proposed solutions.

Here we briefly discuss the internal workings of each test applied.

 BIRTHDAY SPACINGS TEST

Choose m birthdays in a year of n days. List the spacing’s between the

birthdays. If j is the number of values that occur more than once in that list, then

j is asymptotically Poisson distributed with mean m^3/(4n).

 THE OVERLAPPING 5-PERMUTATION TEST

This tests looks at a sequence of one million 32-bit random integers. Each set of

five consecutive integers can be in one of 120 states, for the 5! possible

orderings of five numbers. Thus the 5th, 6th, 7th, numbers each provide a state.

As many thousands of state transitions are observed, cumulative counts are

made of the number of occurrences of each state.

 BIRTHDAY SPACINGS TEST

 THE OVERLAPPING 5-PERMUTATION
TEST

 BINARY RANK TEST

 THE BITSTREAM TEST

 COUNT-THE-1's TEST

 PARKING LOT TEST

 THE MINIMUM DISTANCE TEST

 THE 3DSPHERES TEST

 OPSO(Overlapping-Pairs-Sparse-
Occupancy) TEST

 OQSO(Overlapping-Quadruples-Sparse-
Occupancy) TEST

 DNA TEST

 SQEEZE TEST

 OVERLAPPING SUMS TEST

 RUNS TEST

 CRAPS TEST

 BINARY RANK TEST

This is the BINARY RANK TEST for 31x31 matrices. The leftmost 31 bits of 31

random integers from the test sequence are used to form a 31x31 binary matrix

over the field {0,1}. The rank is determined. Ranks are found for 40,000 such

random matrices and a chi-square test is performed on counts for ranks 31,30,29

and <=28.

 THE BITSTREAM TEST

The file under test is viewed as a stream of bits. Call them b1,b2,... . Consider

an alphabet with two "letters", 0 and 1 and think of the stream of bits as a

succession of 20-letter words, overlapping. Thus the first word is b1b2...b20, the

second is b2b3...b21, and so on. The bit stream test counts the number of

missing 20-letter (20-bit) words in a string of 2^21 overlapping 20-letter words.

 OPSO(Overlapping-Pairs-Sparse-Occupancy) TEST

OPSO means Overlapping-Pairs-Sparse-Occupancy, The OPSO test considers

2-letter words from an alphabet of 1024 letters. Each letter is determined by a

specified ten bits from a 32-bit integer in the sequence to be tested. OPSO

generates 2^21 (overlapping) 2-letter words, The OPSO test takes 32 bits at a

time from the test file and uses a designated set of ten consecutive bits. It then

restarts the file for the next designated 10 bits, and so on.

 OQSO(Overlapping-Quadruples-Sparse-Occupancy) TEST

The test OQSO is similar, except that it considers 4-letter words from an alphabet

of 32 letters, each letter determined by a designated string of 5 consecutive bits

from the test file, elements of which are assumed 32-bit random integers.

 COUNT-THE-1's TEST

It considers the file under test as a stream of bytes (four per 32 bit integer). Each

byte can contain from 0 to 8 1's, with probabilities 1, 8,28,56,70,56,28,8,1 over

256. Now let the stream of bytes provide a string of overlapping 5-letter words,

each "letter" taking values A,B,C,D,E.

 PARKING LOT TEST

In a square of side 100, randomly "park" a car---a circle of radius 1. Then try to

park a 2nd, a 3rd, and so on, each time parking. That is, if an attempt to park a

car causes a crash with one already parked, try again at a new random location.

 THE MINIMUM DISTANCE TEST

It does this 100 times, choose n=8000 random points in a square of side 10000.

Find d, the minimum distance between the (n^2-n)/2 pairs of points. If the points

are truly independent uniform, then d^2, the square of the minimum distance

should be (very close to) exponentially distributed with mean .995.

 THE 3DSPHERES TEST

Chooses 4000 random points in a cube of edge 1000. At each point, center a

sphere large enough to reach the next closest point. Then the volume of the

smallest such sphere is (very close to) exponentially distributed with mean

120pi/3.

 SQEEZE TEST

Random integers are floated to get uniforms on [0,1). Starting with

k=2^31=2147483647, the test finds j, the number of iterations necessary to

reduce k to 1, using the reduction k=ceiling(k*U), with U provided by floating

integers from the file being tested.

 OVERLAPPING SUMS TEST

Integers are floated to get a sequence U(1),U(2),... of uniform [0,1) variables.

Then overlapping sums, S(1)=U(1)+...+U(100), S2=U(2)+...+U(101),... are

formed. The S's are virtually normal with a certain covariance matrix. A linear

transformation of the S's converts them to a sequence of independent standard

normals.

 RUNS TEST

This is the RUNS test. It counts runs up, and runs down, in a sequence of

uniform [0,1) variables, obtained by floating the 32-bit integers in the specified

file. Runs are counted for sequences of length 10,000. This is done ten times.

 CRAPS TEST

It plays 200,000 games of craps, finds the number of wins and the number of

throws necessary to end each game. The number of wins should be (very close

to) a normal with mean 200000p and variance 200000p(1-p), with p=244/495.

Throws necessary to complete the game can vary from 1 to infinity.

DIEHARD requires a binary file of 32 bit integers to be generated; following is the code

we used to generate the required binary file.

First the file is opened in binary append mode using the following statement

if ((outfile = fopen("Rnd2DM.rng", "ab+")) == NULL)

to write each character as 8 bits, where each bit in our case represents either 1 or 0 of a

random number sequence we used the technique of character wise bit shifting operator,

we declared 8 unsigned characters to hold each individual bit.

unsigned char mask8, mask7, mask6, mask5, mask4, mask3, mask2, mask1;

Each mask corresponds to bit 1 at a specific position,

e.g. mask8 = mask8<<7; // 1 0 0 0 0 0 0 0

Similarly we adjust each mask at the time of writing, then copy these values to a temp

character variable by using bitwise OR operator using temp = temp | mask8; at the end

this temp variable is written to the binary file using the following statement.

fwrite(&temp, sizeof(temp), 1, outfile);

the whole code is written in a iterative loop, so at the end we have generated a binary

file in the form as required by DIEHARD.

2.3 Simulation Environment

The whole code for the proposed solutions is written in C++ and compiled and tested on

both Microsoft Visual C++ and Borland Turbo C++ compilers, no compiler specific

routine or function is called to maintain cross compilers compatibility, the written code

can be easily ported to any OOP like C# or Java if any one wish to use those

programming environments in future.

Chapter 3 Literature Review/ Related work

3.1 Literature Review

Random number generators are used in number of applications like computer

simulations, built-in self test, and cryptography to name a few [1]. Most random number

generators are deterministic in nature as the numbers are generated using some

mathematical formulas or deterministic algorithms, known as Pseudo Random Number

Generators or PRNG as opposed to a True random Number Generator where the

source of a random number might be some natural source.

Standard Statistical tests are conducted to ensure a PRNG produces numbers that are

uniformly distributed, uncorrelated with extreme long period [2]. There are quite a

number of tests that can be applied to judge the quality of randomness, failing a single

test does not mean that the sequence is not random so normally a set of tests is applied

to check the quality of randomness, some times the tests to be applied might be

application specific as well.

There are quite a number of PRNGs. Some examples are linear feedback shift register

(LFSR), linear congruential generator (LCG), and cellular automata (CA) based PRNGs.

CA-based PRNGs were focus of researchers because its easy to implement in

hardware, typically FPGA based Implementations, also computer based simulations in

which implementation of cell structures and the corresponding CA rules in a

corresponding data structure with each iteration generating the next state can be done

easily.

The majority of research on CA-based PRNG has been focused on one-dimensional (1-

D) CA with nearest three-cell neighborhood known as elementary CA, different types of

cellular Automata and their applications are thoroughly discussed in a survey done on

cellular automata [3].

The latest research focuses on increasing complexity of CA cell configurations and

increasing CA dimensionality that can lead to better performance [4]. By increasing

complexity we mean what logical operations are performed on a single cell per iteration

and which neighbors are participating in finding the next sate value, to make the

situation further implausible the dimensions of the lattice structure is increased thus

making more options for the participating neighbors.

Certain modifications in basic CA are also suggested using extra control registers which

transforms the basic CA to Programmable CA (PCA) [5]. These control registers works

as decision makers in each iteration for number of participating neighbors, whether the

current value of cell itself participates or not and similarly any kind of transformation in

value post CA-logical operation is required or not. The control register values are

themselves updated after each iteration.

One of the first 2D based CA was proposed by [6] based on 8 x 8 lattice of cells, while

[7] worked on Asymmetric neighborhood and lattice structure PRNG for 2D CA.

For testing of Random Numbers the DIEHARD test is used by a number of researchers

as it is treated as industry standard for checking the randomness quality of random

numbers [8]. DIEHARD comprises of some 18 different statistical tests which are

supposed to be passed if the resultant values are in a specific range, DIEAHRD

requires a binary file of at least 10MB as an input.

The analysis of results produced by the DIEHARD is done by comparing p-values and

finding the safe ranges when we compare them among several algorithms as done by

[9]. Similarly others values can be calculated e.g. incomplete gamma count to check the

uniformity of probability distribution among the generated p-values [2].

Sheng-Uei Guan etal. [10], describes the concept of self programmable automata

(SPACA)and how to generate PRNG using this technique, authors used the concept on

linear form of cells where the rule selection values are updated internally along with two

external control registers.

The basic concept is to add rule selection neighborhood to the state transition

neighborhood of PCA, thus making it SPCA. Authors used rules 90/150/165/105 for

their rule selection neighborhood.

The paper discusses the concept for 1D CA structure and more emphasis is given on

making FPGA implementation more efficient and simpler, moreover no results

comparison is given in results section using same approach; however authors

considered different algorithms with different length blocks for analysis, also suggested

out put sampling to increase efficiency of algorithm.

3.2 Related Work

A Two Dimensional Cellular Automata with programmable scheme is used by Byung-

Heon Kang etal [11]. The authors applied rules 15, 31, 47 and 63 with two external

control registers and compared the results with Guan, authors concluded that their

scheme passes all DIEHARD tests with better quality as generated by Guan.

The two control registers are self control register and sign control register, self control

register’s value decide whether the current value of cell participates in finding next state

and sign control’s value is used to logically invert the calculated results for next state’s

value.

The proposed algorithm is run 100 times and a pass is considered if the p-values from

DIEHARD fall in the range 0.025 < p < 0.975. Authors also used a novel time spacing

technique for minimization of auto correlations among block of random numbers.

Figure 2: CA Rules Implemented for 2D-PCA [11]

Figure 3: 2D-PCA Structure [11]

The research paper discusses only Von-Neumann neighbors for 2D CA implementation;

strategy of how initial values are given to control registers is not discussed.

Sang-Ho Shin etal [12] worked on 3Dimmensional CA but with Moore Neighborhood

only i.e. considering the diagonal neighbors, the focus of paper was to reduce the

Hardware Implementation cost, the results were given in the form of Passing or Failing

a DIEHARD test, what actual p-values are produced are not discussed so the quality of

Randomness can not be discussed. No experimental setup or implementation

methodology details are discussed, however authors claim that they have executed

their scheme 100 times to generate the results.

Figure 4: Results for Different Logical Operations with CA Rules [12]

Sang-Ho Shin, Kee-Young Yoo [13] worked on finding out on the optimal combination of

Logical operations and CA rules for 3-Neighbors i.e. r+1 Von Neumann, the authors

suggest a number of CA rules LCA, NCAAX, and NCAOX (as per their naming

convention) for better results and also suggested that periodic boundary condition is

better than the NULL boundary conditions i.e. for extreme cells the structure wraps

around. The results discussed are just in the form of pass/ fail rate but the comparison

is given between Null boundary and periodic boundary conditions.

The research paper is very good if some one wants to explore the results of different

combinations of logical gates with different CA rules.

Figure 5:DIEHARD Results Compared using Safe Window Range [9]

Instead of comparing just Pass and Fail results as done by [12] and [13] a

better approach is adopted by [9].

Here the author has defined three regions, Failure, Doubtful and Safe values providing

a more better and quantitative analysis among the results being compared.

Chapter 4 Methodology

To complete this research work we followed the following sequence of events.

4.1 Literature Survey Phase

First of all a through Literature Survey is done to study current techniques applied in

generation of Random Numbers specifically with respect to Cellular Automata, types of

Random Numbers and their properties etc. this phase of work is already discussed in

previous chapters.

4.2 Idea Generation Phase

Then we explored the areas where we can work and finalized the methods for Random

Number Generation to be implemented. This idea generation phase lead to the

proposed solutions, the methods to be implemented are given below; the details about

each are discussed in chapter 5.

1. 2D Neumann Neighbors PCA

2. 2D Moore Neighbors PCA

3. 2D Neumann Moore jumping Neighbors PCA

4. 3D Neumann Neighbors PCA

5. 3D to 2D Jumping Neumann Neighbors PCA

6. 3D Moore + Neumann Neighbors PCA

4.3 Proposed Solution Implementation Phase

We used Computer Simulation to implement the required group of PCA for 3D CA and

its variations and generated binary files of Random Numbers; the important piece of

code is discussed in Appendix A.

The complete implementation is done and no complier specific function is used nor any

complier settings has been made for the code to work, this makes the code portable

with very little changes to any other object oriented programming language.

4.4 Testing Phase

In the next phase Testing is done on DIEHARD suit of Tests, DIEHARD is

Internationally Accepted suit of tests for Randomness Testing and treated as de

facto standard for testing RNGs, details of this phase are discussed in chapter 4 and

detailed results are shown in Appendix B. 100 Binary files in the specific format as

required by the DIEHARD are generated for each proposed solution and the DIEHARD

dumps are gathered for the analysis phase.

4.5 Analysis of Results Phase

The Analysis and Comparison of Results comes in the last phase and it concludes

which approach is better for Random number generation, this is discussed in chapter 6,

analysis phase also describes the criteria we have selected for checking the quality of

randomness of each proposed method.

4.6 Assumptions

We have made the following assumptions at the start of this research; these

assumptions are further verified by the results produced.

 In general if you increase the complexity of neighbors the quality of Randomness for

cellular automata will increase.

 By increasing dimensions the run time efficiency will not be increasing in exponential

order.

 Although various other tests are present for randomness testing but DIEHARD is

selected as it is considered as toughest to pass, plus DIEHARD suit contains a set

of tests.

 The random numbers generated follows the normal distribution for a large data set;

the large data set i.e. at least a 10MB file is also requirement of DIEHARD suit.

 The safe window size i.e. values that pass in certain range is taken from a journal

paper published [9], the conclusive remarks might change if different safe window

size is taken e.g. a broader window might pass those values that were considered to

be failed and vice versa.

Chapter 5 Proposed Solutions

The analysis of literature survey gives us the following points:

1. Most of the work is done on 2D CA based structures, researchers tried different

length/ sized structures and their symmetric and asymmetric variations.

2. Finding out which rules or logical gates work best, e.g. instead of using XOR, if

we use AND or a combination of AND, OR gates etc, which rules of CA gives

better results with which combination of gates.

3. Changing the rule selection mechanism, i.e. after each iteration a specific rule

has to be selected from a given set of rules, this kind of PCA is also known as

Self Programmable PCA or SPCA.

4. Different control registers added for different purposes e.g. introducing a Sign

Control register that decides whether to take logical inverse of the result or the

value should be simply saved, this type of operations increases the level of

unpredictability and hence increases the level of randomness.

5. Hardware implementations of different CA proposed by the researchers,

especially FPGA based implementations and their run time efficiencies.

6. We get only one paper on 3D PCA (only for Moore neighbors) and that also does

not discuss results in detail nor are any implementation details given.

So we decided to explore 2D PCA and its variations, 3D PCA and its different variations

like jumping between 3D PCA to 2D PCA with greater in-depth analysis of results.

5.1 Proposed Methods

We have proposed the following 3D PCA and variations of 2D PCA i.e. programmable

cellular automata.

1. 2D Neumann Neighbors PCA

2. 2D Moore + Neumann Neighbors PCA

3. 2D Neumann Moore jumping Neighbors PCA

4. 3D Neumann Neighbors PCA

5. 3D to 2D Jumping Neumann Neighbors PCA

6. 3D Moore + Neumann Neighbors PCA

All the above ideas are never tried before by any of the researcher except the first one

i.e. 2D Neumann Neighbors PCA, we re-implemented the 2D Neumann Neighbors PCA

case to use it as a base case for comparison of results. It is to be noted that this study

compares the effect of positional changes with respect to neighbors therefore we used

the same algorithm for all the methods.

5.2 Algorithm used

We applied the following steps for each and every method.

1. Initialize All the Cell Values

2. Initialize Self Control register

3. Initialize Sign Control register

4. Pick Each Cell, select the Rule to be applied, Apply the Rule and Update Cell

value

5. After Complete iteration Update the values of Registers

6. Extract 64bits Random Number (8 x 8 in case of 2D) and

Go for Next iteration i.e. Step 4 for 64 * N bits of Random

where N is the Number of iterations. For 3D it will be giving

8 x 64 i.e. 8 sets of 64 bit random numbers

For all the methods proposed we will apply the Non Null

Boundary conditions i.e. the structure wraps around for extreme cells to pick the

neighbors.

Figure 6: 2D Neumann Neighbors Illustration

e.g. if the red boxed cell is the current cell and we want to apply rule 15 on it i.e. current

cell will not participate and the neighbors to pick are left, top, right, bottom then the

result will be, xor(1,1,0,0) = 1.

Now we will discuss each method one by one.

5.2.1 2D Neumann Neighbors

It is a two dimensional structure of 8 x 8 matrix, where we pick only Neumann neighbors

i.e. immediate Non diagonal Neighbors of each cell.

In Fig. 6, we have the following participating neighbors,

White Cell: Current cell whose value is to be updated.

Gray Neighbors: Participating Neighbors (Non Diagonal Adjacent)

Left, Top, Right and Bottom.

The cell structure is shown in Fig. 7, there are two control registers

Figure 7: 2D Neumann Cell Structure

Table1: 2D Neumann CA Rules

Sign Control: Sign control value decides whether we have to do a logical negation of

result produced post XOR operation or should we store the value directly

to the current cell.

Self Control: Self control value decides whether the current cells value

participates in the XOR operation or only adjacent non diagonal

neighbors have to participate.

Table 1. Shows the rules used during each iteration for calculating the cells next value.

e.g. Applying Rule 15 means

Rule CL SI Left Top Right Bottom

15 0 0 1 1 1 1

31 0 1 1 1 1 1

47 1 0 1 1 1 1

63 1 1 1 1 1 1

Figure 8: 2DMoore + Neumann Neighbors Illustration

 (001111) (15)10 == (001111)2

The first two zeros correspond to values of CL and SI register while the four 1’s

shows which neighbors are participating.

5.2.2 2D Moore + Neumann Neighbors

It is a two dimensional structure of 8 x 8 matrix, where we pick both the Neumann

neighbors and Moore neighbors i.e. immediate Non diagonal Neighbors of each

cell and diagonal neighbors as well, this increases the participating neighbors

count and thus expected to give a better result in terms of randomness of

generated number.

In Fig. 8, We have the following participating neighbors,

+

Figure 9: 2DMoore + Neumann Neighbors Cell Structure

White Cell: Current cell whose value is to be up dated.

Gray Neighbors (left): Participating Moore Neighbors (Diagonally Adjacent);

Left-Top, Right-Bottom, Right-Top and Left-Bottom.

Gray Neighbors (right): Participating Neumann Neighbors, Left, Top, Right,

Bottom

The Cell structure is shown in Fig. 9

There are again two control registers which play the same role as in 2D

Neumann case

Rule CL SI Left Top Right Bottom Left Right Left Right

Table2: 2D Moore+ Neumann CA Rules

Figure 10: 2D Neumann Moore jumping Neighbors Illustration

T

a

b

l

e 2. Shows the rules used during each

iteration for calculating the cells next

value.

5.2.3 2D Neumann Moore jumping Neighbors

Its again a two dimensional structure of 8 x 8 matrix, this time we pick between

Neumann neighbors and Moore neighbors depending upon the newly introduced

control register i.e. some times we pick the Moore neighbors and some times we

pick the Neumann neighbors.

In Fig. 10, we have the following participating neighbors,

White Cell: Current cell whose value is to be up dated.

Top Top Bottom Bottom

255 0 0 1 1 1 1 1 1 1 1

511 0 1 1 1 1 1 1 1 1 1

767 1 0 1 1 1 1 1 1 1 1

1023 1 1 1 1 1 1 1 1 1 1

Figure 11: 2D Neumann Moore jumping Neighbors Cell Structure

Light Gray Neighbors: Participating Neighbors (Non Diagonal Adjacent) Left,

Top, Right and Bottom.

Black Neighbors: Participating Neighbors (Diagonally Adjacent)

Left-Top, Right-Bottom, Right-Top and Left-Bottom.

The Cell structure is shown in Fig. 11

This time we have three two control registers, the Sign and Self control registers

play the same role as in 2D Neumann case while the third control register is used

for deciding whether we opt for Diagonally Adjacent or Non Diagonally Adjacent

neighbors.

Table3: 2D Neumann Moore jumping CA Rules

Table 3. Shows the rules used during each iteration for calculating the cells next

value.

I
n

T
a
b
l
e

3
.
 The DI is the newly added control
register

5.2.4 3D Neumann Neighbors

This time we are going to use a Three

Dimensional Structure for generation of

Random numbers, it will be an array

Rule CL SI DI
Left
Top

Right
Top

Left
Bottom

Right
Bottom

Left Top Right Bottom

15 0 0 0 0 0 0 0 1 1 1 1

496 0 0 1 1 1 1 1 0 0 0 0

527 0 1 0 0 0 0 0 1 1 1 1

1008 0 1 1 1 1 1 1 0 0 0 0

1039 1 0 0 0 0 0 0 1 1 1 1

1520 1 0 1 1 1 1 1 0 0 0 0

1551 1 1 0 0 0 0 0 1 1 1 1

2032 1 1 1 1 1 1 1 0 0 0 0

Figure 12: 3D Lattice of cells used for all the 3D PCA Algorithms

Figure 13: 3D Neumann Neighbors Illustration

of 8 x 8 x 8 as shown in Fig. 12 consisting of 8 planes in which each plane has

got 8 rows and 8 columns.

We will pick all the

Neumann neighbors i.e. the six non-diagonally adjacent neighbors; four on the

XY plane while two of them on Z axis. We will be using two control registers, one

for Self Control and the other for Sign Control. Fig 13. Shows the diagram of

participating neighbors while Fig. 14 shows the cell structure for the 3D Neumann

case.

In Fig. 13, we have the following participating neighbors,

Figure 14: 3D Neumann Neighbors Cell Structure

White Cell: Current cell whose value is to be updated.

Gray Neighbors: Participating Neighbors (Non Diagonal Adjacent)

Left, Top, Right, Bottom, Facing Front on Z-axis, Facing

Back on Z-axis.

The Cell structure is shown in Fig. 14

Table 4. Shows the rules used during each iteration for calculating the cells next

value.

Rule CL SI Back Front Left Top Right Bottom

63 0 0 1 1 1 1 1 1

127 0 1 1 1 1 1 1 1

191 1 0 1 1 1 1 1 1

Table4: 3D Neumann CA Rules

5.2.5 3D to 2D Jumping Neumann Neighbors

3D to 2D Jumping Neumann Neighbors uses a 8 x 8 x 8 lattice of cells for

Random numbers generation, this 3D cube structure picks all the 6 adjacent

Neumann Neighbors just like the proposed solution number 4 does but with a

subtle variation in which it jumps to the 2D Neumann structure i.e. picking only

the adjacent non diagonal neighbors from XY plane only, this jumping is

dependent upon the value a third control register.

Thus it could be considered as a mixture of solution two already proposed

solutions, some times it behave like 2D Neumann CA and some times behave

like a 3D Neumann CA, this kind of experimental jumping is done to check the

quality of random numbers generated versus the efficiency of algorithm as

approximately half of the times it is expected to be picking 2D Neumann

neighbors (more efficient) and half of the time generating a random number while

considering the z-plane neighbors (more randomness).

255 1 1 1 1 1 1 1 1

Figure 15: 3D-2D jumping Neumann Neighbors Illustration

Participating Neighbors are as follows,

White Cell: Current cell whose value is to be updated.

Light Gray Neighbors: Participating Neighbors (Non Diagonal Adjacent),

Left, Top, Right and Bottom.

Black Neighbors: Participating Neighbors (Non Diagonal Adjacent),

Facing Front on Z-axis, Facing Back on Z-axis + Light

Gray Neighbors.

Light Gray Neighbors are picked in case the current iteration is calculating for 2D

Neumann while Black Neighbors along with Light Gray Neighbors are used in

case 3D Neumann is selected for the current iteration; the cell structure is shown

in Fig. 16.

Figure 16: 3D to 2D Jumping Neumann Neighbors Cell Structure

Table5: 3D to 2D jumping Neumann CA Rules

Table 5. Shows the rules used in each iteration.

Rule CL SI DI Back Front Left Top Right Bottom

15 0 0 0 0 0 1 1 1 1

127 0 0 1 1 1 1 1 1 1

143 0 1 0 0 0 1 1 1 1

255 0 1 1 1 1 1 1 1 1

271 1 0 0 0 0 1 1 1 1

383 1 0 1 1 1 1 1 1 1

399 1 1 0 0 0 1 1 1 1

511 1 1 1 1 1 1 1 1 1

Figure 17: 3D Moore + Neumann Neighbors Illustration

+

The third control register DI is used for jumping between 3D to 2D Neumann, the

SI and DI plays the same role as in simple 3D Neumann solution.

5.2.6 3D Moore + Neumann Neighbors

In this last proposed scheme we opted to select the all possible neighbors of a

3D cell, i.e. all the Diagonally Adjacent Moore neighbors along with all the Non

Diagonally Adjacent Neumann neighbors, In Fig 17. We show the graphical

illustration for such a configuration.

Participating Neighbors are

White Cell: Current cell whose value is to be updated.

Gray Neighbors (left): Participating Neighbors (Diagonally Adjacent)

Front Left-Top and Back Right-Bottom, Front Right-

Top and Back Left-Bottom, Back Left-Top and Front

Right-Bottom, Back Right-Top and Front Left-Bottom.

Gray Neighbors (right): Non Diagonally adjacent Neumann

Figure 18: 3D Moore + Neumann Neighbor Cell Structure

There are just two control registers used in this scheme the SI and CI i.e. self

control and complement control registers with the same roles as they have

played in the schemes discussed before.

The Fig. 18 shows the cell structure for 3D Moore + Neumann.

Table6: 3D Moore + Neumann CA Rules

Table 6. shows the rules used in each iteration

.

Rule CL SI
Left-
Top

Front

Left-
Bottom
Front

Right-
Top

Front

Right-
Bottom
Front

Left-
Top
Back

Left-
Bottom
Back

Right-
Top
Back

Right-
Bottom
Back

16383 0 0 1 1 1 1 1 1 1 1

32767 0 1 1 1 1 1 1 1 1 1

49151 1 0 1 1 1 1 1 1 1 1

65535 1 1 1 1 1 1 1 1 1 1

Rule CL SI Back

Front

Left

Top

Right

Bottom

16383 0 0 1 1 1 1 1 1

32767 0 1 1 1 1 1 1 1

49151 1 0 1 1 1 1 1 1

65535 1 1 1 1 1 1 1 1

Chapter 6 Testing of Proposed Solutions

The Testing is done on DIEHARD suit of Tests; DIEHARD is Internationally Accepted

for Randomness Testing and treated as de facto standard for testing RNGs.

As said DIEHARD is suit of tests, it basically comprises of 18 rigorous statistical tests,

each test checks the randomness of a series of numbers on a specific parameter

defined.

6.1 DIEHARD Tests Applied

We applied the following tests of DIEHARD on all the proposed solutions.

The internal workings of these tests are available with the DIEHARD documentation and

we have briefly discussed them in chapter 2 as well, here we use all the tests as Black-

Box testing approach, we will be feeding the random numbers to these tests and then

analyze the results obtained.

DIEHARD requires a binary file of 32 bit integers of at least 10MB size i.e. 80 million bits

and gives you results in a text based output file.

Most of the tests in DIEHARD return a p-value, which is uniform on [0,1). This means

that to qualify for attest the p-value should fall between 0 and 1 otherwise the test is

supposed to be failed.

 BIRTHDAY SPACINGS TEST

 THE OVERLAPPING 5-PERMUTATION

TEST

 BINARY RANK TEST

 THE BITSTREAM TEST

 OPSO(Overlapping-Pairs-Sparse-

Occupancy)

 OQSO(Overlapping-Quadruples-Sparse-

Occupancy)

 DNA

 COUNT-THE-1's TEST

 PARKING LOT TEST

 THE MINIMUM DISTANCE TEST

 THE 3DSPHERES TEST

 SQEEZE test

 OVERLAPPING SUMS test

 RUNS test

 CRAPS TEST

Figure 19: Testing Phases block diagram

 These p-values are obtained by p=F(X), where F is the assumed distribution of the

sample random variable X---often normal. But that assumed F is just an asymptotic

approximation, for which the fit will be worst in the tails [8].

6.2 Testing Process

As Fig. 19 shows we generated 100 binary files for each proposed method we

discussed and then applied all the DIEHARD tests on these binary files, in the next

phase we extracted results from the DIEHARD produced text files and gathered all the

values for analysis.

Chapter 7 Analysis of Results

Figure 20: Snap shot of results

First of all we gathered 100 set of values for each method in Excel Sheet,

Then

we

calculated µ±2σ and µ±3σ for each method,

and also calculated number of values falling

in Safe Range for each Test (values >=0.25 AND values <=0.75).

Figure 21: Courtesy: en.wikipedia.org/wiki/Standard_deviation

Figure 22: Courtesy: IJCSNS International Journal of Computer Science and

Network Security, VOL.10 No.4, April 2010

7.1 Criteria 1

99.6% values should fall in µ±3σ.

95.4% values should fall in µ±2σ.

This criteria is applied as the p-values generated by the DIEHARD approximates to the

Normal distribution[2], and it is well known fact that for a normal distribution 99.6%

values should fall in µ±3σ and 95.4% values fall in µ±2σ.

7.2 Criteria 2

Check number of values falling in Safe Range for each Test (values >=0.25 AND

values <=0.75), i.e. out of 100 values per DIEHARD test it shows the count of

how many values fall in this safe range.

Applying this

criterion takes the safest values among the p-values produced by DIEHARD test.

Figure 23: Results and graph showing values in the range µ±3σ

The following figure discusses the analysis when we applied Criteria 1 on the

results gathered.

An entry of “PASS” in Fig. 23 show that the values for each test falls in the range of

µ±3σ, it is clear from the figure that 3D-Neuman case fails in just one case, this analysis

does not give us much information as all the methods perform equivalently so we made

the selection window further tight by checking it for µ±2σ.

Figure 24: Results and graph showing values in the range µ±2σ

We obtained the following out come when we applied µ±2σ on all the tests for each

method.

This time we get two favorable methods, 2D Neumann – Moore jumping has got zero

failures while 3D Moore + Neumann has just one failure, all the other methods are more

failures with 3D Neumann has the maximum failures.

 Then we applied criteria 2 to check among all the 100 values per method for each test

falling in the safe range i.e. (values >=0.25 AND values <=0.75), this type of analysis

considers all the p-values instead of using average and standard deviation of all the

values.

Figure 25: Values falling in the Safe Range (values >=0.25 AND values <=0.75)

Fig 25. Discusses the results obtained using this approach.

The right most columns shows which method qualifies maximum number of times in

each test e.g. 2D-3D jumping Neumann qualifies with the 68 tests, so the right most

column represents this information, similarly we calculated for all the methods and all

the tests. At the bottom the summary is shown, 3D Von-Neumann appears 10 times in

the rightmost column while 3D Moore + Neumann appears 9 times, so these two

methods are the candidates from the above figure.

7.3 Comparative Analysis of Results

So we have the following results as best performing candidates.

Criteria 1: (Tests passing in µ±2σ range)

 2D Neumann – Moore jumping

 3D Moore + Neumann

Criteria 2: (Values falling in the Safe Range, values >=0.25 AND values <=0.75)

 3D Neumann

 3D Moore + Neumann

2D Moore-Neumann jumping does not perform well in Criteria 2 as it occurs only at 4

places, similarly 3D Neumann which is a candidate in Criteria 2 does not perform well in

Criteria 1 by failing at 5 places, so we can safely conclude that 3D Moore + Neumann is

the best performing method among all the methods we discussed.

7.4 Run Time Analysis of the Proposed Methods

The criteria 1 and criteria 2 discussed in sections 5.1 and 5.2 solely discuss the issue

with respect to the quality of random numbers generated as we compared the

DIEHARD produced values and applied certain statistical operations on the results, the

discussion remains incomplete if we do not compare the run time efficiency of methods

among each other.

The basic point is to measure the cost we have to pay in increasing the quality of

randomness of a sequence i.e. how much we have to pay in terms of number of

operations to get a better random numbers sequence.

To make the things simpler we can divide the methods in to three categories,

1. Working on pure 2D structures

 2D Neumann Neighbors

 2D Moore + Neumann Neighbors

 2D Neumann Moore jumping Neighbors

2. Working on pure 3D structures

 3D Neumann Neighbors

 3D Moore + Neumann Neighbors

3. Working on 3D to 2D transition structures

 3D to 2D Jumping Neumann Neighbors

7.4.1 Main Memory Requirements

Memory Requirement for pure 2D structures is common for all as we use the same data

structure for all 2D cases; the difference is just in picking neighbors.

One integer takes 4 bytes, so a matrix of 8 x 8 i.e. 64 integers, would take 64 x 4 = 256

bytes of main memory.

For pure 3D cases and transition cases we used the grid of 8 x 8 x 8 i.e. 512 integers,

would take 2048 bytes of main memory.

The memory requirements will remain constant during complete execution as after each

iteration the generated numbers are flushed to the binary file.

7.4.2 Number of operations per iteration

For 2D cases we have to go through each cell thus requiring a two level nested loops,

outer for rows and inner for columns, plus we need to pick 4 neighbors in case of

Neumann, and 8 neighbors in case of combination of Neumann and Moore, similarly

Neumann Moore jumping also requires just 4 neighbors to be picked (either Neumann’s

or Moore’s), the cost of XOR operation and writing to binary file remains same for all the

cases, thus for a 2D Neumann PCA with Self Cell participating we can calculate the

running time as follows,

The temporary variables used to store intermediate result represent the intermediate

cost and that will be constant for all the cases with no significant increase in the run time

of algorithm.

Exact Running Time/ Time Complexity = c1m + c2n + 5c3mn + 5c4mn + c5mn

Order of Growth= O(mn)

As we have worked on 8 x 8 grid we have, m = n therefore Order of Growth is O(n2),

this will be the case for all the 2D cases as the maximum order of growth will not go

beyond O(n2).

For 3D structures we have to apply 3 nested loops, first for the plane, second for the

rows and third for the columns to iterate through each cell, the Neumann neighbors of

each 3D cell be 6 while for Neumann + Moore the neighbors are 10 in number.

Statement Cost Time

for (int rows = 1; rows <=8; rows++) C1 m

for (int cols = 1; cols<=8; cols++) C2 n

Pick all the five values, the white cell + all Gray
neighbors

C3 5mn

Find XOR (five values) C4 5mn

Update the White Cell C5 mn

Thus for 3D Neumann we can calculate the cost as follows

Exact Running Time = c0p + c1m + c2n + 7c3pmn + 7c4pmn + c5pmn

Order of Growth= O(pmn)

As we have worked on 8 x 8 x 8 grid we have, p = m = n therefore Order of Growth is

O(n3), similarly all the 3D cases will have the same order of growth as maximum order

of growth will not jump beyond O(n3).

In case of 3D to 2D Jumping Neumann Neighbors, it is expected that 50% of the time it

behaves like 3D and 50% of time behaves like 2D, thus the running cost will be

calculated by 0.5 x Cost 2D Neumann + 0.5 x Cost 3D Neumann.

Statement Cost Time

for (int planes = 1; planes <=8; planes++) C0 p

for (int rows = 1; rows <=8; rows++) C1 m

for (int cols = 1; cols<=8; cols++) C2 n

Pick all the seven values, the white cell + all Gray
neighbors

C3 7pmn

Find XOR (seven values) C4 7pmn

Update the White Cell C5 pmn

Table7: Run time cost and order of growth

Table 7 summarizes the run time calculations and order of growth for all the proposed

methods.

Method
Run time = No. of Operations per

iteration x Cost

Order

of

Growth

2D Neumann

c1m + c2n + 5c3mn + 5c4mn + c5mn

O(N2)

2D Neumann

Moore
jumping

c1m + c2n + 5c3mn + 5c4mn + c5mn

O(N2)

2D Moore +
Neumann

c1m + c2n + 9c3mn + 9c4mn + c5mn

O(N2)

3D Neumann

c0p + c1m + c2n + 7c3pmn + 7c4pmn

+ c5pmn
O(N3)

3D
Moore+
Neuman

c0p + c1m + c2n + 15c3pmn +

15c4pmn + c5pmn

O(N3)

3D to 2D

jumping
Neuman

n

0.5*(c0p + c1m + c2n + 7c3pmn +

7c4pmn + c5pmn) + 0.5*(c1m + c2n +

5c3mn + 5c4mn + c5mn)

O(N3)

half of

iterations

O(N2)

half of

iterations

Chapter 8 Conclusion and Future Work

8.1 Conclusion

After implementing all the six methods and analysis of DIEHARD results we applied the

two criteria discussed in the previous section, the first criteria is about checking number

of values falling in the range of standard deviation from twice of mean, while the second

criteria is to find all the values passing in the safe window i.e. in between the range of

0.25 and 0.75.

Applying the discussed criteria, the most successful candidate with maximum number of

values falling in the safe range and just one less than the maximum in the µ±2σ range is

3D Moore + Neumann, the computational cost of this method is just O(N3) with 2048MB

memory requirements.

As concluding remarks we suggest 3D Moore + Neumann method for better quality

random numbers generation using programmable cellular automata approach, it

combines the properties of both Neumann and Moore neighbors at the same time in a

three dimensional space.

This also suggests that in general the more number of non-correlated neighbors you

pick the more randomness you get but at the cost of increased processing time.

Although we have chosen the best technique in terms of quality of randomness but the

requirements of application at hand could be a deciding factor as some applications

might require lesser randomness quality but should be efficient, if this is the case then

the detail results provided in the appendix and analysis chapter can be consulted to pick

the better suited PRNG.

8.2 Future Work

The work done in this research study can be further extended using the following

potential research paths.

1. Implementation of other structural organizations that are not explored, various

other combinations of Moore and Neumann and their joint schemes can be

explored for better results.

2. Strategies proposed in this work can be tested for a better designed algorithm

working with different logical operations other than XOR.

3. Implementing the same concepts for r + 2 adjacent neighbors, the whole

literature survey suggests that all of the researchers went for r + 1 neighbors i.e.

immediately adjacent neighbors of the current cell, no work is found on r + 2 or r

+ 3 neighbors, what effect would be on the results if we consider a larger set of

neighbors.

4. Testing the performance of presented solutions on Hardware implementations,

specifically the run time efficiencies and complexities involved if the solution is

implemented in FPGA.

The points discussed above shows that there is a lot of potential in the field of Random

Numbers Generation using Cellular Automata, one can easily opt any path and may find

better results in terms of quality of random numbers and in terms of efficiency of a

generator.

References

1. P. Hellekalek, “Good Random Number Generators are (not so) Easy to Find”,
Mathematics and Computing Simulation, 46(5-6), pp 485-505 (1998).

2. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, NIST (national Institute of Standards and Technology),
Special Publication 800-22 Revision 1a.

3. Niloy Ganguly et al.A Survey on Cellular Automata, Center for High Performance
Computing, Dresden University of Technology, Dresden, Germany.

4. S. Nandi and P. P. Chaudhuri, “Analysis of periodic and intermediate boundary 90/150
cellular automata,” IEEE Trans. Comput., vol. 45, Jan. 1999.

5. Su Guan “An evolutionary approach to the design of controllable cellular automata
structure for random number generation”. IEEE Trans. Evolutionary Computation, vol. 7,
no. 1, pp. 23–36, Feb. 2003

6. Tomassini, M., Sipper, M., Perrenoud, M., “ On the generation of high quality random
numbers by two-dimensional cellular automata.” IEEE Transactions on Computers 49,
1146–1151 (2000)

7. Guan, S.-U., Zhang, S., Quieta, M.T, “2-D Variation With Asymmetric Neighborship
for Pseudorandom Number Generation.” IEEE Transaction on Computers 23, 378–388
(2004).

8. The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of
Randomness, produced at Florida State University under a grant from The National
Science Foundation (1985).

9. Dr.Mohammed M. Alani, “Testing Randomness in Ciphertext of Block-Ciphers Using
DieHard Tests “, IJCSNS International Journal of Computer Science and Network
Security, VOL.10 No.4, April 2010.

10. Sheng-Uei Guan and Syn Kiat Tan, “Pseudorandom Number Generation With Self-

Programmable Cellular Automata”, IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

11. Byung-Heon Kang, Dong-Ho Lee, and Chun-Pyo Hon, “High-Performance

Pseudorandom Number Generator Using Two-Dimensional Cellular Automata”, 4th IEEE

International Symposium on Electronic Design, Test & Applications

12. Sang-Ho Shin, Geum-Dal Park2, and Kee-Young Yoo, “A Virtual Three-Dimension

Cellular Automata Pseudorandom Number Generator Based on the Moore

Neighborhood Method”, D.-S. Huang et al. (Eds.): ICIC 2008, LNAI 5227, pp. 174–181,

2008. Springer-Verlag Berlin Heidelberg 2008

13. Sang-Ho Shin, Kee-Young Yoo, “Analysis of 2-State, 3-Neighborhood Cellular

Automata Rules for Cryptographic Pseudorandom Number Generation”, 2009

International Conference on Computational Science and Engineering, 978-0-7695-3823-

5/09, 2009 IEEE DOI 0.1109/CSE.2009.299

Appendix A

Important piece of code explained here (for 3D Moore + Neumann Method)

Data structure to hold the random numbers and register values for the SI and DI control

registers

int random_array [8][8][8];

int final_randNo [8][8][8];

int SI[64];

int CI[64];

The master loop calling doing the initialization phase and calling function which

generates the random number sequences.

for (iteration =1; iteration<=cycles; iteration++)

 {

 initialize_array();

 initialize_SI();

 initialize_CI();

 generate_random(); //This call gives 64bits of Random

 }

The generate_random() function,

void generate_random(void)

{

int SI_val, CI_val;

 int control_index=0;

 int plane, row, col;

 for (plane=0; plane<=7; plane++)

 {

 for (row=0; row<=7; row++)

 {

 for (col=0; col<=7; col++)

 {

 SI_val = SI[control_index];

 CI_val = CI[control_index];

 control_index++;

 if (control_index == 64) control_index =0;

 if (SI_val == 0 && CI_val == 0)

 final_randNo[plane][row][col]= applyRule1023(plane,row, col);

 if (SI_val == 1 && CI_val == 0)

 final_randNo[plane][row][col]= applyRule2047(plane,row, col);

 if (SI_val == 0 && CI_val == 1)

 final_randNo[plane][row][col]= applyRule3071(plane,row, col);

 if (SI_val == 1 && CI_val == 1)

 final_randNo[plane][row][col]= applyRule4095(plane,row, col);

 } } }

The Cellular Automata Rules Applied (as an example coding for rule 1023 is shown)

int applyRule1023(int plane, int row, int col)

{

 //Pick 10NB XOR them and update cell val, 6 Normal + 4 Diagonal

 int n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, val, val1, val2, val3, val4, val5;

 int temprow, tempcol, tempplane;

 int tempval1, tempval2, tempval3, tempval4, tempval5;

 int val6, val7, val8, val9, val10;

 if (col==0)

 n1 = final_randNo[plane][row][7];

 else

 n1 = final_randNo[plane][row][col-1];

 if (col==7)

 n2 = final_randNo[plane][row][0];

 else

 n2 = final_randNo[plane][row][col+1];

 if (row==0)

 n3 = final_randNo[plane][7][col];

 else

 n3 = final_randNo[plane][row-1][col];

 if (row==7)

 n4 = final_randNo[plane][0][col];

 else

 n4 = final_randNo[plane][row+1][col];

 if (plane==0)

 n5 = final_randNo[7][row][col];

 else

 n5 = final_randNo[plane-1][row][col];

 if (plane==7)

 n6 = final_randNo[0][row][col];

 else

 n6 = final_randNo[plane+1][row][col];

// Calculating Indexes for Diagonal Neighbors

 //Left Top Diagonal

 temprow = row-1;

 tempcol = col-1;

 tempplane = plane-1;

 if (temprow<0) temprow=7;

 if (tempcol<0) tempcol=7;

 if (tempplane<0) tempplane = 7;

 n7 = final_randNo[tempplane][temprow][tempcol];

 //Left Bottom Diagonal

 temprow = row+1;

 tempcol = col-1;

 tempplane = plane+1;

 if (temprow>7) temprow=0;

 if (tempcol<0) tempcol=7;

 if (tempplane>7) tempplane = 0;

 n8 = final_randNo[tempplane][temprow][tempcol];

 //Right Top Diagonal

 temprow = row-1;

 tempcol = col+1;

 tempplane= plane-1;

 if (temprow<0) temprow=7;

 if (tempcol>7) tempcol=0;

 if (tempplane<0) tempplane = 7;

 n9 = final_randNo[tempplane][temprow][tempcol];

 //Right Bottom Diagonal

 temprow = row+1;

 tempcol = col+1;

 tempplane = plane+1;

 if (temprow>7) temprow=0;

 if (tempcol>7) tempcol=0;

 if (tempplane>7) tempplane =0;

 n10 = final_randNo[tempplane][temprow][tempcol];

 val1 = calc_xor(n1, n2);

 val2 = calc_xor(n3, n4);

 val3 = calc_xor(n5, n6);

 val4 = calc_xor(n7, n8);

 val5 = calc_xor(n9, n10);

 tempval1 = calc_xor(val1, val2);

 tempval2 = calc_xor(val3, val4);

 tempval3 = calc_xor(val5, val6);

 tempval4 = calc_xor(val7, val8);

 tempval5 = calc_xor(val9, val10);

 val = calc_xor(tempval1, tempval2);

 val = calc_xor(val, tempval3);

 val = calc_xor(val, tempval4);

 val = calc_xor(val, tempval5);

 return val;

}

Appendix B

2D Neumann Neighbors Results for µ±3σ
DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.37901336 1.4573814 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.468926744 1.577111184 Pass

BINARY RANK TEST for 31x31 matrices 1 1 Pass

BINARY RANK TEST for 32x32 matrices 1 1 Pass

BINARY RANK TEST for 6x8 matrices -0.468123509 1.387819949 Pass

THE BITSTREAM TEST 0.64739095 0.96889153 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.314224618 0.747193078 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.356984112 0.709225745 Pass

DNA 0.357390793 0.603823885 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.277511751 1.565505631 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.019845513 1.435136513 Pass

COUNT-THE-1's TEST for specific bytes 0.386797919 0.716937619 Pass

PARKING LOT TEST -0.229618712 1.165533792 Pass

THE MINIMUM DISTANCE TEST -0.228734204 1.576438724 Pass

THE 3DSPHERES TEST -0.495386736 1.319387096 Pass

SQEEZE test 0.735636176 1.159628904 Pass

OVERLAPPING SUMS test -0.361506123 1.304533283 Pass

runs down -0.165312854 1.232009374 Pass

runs up -0.392507335 1.248203295 Pass

Craps Wins 0.167254054 1.207466546 Pass

Craps Throws/Game -0.280681021 1.254041701 Pass

2D Neumann Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.072947567 1.151315607 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.127920423 1.236104863 Pass

BINARY RANK TEST for 31x31 matrices 1 1 Pass

BINARY RANK TEST for 32x32 matrices 1 1 Pass

BINARY RANK TEST for 6x8 matrices -0.158799599 1.078496039 Pass

THE BITSTREAM TEST 0.70097438 0.9153081 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.386386028 0.675031668 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.415691051 0.650518806 Pass

DNA 0.398462975 0.562751703 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) 0.029657813 1.258336067 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) 0.222651491 1.192639509 Fail

COUNT-THE-1's TEST for specific bytes 0.441821202 0.661914335 Pass

PARKING LOT TEST 0.002906705 0.933008375 Pass

THE MINIMUM DISTANCE TEST 0.07212795 1.27557657 Pass

THE 3DSPHERES TEST -0.192924431 1.016924791 Pass

SQEEZE test 0.806301631 1.088963449 Fail

OVERLAPPING SUMS test -0.083832889 1.026860049 Pass

runs down 0.067574184 0.999122336 Pass

runs up -0.119055563 0.974751523 Pass

Craps Wins 0.340622803 1.034097797 Pass

Craps Throws/Game -0.024893901 0.998254581 Pass

2D Moore Neighbors Results for µ±3σ

DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.405930619 1.281688619 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.450601672 1.496250472 Pass

BINARY RANK TEST for 31x31 matrices -0.03108691 1.26347067 Pass

BINARY RANK TEST for 32x32 matrices -0.04078692 1.24184764 Pass

BINARY RANK TEST for 6x8 matrices -0.314643493 1.242396373 Pass

THE BITSTREAM TEST 0.308041156 0.707091764 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) -0.064900167 1.284560629 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) -0.132204355 1.298127153 Pass

DNA -0.104396892 1.290750123 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.442939472 1.516708272 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) 0.135512226 1.278446094 Pass

COUNT-THE-1's TEST for specific bytes 0.372058966 0.662507546 Pass

PARKING LOT TEST -0.347835562 1.279498442 Pass

THE MINIMUM DISTANCE TEST -0.41950569 1.35722649 Pass

THE 3DSPHERES TEST -0.240050889 1.099710969 Pass

SQEEZE test -0.369980803 0.944059443 Pass

OVERLAPPING SUMS test -0.173670267 1.381949307 Pass

runs down -0.321742978 1.240430418 Pass

runs up -0.341292964 1.450865524 Pass

Craps Wins -0.408912737 1.698362897 Pass

Craps Throws/Game -0.231027673 1.137971113 Pass

2D Moore Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.124660746 1.000418746 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.126126315 1.171775115 Pass

BINARY RANK TEST for 31x31 matrices 0.184672687 1.047711073 Pass

BINARY RANK TEST for 32x32 matrices 0.172985507 1.028075213 Pass

BINARY RANK TEST for 6x8 matrices -0.055136849 0.982889729 Pass

THE BITSTREAM TEST 0.374549591 0.640583329 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.160009965 1.059650496 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.106184229 1.059738568 Pass

DNA 0.12812761 1.05822562 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.116331515 1.190100315 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) 0.326001204 1.087957116 Pass

COUNT-THE-1's TEST for specific bytes 0.420467063 0.614099449 Pass

PARKING LOT TEST -0.076613228 1.008276108 Pass

THE MINIMUM DISTANCE TEST -0.12338366 1.06110446 Pass

THE 3DSPHERES TEST -0.016757246 0.876417326 Pass

SQEEZE test -0.150974095 0.725052735 Pass

OVERLAPPING SUMS test 0.085599662 1.122679378 Fail

runs down -0.061380745 0.980068185 Pass

runs up -0.042599883 1.152172443 Pass

Craps Wins -0.057700131 1.347150291 Pass

Craps Throws/Game -0.002861209 0.909804649 Fail

2D Neumann + Moore jumping Neighbors Results for µ±3σ

DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.492415371 1.458226971 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.477770625 1.471587345 Pass

BINARY RANK TEST for 31x31 matrices 0.002145266 1.208466334 Pass

BINARY RANK TEST for 32x32 matrices -0.092559753 1.117303353 Pass

BINARY RANK TEST for 6x8 matrices -0.439251463 1.294689783 Pass

THE BITSTREAM TEST 0.385449873 0.681850207 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.283655443 1.150127121 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) -0.073994631 1.221349162 Pass

DNA -0.056520442 1.22619266 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) 0.096587341 1.129198019 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.158886658 1.336438418 Pass

COUNT-THE-1's TEST for specific bytes 0.344986305 0.687405765 Pass

PARKING LOT TEST -0.292434096 1.363166336 Pass

THE MINIMUM DISTANCE TEST -0.253056069 1.553231349 Pass

THE 3DSPHERES TEST -0.312896071 1.367575591 Pass

SQEEZE test -0.007536914 1.381652994 Pass

OVERLAPPING SUMS test -0.205477795 1.374255955 Pass

runs down -0.332370843 1.201641243 Pass

runs up -0.381712114 1.309248594 Pass

Craps Wins -0.356770545 1.352534625 Pass

Craps Throws/Game -0.125391412 1.445069812 Pass

2D Neumann + Moore jumping Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.167308314 1.133119914 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.15287763 1.14669435 Pass

BINARY RANK TEST for 31x31 matrices 0.203198777 1.007412823 Pass

BINARY RANK TEST for 32x32 matrices 0.109084098 0.915659502 Pass

BINARY RANK TEST for 6x8 matrices -0.150261255 1.005699575 Pass

THE BITSTREAM TEST 0.434849929 0.632450151 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.428067389 1.005715175 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.141896001 1.00545853 Pass

DNA 0.157265075 1.012407143 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) 0.26868912 0.95709624 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) 0.090334188 1.087217572 Pass

COUNT-THE-1's TEST for specific bytes 0.402056215 0.630335855 Pass

PARKING LOT TEST -0.016500691 1.087232931 Pass

THE MINIMUM DISTANCE TEST 0.047991834 1.252183446 Pass

THE 3DSPHERES TEST -0.032817461 1.087496981 Pass

SQEEZE test 0.223994737 1.150121343 Pass

OVERLAPPING SUMS test 0.057811163 1.110966997 Pass

runs down -0.076702162 0.945972562 Pass

runs up -0.099885329 1.027421809 Pass

Craps Wins -0.07188635 1.06765043 Pass

Craps Throws/Game 0.136352125 1.183326275 Pass

Jumping 2D-3D Neumann Neighbors Results for µ±3σ

DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.284166685 1.269533085 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.236278358 1.635656958 Pass

BINARY RANK TEST for 31x31 matrices -0.13134028 1.1971842 Pass

BINARY RANK TEST for 32x32 matrices -0.028839558 1.124761558 Pass

BINARY RANK TEST for 6x8 matrices -0.185201521 1.279951361 Pass

THE BITSTREAM TEST 0.310501995 0.612340325 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.353045146 0.746977115 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.398038539 0.645760318 Pass

DNA 0.372102329 0.68452451 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.552849191 1.344949431 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.445457402 1.250162282 Pass

COUNT-THE-1's TEST for specific bytes 0.365247026 0.726112433 Pass

PARKING LOT TEST -0.327767566 1.405126046 Pass

THE MINIMUM DISTANCE TEST -0.376181538 1.404031858 Pass

THE 3DSPHERES TEST -0.452852651 1.460075291 Pass

SQEEZE test -0.162542352 1.340220752 Pass

OVERLAPPING SUMS test -0.300312996 1.192523236 Pass

runs down -0.335455436 1.388049276 Pass

runs up -0.437017668 1.414065588 Pass

Craps Wins -0.105606359 1.498981639 Pass

Craps Throws/Game 0.020667064 1.304900456 Pass

Jumping 2D-3D Neumann Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.025216724 1.010583124 Pass

THE OVERLAPPING 5-PERMUTATION TEST 0.075710861 1.323667739 Fail

BINARY RANK TEST for 31x31 matrices 0.090080467 0.975763453 Pass

BINARY RANK TEST for 32x32 matrices 0.163427295 0.932494705 Fail

BINARY RANK TEST for 6x8 matrices 0.058990626 1.035759214 Pass

THE BITSTREAM TEST 0.360808383 0.562033937 Fail

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.418700474 0.681321787 Fail

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.439325502 0.604473355 Pass

DNA 0.424172692 0.632454146 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.236549421 1.028649661 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.162854121 0.967559001 Pass

COUNT-THE-1's TEST for specific bytes 0.425391261 0.665968199 Pass

PARKING LOT TEST -0.038951964 1.116310444 Pass

THE MINIMUM DISTANCE TEST -0.079479305 1.107329625 Pass

THE 3DSPHERES TEST -0.134031327 1.141253967 Pass

SQEEZE test 0.087918165 1.089760235 Pass

OVERLAPPING SUMS test -0.051506958 0.943717198 Pass

runs down -0.04820465 1.10079849 Pass

runs up -0.128503792 1.105551712 Pass

Craps Wins 0.161824974 1.231550306 Pass

Craps Throws/Game 0.234705963 1.090861557 Pass

3D Neumann Neighbors Results for µ±3σ

DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.435741614 1.425704574 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.472007462 0.992979062 Pass

BINARY RANK TEST for 31x31 matrices -0.044220687 1.139097487 Pass

BINARY RANK TEST for 32x32 matrices -0.046068254 1.139632974 Pass

BINARY RANK TEST for 6x8 matrices -0.126140145 1.297216305 Pass

THE BITSTREAM TEST 0.353253297 0.661098503 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.255205702 0.686328167 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.427632583 0.64652256 Pass

DNA 0.363183714 0.627617834 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.312142744 1.031130424 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.26370657 0.60783529 Fail

COUNT-THE-1's TEST for specific bytes 0.389302573 0.759557811 Pass

PARKING LOT TEST -0.429513575 1.310961175 Pass

THE MINIMUM DISTANCE TEST -0.35842469 1.27966301 Pass

THE 3DSPHERES TEST -0.376849976 1.344027976 Pass

SQEEZE test 0.119969075 1.060244365 Pass

OVERLAPPING SUMS test -0.42305232 1.27819208 Pass

runs down -0.448259736 1.314112296 Pass

runs up -0.312251235 1.417887235 Pass

Craps Wins -0.273826748 1.313456508 Pass

Craps Throws/Game -0.066707395 1.400352675 Pass

3D Neumann Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.125500582 1.115463542 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.227843042 0.748814642 Fail

BINARY RANK TEST for 31x31 matrices 0.152999009 0.941877791 Fail

BINARY RANK TEST for 32x32 matrices 0.151548618 0.942016102 Pass

BINARY RANK TEST for 6x8 matrices 0.11108593 1.05999023 Pass

THE BITSTREAM TEST 0.404560831 0.609790969 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.327059447 0.614474423 Fail

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.464114246 0.610040897 Pass

DNA 0.407256067 0.583545481 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.088263882 0.807251562 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.118449593 0.462578313 Fail

COUNT-THE-1's TEST for specific bytes 0.45101178 0.697848604 Pass

PARKING LOT TEST -0.13943445 1.02088205 Pass

THE MINIMUM DISTANCE TEST -0.085410074 1.006648394 Pass

THE 3DSPHERES TEST -0.090036984 1.057214984 Pass

SQEEZE test 0.276681623 0.903531817 Fail

OVERLAPPING SUMS test -0.139511587 0.994651347 Pass

runs down -0.154531064 1.020383624 Pass

runs up -0.023894824 1.129530824 Pass

Craps Wins -0.009279539 1.048909299 Pass

Craps Throws/Game 0.177802617 1.155842663 Pass

3D Neumann + Moore Neighbors Results for µ±3σ

DIEHARD Test Applied

 Avg - (3*Stdev)

Avg +

(3*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.362109399 1.266893879 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.56245372 1.41907132 Pass

BINARY RANK TEST for 31x31 matrices 0.134424213 1.109243787 Pass

BINARY RANK TEST for 32x32 matrices -0.080318823 1.221617143 Pass

BINARY RANK TEST for 6x8 matrices -0.429557295 1.502997695 Pass

THE BITSTREAM TEST 0.255794304 0.625934056 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.266061272 0.694059771 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.373966009 0.58667942 Pass

DNA 0.377457885 0.614176179 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) -0.239838667 1.356826667 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) -0.207017927 1.156700007 Pass

COUNT-THE-1's TEST for specific bytes 0.3960481 0.69391325 Pass

PARKING LOT TEST -0.403298639 1.430999359 Pass

THE MINIMUM DISTANCE TEST -0.275662406 1.421238886 Pass

THE 3DSPHERES TEST -0.399816278 1.040410598 Pass

SQEEZE test -0.007541349 1.324701509 Pass

OVERLAPPING SUMS test -0.45990008 1.39001168 Pass

runs down -0.291639118 1.367565118 Pass

runs up -0.423079908 1.312661828 Pass

Craps Wins -0.342775048 0.946304648 Pass

Craps Throws/Game -0.310330192 1.212486672 Pass

3D Neumann + Moore Neighbors Results for µ±2σ

DIEHARD Test Applied

 Avg - (2*Stdev)

Avg +

(2*Stdev)

Test falling

in the

Range

BIRTHDAY SPACINGS TEST -0.090608852 0.995393332 Pass

THE OVERLAPPING 5-PERMUTATION TEST -0.232199547 1.088817147 Pass

BINARY RANK TEST for 31x31 matrices 0.296894142 0.946773858 Pass

BINARY RANK TEST for 32x32 matrices 0.136670504 1.004627816 Pass

BINARY RANK TEST for 6x8 matrices -0.107464797 1.180905197 Pass

THE BITSTREAM TEST 0.317484263 0.564244097 Pass

OPSO(Overlapping-Pairs-Sparse-Occupancy) 0.337394356 0.622726688 Pass

OQSO(Overlapping-Quadruples-Sparse-

Occupancy) 0.409418244 0.551227185 Pass

DNA 0.416910934 0.57472313 Pass

COUNT-THE-1's TEST on a stream of bytes (1st

Set of Bytes) 0.026272222 1.090715778 Pass

COUNT-THE-1's TEST on a stream of bytes (2nd

Set of Bytes) 0.020268395 0.929413685 Pass

COUNT-THE-1's TEST for specific bytes 0.445692292 0.644269058 Pass

PARKING LOT TEST -0.097582306 1.125283026 Pass

THE MINIMUM DISTANCE TEST 0.007154476 1.138422004 Pass

THE 3DSPHERES TEST -0.159778465 0.800372785 Fail

SQEEZE test 0.214499128 1.102661032 Pass

OVERLAPPING SUMS test -0.151581453 1.081693053 Pass

runs down -0.015105078 1.091031078 Pass

runs up -0.133789618 1.023371538 Pass

Craps Wins -0.127928432 0.731458032 Pass

Craps Throws/Game -0.056527381 0.958683861 Pass

Summary of results for µ±3σ

No of Passes Avg + - 3 Std. Dev 99% Values Fall

Jumping 2D-
3D Rand3DVonNeuman

3D Moore +
Neumann 2D Moore

2D Von
Neumann

Moore Jumping
2D Von

Neumann

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Fail Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Failures 0 1 0 0 0 0

Summary of results for µ±2σ

No of Passes Avg + - 2 Std. Dev 95% Values Fall

Jumping 2D-
3D Rand3DVonNeuman

3D Moore +
Neumann 2D Moore

2D Von
Neumann

Moore Jumping
2D Von

Neumann

Pass Pass Pass Pass Pass Pass

Fail Fail Pass Pass Pass Pass

Pass Fail Pass Pass Pass Pass

Fail Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Fail Pass Pass Pass Pass Pass

Fail Fail Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Fail Pass Pass Pass Fail

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Fail Pass Pass Pass

Pass Fail Pass Pass Pass Fail

Pass Pass Pass Fail Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Pass Pass Pass

Pass Pass Pass Fail Pass Pass

Failures 4 5 1 2 0 2

Appendix C

Results for Safe range value (values >=0.25 AND values <=0.75)
DIEHARD Tests Name used in abbreviated form.

All 100 values Comparison (values >=0.25 AND values <=0.75) Safe Range

1 2 3 4 5 6

Jumping
2D-3D

Rand 3D
Von
Neumann

3D Moore
+

Neumann
2D Moore
Neighbours

2D Von
Neumann
Moore
Jump N

2D Von
Neumann
Neighbors

BST 68 40 56 52 44 56

O5PT 28 24 36 36 36 28

BR31 80 84 84 72 68 0

BR32 84 76 72 76 80 0

BR6X8 60 60 44 56 52 36

BS 100 100 100 100 100 8

OPSO 100 100 100 76 80 100

OQSO 100 100 100 76 80 100

DNA 100 100 100 76 80 100

CT1TSB-1 40 52 48 40 80 28

CT1TSB-2 48 20 72 60 68 40

CT1TSB 100 100 100 100 100 100

PLT 48 40 40 52 60 64

MDT 48 64 52 44 28 32

3DST 36 48 48 72 52 48

ST 44 84 48 40 44 0

OST 56 56 52 48 52 60

RD 64 48 56 56 56 60

RU 40 48 52 44 40 52

CW 36 64 56 24 52 64

CTG 60 48 44 64 52 56

Jumping
2D-3D

Rand 3D
Von
Neumann

3D Moore
+

Neumann
2D Moore
Neighbours

2D Von
Neumann
Moore
Jump N

2D Von
Neumann
Neighbors

Max Occurance 9 10 9 5 4 8

Appendix D

Sample of Binary file (Snap shot taken for 3D Moore + Neumann Method)

Appendix E

Sample of DIEHARD Output file (Snap shot taken for 3D Moore + Neumann Method)

BIRTHDAY SPACINGS TEST, M= 512 N=2**24 LAMBDA= 2.0000
 Results for file1
 For a sample of size 500: mean
 file1 using bits 1 to 24 2.068
 duplicate number number
 spacings observed expected
 0 67. 67.668
 1 118. 135.335
 2 143. 135.335
 3 103. 90.224
 4 40. 45.112
 5 17. 18.045
 6 to INF 12. 8.282
 Chisquare with 6 d.o.f. = 6.78 p-value= .658276
 :::
 For a sample of size 500: mean
 file1 using bits 2 to 25 1.938
 duplicate number number
 spacings observed expected
 0 60. 67.668
 1 148. 135.335
 2 145. 135.335
 3 92. 90.224
 4 27. 45.112
 5 22. 18.045
 6 to INF 6. 8.282
 Chisquare with 6 d.o.f. = 11.55 p-value= .927114
 :::
 For a sample of size 500: mean
 file1 using bits 3 to 26 1.956
 duplicate number number
 spacings observed expected
 0 71. 67.668
 1 142. 135.335
 2 124. 135.335
 3 99. 90.224
 4 38. 45.112
 5 21. 18.045
 6 to INF 5. 8.282
 Chisquare with 6 d.o.f. = 5.20 p-value= .481707
 :::
 For a sample of size 500: mean
 file1 using bits 4 to 27 1.960
 duplicate number number
 spacings observed expected

 0 58. 67.668
 1 137. 135.335
 2 158. 135.335
 3 90. 90.224
 4 41. 45.112
 5 10. 18.045
 6 to INF 6. 8.282
 Chisquare with 6 d.o.f. = 9.79 p-value= .866126
 :::
 For a sample of size 500: mean
 file1 using bits 5 to 28 2.116
 duplicate number number
 spacings observed expected
 0 68. 67.668
 1 133. 135.335
 2 123. 135.335
 3 83. 90.224
 4 53. 45.112
 5 27. 18.045
 6 to INF 13. 8.282
 Chisquare with 6 d.o.f. = 10.26 p-value= .885733
 :::
 For a sample of size 500: mean
 file1 using bits 6 to 29 1.976
 duplicate number number
 spacings observed expected
 0 72. 67.668
 1 133. 135.335
 2 130. 135.335
 3 98. 90.224
 4 42. 45.112
 5 19. 18.045
 6 to INF 6. 8.282
 Chisquare with 6 d.o.f. = 2.09 p-value= .088971
 :::
 For a sample of size 500: mean
 file1 using bits 7 to 30 1.990
 duplicate number number
 spacings observed expected
 0 59. 67.668
 1 148. 135.335
 2 141. 135.335
 3 77. 90.224
 4 51. 45.112
 5 15. 18.045
 6 to INF 9. 8.282
 Chisquare with 6 d.o.f. = 5.82 p-value= .555793
 :::
 For a sample of size 500: mean
 file1 using bits 8 to 31 2.032
 duplicate number number

 spacings observed expected
 0 62. 67.668
 1 137. 135.335
 2 140. 135.335
 3 88. 90.224
 4 41. 45.112
 5 22. 18.045
 6 to INF 10. 8.282
 Chisquare with 6 d.o.f. = 2.31 p-value= .110796
 :::
 For a sample of size 500: mean
 file1 using bits 9 to 32 2.090
 duplicate number number
 spacings observed expected
 0 47. 67.668
 1 148. 135.335
 2 139. 135.335
 3 85. 90.224
 4 52. 45.112
 5 18. 18.045
 6 to INF 11. 8.282
 Chisquare with 6 d.o.f. = 9.84 p-value= .868594
 :::
 The 9 p-values were
 .658276 .927114 .481707 .866126 .885733
 .088971 .555793 .110796 .868594
 A KSTEST for the 9 p-values yields .691006

 OPERM5 test for file file1
 For a sample of 1,000,000 consecutive 5-tuples,
 chisquare for 99 degrees of freedom= 81.134; p-value= .095538
 OPERM5 test for file file1
 For a sample of 1,000,000 consecutive 5-tuples,
 chisquare for 99 degrees of freedom= 94.586; p-value= .393169

 Binary rank test for file1
 Rank test for 31x31 binary matrices:
 rows from leftmost 31 bits of each 32-bit integer
 rank observed expected (o-e)^2/e sum
 28 195 211.4 1.274968 1.275
 29 5161 5134.0 .141886 1.417
 30 23196 23103.0 .373989 1.791
 31 11448 11551.5 .927783 2.719
 chisquare= 2.719 for 3 d. of f.; p-value= .612521

 Binary rank test for file1

 Rank test for 32x32 binary matrices:

 rows from leftmost 32 bits of each 32-bit integer

 rank observed expected (o-e)^2/e sum

 29 195 211.4 1.274968 1.275

 30 5107 5134.0 .142102 1.417

 31 23086 23103.0 .012578 1.430

 32 11612 11551.5 .316607 1.746

 chisquare= 1.746 for 3 d. of f.; p-value= .466475

 Binary Rank Test for file1

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 1 to 8

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 932 944.3 .160 .160

 r =5 22075 21743.9 5.042 5.202

 r =6 76993 77311.8 1.315 6.517

 p=1-exp(-SUM/2)= .96155

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 2 to 9

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 922 944.3 .527 .527

 r =5 21848 21743.9 .498 1.025

 r =6 77230 77311.8 .087 1.112

 p=1-exp(-SUM/2)= .42639

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 3 to 10

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 952 944.3 .063 .063

 r =5 21952 21743.9 1.992 2.054

 r =6 77096 77311.8 .602 2.657

 p=1-exp(-SUM/2)= .73509

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 4 to 11

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 965 944.3 .454 .454

 r =5 21562 21743.9 1.522 1.975

 r =6 77473 77311.8 .336 2.312

 p=1-exp(-SUM/2)= .68518

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 5 to 12

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 969 944.3 .646 .646

 r =5 21465 21743.9 3.577 4.223

 r =6 77566 77311.8 .836 5.059

 p=1-exp(-SUM/2)= .92031

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 6 to 13

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 945 944.3 .001 .001

 r =5 21674 21743.9 .225 .225

 r =6 77381 77311.8 .062 .287

 p=1-exp(-SUM/2)= .13375

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 7 to 14

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 976 944.3 1.064 1.064

 r =5 21475 21743.9 3.325 4.389

 r =6 77549 77311.8 .728 5.117

 p=1-exp(-SUM/2)= .92259

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 8 to 15

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 924 944.3 .436 .436

 r =5 21936 21743.9 1.697 2.134

 r =6 77140 77311.8 .382 2.515

 p=1-exp(-SUM/2)= .71569

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 9 to 16

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 961 944.3 .295 .295

 r =5 22042 21743.9 4.087 4.382

 r =6 76997 77311.8 1.282 5.664

 p=1-exp(-SUM/2)= .94110

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 10 to 17

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 954 944.3 .100 .100

 r =5 21496 21743.9 2.826 2.926

 r =6 77550 77311.8 .734 3.660

 p=1-exp(-SUM/2)= .83957

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 11 to 18

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 905 944.3 1.636 1.636

 r =5 21575 21743.9 1.312 2.948

 r =6 77520 77311.8 .561 3.508

 p=1-exp(-SUM/2)= .82695

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 12 to 19

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 954 944.3 .100 .100

 r =5 21935 21743.9 1.680 1.779

 r =6 77111 77311.8 .522 2.301

 p=1-exp(-SUM/2)= .68347

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 13 to 20

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 934 944.3 .112 .112

 r =5 21884 21743.9 .903 1.015

 r =6 77182 77311.8 .218 1.233

 p=1-exp(-SUM/2)= .46017

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 14 to 21

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 962 944.3 .332 .332

 r =5 21859 21743.9 .609 .941

 r =6 77179 77311.8 .228 1.169

 p=1-exp(-SUM/2)= .44265

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 15 to 22

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 948 944.3 .014 .014

 r =5 21705 21743.9 .070 .084

 r =6 77347 77311.8 .016 .100

 p=1-exp(-SUM/2)= .04882

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 16 to 23

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 901 944.3 1.986 1.986

 r =5 21797 21743.9 .130 2.115

 r =6 77302 77311.8 .001 2.117

 p=1-exp(-SUM/2)= .65294

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 17 to 24

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 876 944.3 4.940 4.940

 r =5 21771 21743.9 .034 4.974

 r =6 77353 77311.8 .022 4.996

 p=1-exp(-SUM/2)= .91775

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 18 to 25

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 919 944.3 .678 .678

 r =5 21678 21743.9 .200 .878

 r =6 77403 77311.8 .108 .985

 p=1-exp(-SUM/2)= .38897

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 19 to 26

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 959 944.3 .229 .229

 r =5 21604 21743.9 .900 1.129

 r =6 77437 77311.8 .203 1.332

 p=1-exp(-SUM/2)= .48615

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 20 to 27

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 904 944.3 1.720 1.720

 r =5 21675 21743.9 .218 1.938

 r =6 77421 77311.8 .154 2.093

 p=1-exp(-SUM/2)= .64876

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 21 to 28

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 895 944.3 2.574 2.574

 r =5 21801 21743.9 .150 2.724

 r =6 77304 77311.8 .001 2.725

 p=1-exp(-SUM/2)= .74394

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 22 to 29

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 932 944.3 .160 .160

 r =5 21729 21743.9 .010 .170

 r =6 77339 77311.8 .010 .180

 p=1-exp(-SUM/2)= .08608

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 23 to 30

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 967 944.3 .546 .546

 r =5 21710 21743.9 .053 .598

 r =6 77323 77311.8 .002 .600

 p=1-exp(-SUM/2)= .25922

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 24 to 31

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 920 944.3 .625 .625

 r =5 21709 21743.9 .056 .681

 r =6 77371 77311.8 .045 .727

 p=1-exp(-SUM/2)= .30467

 Rank of a 6x8 binary matrix,

 rows formed from eight bits of the RNG file1

 b-rank test for bits 25 to 32

 OBSERVED EXPECTED (O-E)^2/E SUM

 r<=4 946 944.3 .003 .003

 r =5 21697 21743.9 .101 .104

 r =6 77357 77311.8 .026 .131

 p=1-exp(-SUM/2)= .06323

 TEST SUMMARY, 25 tests on 100,000 random 6x8 matrices

 These should be 25 uniform [0,1] random variables:

 .961546 .426393 .735095 .685179 .920306

 .133747 .922587 .715689 .941104 .839569

 .826948 .683471 .460169 .442649 .048820

 .652939 .917749 .388968 .486151 .648756

 .743944 .086080 .259218 .304666 .063231

 brank test summary for file1

 The KS test for those 25 supposed UNI's yields

 KS p-value= .670466

THE OVERLAPPING 20-tuples BITSTREAM TEST, 20 BITS PER WORD, N words

 This test uses N=2^21 and samples the bitstream 20 times.

 No. missing words should average 141909. with sigma=428.

 tst no 1: 141373 missing words, -1.25 sigmas from mean, p-value= .10508

 tst no 2: 141963 missing words, .13 sigmas from mean, p-value= .54990

 tst no 3: 142320 missing words, .96 sigmas from mean, p-value= .83135

 tst no 4: 142154 missing words, .57 sigmas from mean, p-value= .71622

 tst no 5: 142078 missing words, .39 sigmas from mean, p-value= .65324

 tst no 6: 141919 missing words, .02 sigmas from mean, p-value= .50901

 tst no 7: 142436 missing words, 1.23 sigmas from mean, p-value= .89075

 tst no 8: 141492 missing words, -.98 sigmas from mean, p-value= .16476

 tst no 9: 141610 missing words, -.70 sigmas from mean, p-value= .24216

 tst no 10: 142457 missing words, 1.28 sigmas from mean, p-value= .89966

 tst no 11: 141985 missing words, .18 sigmas from mean, p-value= .57017

 tst no 12: 141711 missing words, -.46 sigmas from mean, p-value= .32154

 tst no 13: 141792 missing words, -.27 sigmas from mean, p-value= .39199

 tst no 14: 141981 missing words, .17 sigmas from mean, p-value= .56650

 tst no 15: 141545 missing words, -.85 sigmas from mean, p-value= .19732

 tst no 16: 142313 missing words, .94 sigmas from mean, p-value= .82720

 tst no 17: 142317 missing words, .95 sigmas from mean, p-value= .82958

 tst no 18: 142655 missing words, 1.74 sigmas from mean, p-value= .95927

 tst no 19: 141925 missing words, .04 sigmas from mean, p-value= .51460

 tst no 20: 141489 missing words, -.98 sigmas from mean, p-value= .16303

OPSO test for generator file1

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 OPSO for file1 using bits 23 to 32 142263 1.220 .8887

 OPSO for file1 using bits 22 to 31 141778 -.453 .3253

 OPSO for file1 using bits 21 to 30 141893 -.056 .4775

 OPSO for file1 using bits 20 to 29 141881 -.098 .4611

 OPSO for file1 using bits 19 to 28 141745 -.567 .2855

 OPSO for file1 using bits 18 to 27 141796 -.391 .3480

 OPSO for file1 using bits 17 to 26 142021 .385 .6499

 OPSO for file1 using bits 16 to 25 141711 -.684 .2470

 OPSO for file1 using bits 15 to 24 141651 -.891 .1865

 OPSO for file1 using bits 14 to 23 141793 -.401 .3442

 OPSO for file1 using bits 13 to 22 141866 -.149 .4406

 OPSO for file1 using bits 12 to 21 141986 .264 .6043

 OPSO for file1 using bits 11 to 20 141616 -1.011 .1559

 OPSO for file1 using bits 10 to 19 141921 .040 .5161

 OPSO for file1 using bits 9 to 18 141857 -.180 .4284

 OPSO for file1 using bits 8 to 17 142073 .564 .7138

 OPSO for file1 using bits 7 to 16 141483 -1.470 .0708

 OPSO for file1 using bits 6 to 15 141471 -1.511 .0653

 OPSO for file1 using bits 5 to 14 141986 .264 .6043

 OPSO for file1 using bits 4 to 13 141602 -1.060 .1446

 OPSO for file1 using bits 3 to 12 141685 -.774 .2196

 OPSO for file1 using bits 2 to 11 141473 -1.505 .0662

 OPSO for file1 using bits 1 to 10 141567 -1.180 .1189

 OQSO test for generator file1

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 OQSO for file1 using bits 28 to 32 141863 -.157 .4376

 OQSO for file1 using bits 27 to 31 142315 1.375 .9155

 OQSO for file1 using bits 26 to 30 141982 .246 .5973

 OQSO for file1 using bits 25 to 29 142036 .429 .6662

 OQSO for file1 using bits 24 to 28 142131 .751 .7738

 OQSO for file1 using bits 23 to 27 142027 .399 .6550

 OQSO for file1 using bits 22 to 26 142093 .623 .7332

 OQSO for file1 using bits 21 to 25 142086 .599 .7254

 OQSO for file1 using bits 20 to 24 141587 -1.093 .1373

 OQSO for file1 using bits 19 to 23 142192 .958 .8310

 OQSO for file1 using bits 18 to 22 141632 -.940 .1736

 OQSO for file1 using bits 17 to 21 141389 -1.764 .0389

 OQSO for file1 using bits 16 to 20 142029 .406 .6575

 OQSO for file1 using bits 15 to 19 141930 .070 .5279

 OQSO for file1 using bits 14 to 18 141778 -.445 .3281

 OQSO for file1 using bits 13 to 17 142085 .595 .7242

 OQSO for file1 using bits 12 to 16 141945 .121 .5481

 OQSO for file1 using bits 11 to 15 142048 .470 .6808

 OQSO for file1 using bits 10 to 14 141764 -.493 .3111

 OQSO for file1 using bits 9 to 13 142145 .799 .7878

 OQSO for file1 using bits 8 to 12 141706 -.689 .2453

 OQSO for file1 using bits 7 to 11 142063 .521 .6988

 OQSO for file1 using bits 6 to 10 141460 -1.523 .0639

 OQSO for file1 using bits 5 to 9 142149 .812 .7917

 OQSO for file1 using bits 4 to 8 141911 .006 .5023

 OQSO for file1 using bits 3 to 7 142017 .365 .6424

 OQSO for file1 using bits 2 to 6 141732 -.601 .2739

 OQSO for file1 using bits 1 to 5 141645 -.896 .1851

 DNA test for generator file1

 Output: No. missing words (mw), equiv normal variate (z), p-value (p)

 DNA for file1 using bits 20 to 21 141539 -1.092 .1373

 DNA for file1 using bits 19 to 20 142153 .719 .7639

 DNA for file1 using bits 18 to 19 142427 1.527 .9366

 DNA for file1 using bits 17 to 18 141747 -.479 .3160

 DNA for file1 using bits 16 to 17 142454 1.607 .9459

 DNA for file1 using bits 15 to 16 142369 1.356 .9124

 DNA for file1 using bits 14 to 15 142260 1.034 .8495

 DNA for file1 using bits 13 to 14 141607 -.892 .1862

 DNA for file1 using bits 12 to 13 141859 -.148 .4410

 DNA for file1 using bits 11 to 12 141649 -.768 .2213

 DNA for file1 using bits 10 to 11 141656 -.747 .2274

 DNA for file1 using bits 9 to 10 141961 .152 .5606

 DNA for file1 using bits 8 to 9 141525 -1.134 .1285

 DNA for file1 using bits 7 to 8 142007 .288 .6134

 DNA for file1 using bits 6 to 7 142050 .415 .6609

 DNA for file1 using bits 5 to 6 142105 .577 .7181

 DNA for file1 using bits 4 to 5 141334 -1.697 .0448

 DNA for file1 using bits 3 to 4 141754 -.458 .3234

 DNA for file1 using bits 2 to 3 141784 -.370 .3558

 DNA for file1 using bits 1 to 2 141747 -.479 .3160

 Test results for file1

 Chi-square with 5^5-5^4=2500 d.of f. for sample size:2560000

 chisquare equiv normal p-value

 Results fo COUNT-THE-1's in successive bytes:

 byte stream for file1 2405.69 -1.334 .091132

 byte stream for file1 2502.18 .031 .512312

Results for COUNT-THE-1's in specified bytes:

 bits 1 to 8 2485.26 -.208 .417458

 bits 2 to 9 2533.00 .467 .679619

 bits 3 to 10 2459.37 -.575 .282770

 bits 4 to 11 2523.00 .325 .627492

 bits 5 to 12 2423.42 -1.083 .139397

 bits 6 to 13 2490.86 -.129 .448556

 bits 7 to 14 2518.10 .256 .600999

 bits 8 to 15 2656.09 2.207 .986360

 bits 9 to 16 2614.31 1.617 .947014

 bits 10 to 17 2429.86 -.992 .160633

 CDPARK: result of ten tests on file file1

 Of 12,000 tries, the average no. of successes

 should be 3523 with sigma=21.9

 Successes: 3522 z-score: -.046 p-value: .481790

 Successes: 3537 z-score: .639 p-value: .738676

 Successes: 3526 z-score: .137 p-value: .554479

 Successes: 3534 z-score: .502 p-value: .692266

 Successes: 3505 z-score: -.822 p-value: .205562

 Successes: 3546 z-score: 1.050 p-value: .853193

 Successes: 3536 z-score: .594 p-value: .723613

 Successes: 3513 z-score: -.457 p-value: .323972

 Successes: 3562 z-score: 1.781 p-value: .962529

 Successes: 3526 z-score: .137 p-value: .554479

 square size avg. no. parked sample sigma

 100. 3530.700 15.411

 KSTEST for the above 10: p= .638628

 This is the MINIMUM DISTANCE test

 for random integers in the file file1

 Sample no. d^2 avg equiv uni

 5 1.3638 1.0519 .746056

 10 .6086 .7828 .457574

 15 .3159 .6406 .272010

 20 .1821 .9221 .167223

 25 .0348 .8639 .034414

 30 .0262 .8330 .026021

 35 .8224 1.0543 .562435

 40 .9775 1.1022 .625586

 45 .0502 1.0318 .049235

 50 .9500 .9946 .615120

 55 .2766 .9520 .242659

 60 .0701 .8943 .068018

 65 .2568 .8797 .227451

 70 3.7634 .8857 .977230

 75 7.1344 .9775 .999231

 80 1.3870 .9895 .751923

 85 .5250 1.0089 .409974

 90 2.8711 1.0000 .944175

 95 .0495 1.0115 .048536

 100 2.0191 1.0343 .868568

 MINIMUM DISTANCE TEST for file1

 Result of KS test on 20 transformed mindist^2's:

 p-value= .533812

 The 3DSPHERES test for file file1

 sample no: 1 r^3= 38.193 p-value= .72004

 sample no: 2 r^3= 65.735 p-value= .88821

 sample no: 3 r^3= 24.364 p-value= .55609

 sample no: 4 r^3= 12.159 p-value= .33323

 sample no: 5 r^3= 10.890 p-value= .30441

 sample no: 6 r^3= 23.250 p-value= .53929

 sample no: 7 r^3= 77.702 p-value= .92499

 sample no: 8 r^3= 2.731 p-value= .08700

 sample no: 9 r^3= 25.410 p-value= .57131

 sample no: 10 r^3= 20.434 p-value= .49396

 sample no: 11 r^3= 9.450 p-value= .27021

 sample no: 12 r^3= 6.442 p-value= .19323

 sample no: 13 r^3= 11.870 p-value= .32676

 sample no: 14 r^3= 1.689 p-value= .05474

 sample no: 15 r^3= 92.819 p-value= .95468

 sample no: 16 r^3= 6.956 p-value= .20694

 sample no: 17 r^3= 11.314 p-value= .31418

 sample no: 18 r^3= 31.576 p-value= .65095

 sample no: 19 r^3= 2.126 p-value= .06841

 sample no: 20 r^3= 30.239 p-value= .63504

 A KS test is applied to those 20 p-values.

 3DSPHERES test for file file1 p-value= .241794

 RESULTS OF SQUEEZE TEST FOR file1

 Table of standardized frequency counts

 ((obs-exp)/sqrt(exp))^2

 for j taking values <=6,7,8,...,47,>=48:

 2.7 .5 .8 -2.4 -.5 -.1

 .7 -1.1 .1 -.4 -1.9 -1.6

 1.2 .6 -.8 -.7 1.0 -.2

 .8 -1.6 -.8 .2 1.5 1.5

 -.2 .9 .0 -1.7 2.9 1.3

 .7 .4 -1.1 .9 -.5 1.3

 .3 .5 .1 -.1 .9 .0

 2.7

 Chi-square with 42 degrees of freedom: 62.622

 z-score= 2.250 p-value= .978858

 Test no. 1 p-value .430451

 Test no. 2 p-value .217270

 Test no. 3 p-value .622948

 Test no. 4 p-value .057847

 Test no. 5 p-value .793093

 Test no. 6 p-value .142356

 Test no. 7 p-value .004947

 Test no. 8 p-value .792843

 Test no. 9 p-value .983215

 Test no. 10 p-value .974643

 Results of the OSUM test for file1

 KSTEST on the above 10 p-values: .638171

 Run test for file1 :

 runs up; ks test for 10 p's: .949285

 runs down; ks test for 10 p's: .135459

 Run test for file1 :

 runs up; ks test for 10 p's: .109780

 runs down; ks test for 10 p's: .911528

 Results of craps test for file1

 No. of wins: Observed Expected

 98561 98585.86

 98561= No. of wins, z-score= -.111 pvalue= .45573

 Analysis of Throws-per-Game:

 Chisq= 15.24 for 20 degrees of freedom, p= .23739

 Throws Observed Expected Chisq Sum

 1 66795 66666.7 .247 .247

 2 37579 37654.3 .151 .398

 3 27003 26954.7 .086 .484

 4 19205 19313.5 .609 1.093

 5 13753 13851.4 .699 1.793

 6 10135 9943.5 3.686 5.479

 7 7128 7145.0 .041 5.520

 8 5035 5139.1 2.108 7.627

 9 3695 3699.9 .006 7.633

 10 2733 2666.3 1.669 9.302

 11 1867 1923.3 1.650 10.952

 12 1370 1388.7 .253 11.205

 13 1025 1003.7 .451 11.656

 14 726 726.1 .000 11.656

 15 516 525.8 .184 11.840

 16 404 381.2 1.370 13.210

 17 297 276.5 1.514 14.724

 18 206 200.8 .133 14.857

 19 140 146.0 .245 15.102

 20 107 106.2 .006 15.108

 21 281 287.1 .130 15.238

 SUMMARY FOR file1

 p-value for no. of wins: .455735

 p-value for throws/game: .237386

