

A Cluster Based Fault Tolerant and Highly

Available Architecture for Stateful Web

Application Firewalls

By

Zafar Ali

2008-NUST-MS PhD-IT-32

Supervisor

Dr. Zahid Anwar

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MSIT)

In

NUST School of Electrical Engineering and Computer Science

(SEECS),

National University of Sciences and Technology (NUST), Islamabad,

Pakistan

i

 CERTIFICATE

Certified that the Scrutinizing Committee has reviewed the final documentation of Mr. Zafar Ali

Reg. no.2008-NUST-MS PhD-IT-32 student of MS-IT-9 thesis title A Cluster Based Fault

Tolerant and Highly Available Architecture for Stateful Web Application Firewalls and found

satisfactory as per NUST’s standard format for Master Thesis.

President

WgCdr (R) Muhammad Ramzan

NUST School of Electrical Engineering and Computer Sciences
 A center of excellence for quality education and research

ii

APPROVAL

It is certified that the contents and form of thesis entitled “A Cluster Based Fault Tolerant and

Highly Available Architecture for Stateful Web Application Firewalls” submitted by Zafar

Ali have been found satisfactory for the requirement of the degree.

Advisor: Dr. Zahid Anwar

Signature:

Date:

 Committee Member: Dr. Hafiz Farooq Ahmed

 Signature: ____________________________

Date:_______________________________

 Committee Member: Dr.Raihan ur Rasool

Signature: ____________________________

Date: _______________________________

Committee Member: Mr. Aatif Kamal

Signature: ____________________________

Date: _______________________________

iii

IN THE NAME OF ALMIGHTY ALLAH

THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY PARENTS, SISTERS AND A FRIEND

iv

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at SEECS or at any

other educational institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author: Zafar Ali

Signature: ___________________

v

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my humble gratitude to Almighty Allah who always

bestowed His blessings on me and gave me courage to accomplish this task. Darood-o- Salaam

to Prophet Muhammad (P.B.U.H) chosen by Almighty Allah to guide the mankind to divine

path.

I am truly indebted to my supervisor Dr. Zahid Anwar for his support, guidance and unending

tolerance. He patiently spelled out all new concepts and completely guided me in all technical

directions. I own that without the inspiring guidance of Dr. Zahid Anwar, this research would not

have materialized. I extend my appreciation to my co-supervisor Dr. Hafiz Farooq Ahmad.

Whenever there was a problem he steered me through. I am thankful to all of my committee

members, for their guidance throughout the research work of this thesis. I really have no words

of thanks for my friends and research fellows for their co-operation. I would always cherish the

moments spent with them.

I can never forget the contribution of my parents in providing their all assistance to me. I owe all

my achievements to my parents whose assistance and prayers enabled me to surpass all the

hurdles in my life.

My Friend Neelofar provided me full support during the entire period of my research. Whenever

I was downhearted, she encouraged and provided me with the power to overcome my hardships.

Zafar Ali

vi

ABSTRACT

Application layer Firewalls are required to prevent attacks on the top three layers of OSI

model i.e. session, presentation and application because traditional network firewalls do not

understand attacks directed at disrupting HTTP(S) traffic. Web Application Firewall (WAF)

architecture based on a single process does not provides fault tolerance and scalability

because it doesn’t utilizes the system resources completely. This thesis proposes a virtual

cluster of WAFs in a reverse proxy configuration that aims to solve the problem of resource

utilization and scalability by deploying it on multiple machines. The virtual cluster is

incremental; it creates on-demand WAF nodes in presence of heavy load. Load balancing

among virtual node is stateful to maintain session integrity and transparent fault tolerance

mechanism to the users. Solutions for load balancing and fault tolerance exists at the network

layer e.g. Heartbeat/Linux package, Ultra Monkey and LVS/Linux but these solutions are

limited to application layer. We have implemented an application layer heart beat mechanism

for transparent fail over that is adaptive and provides a sophisticated load balancing algorithm

without an overhead of probe packets. The central component of our proposed architecture is

the Dispatcher that receives HTTP traffic and distributes it among WAF nodes in a round

robin fashion. The functionality of the Load balancer component is to provide intelligent

routing decisions, handle cache, heart beat mechanisms and fail over. For evaluating the

implemented solution the selected WAF product used is SWAF (A Semantic Based Web

Application Firewall highly available). SWAF is a java based WAF consisting only of a

single JVM process. Evaluation is performed by comparing performance results of SWAF

addition or removal of our virtual cluster architecture with multiple SWAF nodes. Benchmark

results show that load balancer with 8 and 12 SWAF nodes increased the performance(in

terms of response time, data transferred in KB and error ratio) of the system significantly

when the number of users are increased to tens of thousands in presence of session-based

attack traffic and SWAF still performed detection correctly.

vii

Table of Contents

Motivation &Introduction ... 1

1.1 Web Application Firewalls ... 2

1.2 Scalability ... 4

1.3 High Availability .. 6

1.4 Cluster .. 6

1.5 Load Balancing .. 7

1.6 Fault Tolerance ... 8

1.7 Motivation .. 8

1.8 Objective .. 9

1.9 Thesis Organization .. 9

Existing Work & Literature Survey .. 10

2.1 Resource Utilization in Java based Process ... 11

2.2 URL Formalization .. 12

2.3 Content-Aware Routing ... 13

2.4 Content Aware Distribution vs. NAT Base Routing .. 14

2.4.1 Session Integrity.. 14

2.4.2 Sophisticated Load Balancing ... 15

2.4.3 Differentiated Services .. 15

2.4.4 URL formalization and context aware routing ... 16

2.4.5 Highly available clusters ... 16

Current System Architecture... 18

3.1 SWAF ... 19

3.2 Ontology for designing of Context ... 19

3.3 Rule Based Reasoning .. 20

3.4 System Architecture ... 21

3.4.1 Ontology Manager .. 21

3.4.2 HTTP Extractor and Parser ... 21

3.4.3 Analyzer ... 22

viii

3.4.4 Rule Engine ... 22

3.4.5 Admin Console ... 22

3.4.6 Logging Module... 22

3.4.7 Cache Controller ... 22

3.5 Session Based Attacks .. 23

3.5.1 Session Fixation .. 23

3.5.2 Session Hijacking.. 23

3.5.3 CSRF ... 23

3.5.4 DOS (Denial of services) .. 24

3.6 Limitations of current system architecture ... 24

3.7 Summary ... 25

Proposed System Architecture .. 26

4.1 Dispatcher ... 28

4.1.1 Protocol Handler ... 28

4.1.2 Listener and Parser .. 28

4.1.3 Load Balancer ... 29

4.1.4 Cache... 29

4.1.5 State... 29

4.1.6 Fault Tolerance Module .. 29

4.1.7 Heart Beat System... 30

4.2 Load Balancing Algorithm ... 30

4.3 WAF’s virtual cluster ... 31

4.4 Distributed Cache of WAF ... 31

4.5 Summary ... 32

System Development .. 33

5.1 Dispatcher ... 34

5.1.1 Protocol Handler ... 34

5.1.2 Listener and Parser .. 34

5.1.3 Load Balancer ... 36

5.1.4 Cache... 36

5.1.5 State... 38

ix

5.1.6 Fault Tolerance Module .. 38

5.1.7 Heart Beat System... 40

5.2 Distributed Cache of WAF ... 40

5.3 Summary ... 41

Evaluation .. 42

6.1 Overview .. 43

6.2 Evaluation Criteria ... 43

6.2.1 Number of Requests / Second ... 43

6.2.2 Total number of samples in the test run .. 43

6.2.3 Total throughput of the test ... 43

6.2.4 Error Rate .. 44

6.3 Sample Applications ... 44

6.3.1 WebGoat ... 44

6.3.2 WackoPecko ... 44

6.3.3 Sample Static website ... 45

6.4 Testing Results ... 45

6.4.1 Machine Specification .. 45

6.4.2 Testing Scenarios .. 45

6.4.3 Attackers to Normal Users Requests .. 47

6.4.4 Throughput (Requests/second/WAF) VS Number of Users .. 48

6.4.5 Throughput (KB/second/WAF) VS amount of data transferred 50

6.4.6 Error Rate (%) VS Number of Users .. 51

6.4.7 Parser Comparison .. 52

6.4.8 Performance Comparison (Response Time in millisecond) ... 53

Conclusion & Future Enhancements .. 54

7.1 Conclusion ... 55

7.2 Future Work .. 55

References ... 56

Bibliography ... 57

x

List of Figures

Figure 1: Deployment of Web Application Firewall as Reverse Proxy ... 4

Figure 2: Horizontal Scalability-new node with identical functionality is added in a system to

redistribute the load ... 5

Figure 3: Vertical Scalability- adding more main memory, network interfaces to a node or

processing to satisfy more requests... 5

Figure 4: Stateless load balancing- scheduling algorithms are used to determine which user

request is to be forwarded to which server. .. 7

Figure 5: State full load balancing- customer is guaranteed to maintain a session with a specific

server in a pool. ... 8

Figure 6: Memory allocation to a java process ... 11

Figure 7: Current System Architecture- the System is designed as a surrogate proxy/reverse

proxy that is deployed in front of web server intercepting all incoming and outgoing requests to

and from the web server. ... 21

Figure 8: High level architecture diagram of proposed Architecture- for load balancing a very

thin dispatcher is used which takes very little time to load balance ... 27

Figure 9: High level architecture diagram of dispatcher- major components are protocol handler,

cache, listener and parser, heart beat mechanism, fault tolerance module and load balancer. 28

Figure 10: Class Diagram of Dispatcher ... 36

Figure 11: Class Diagram of Protocol .. 36

Figure 12: Class Diagram of Listener and Load Balancer .. 37

Figure 13: Class Diagram of Cache .. 38

Figure 14: Class Diagram of State .. 38

Figure 15: Class Diagram of Fault Tolerance ... 39

Figure 16: Class Diagram of Heart Beat System .. 40

Figure 17: Static versus Dynamic Pages in Sample Web Applications .. 46

Figure 18: Specifications of Windows System used for Evaluation ... 46

Figure 19: Throughput achieved by the proposed system against number of requests/ normal

users. Results are evaluated using multiple WAF nodes and Load balancer. 48

Figure 20: Throughput achieved by the proposed system against number of requests/malicious

users. Results are evaluated using multiple WAF nodes and Load balancer. 49

Figure 21: Through put (Static VS. Dynamic VS. Combination of Static and Dynamic Websites)

with LB (12 WAFs) .. 50

Figure 22: Throughput achieved by the system against amount of data transmitted by the users.

Results are evaluated using multiple WAF nodes and Load balancer. ... 50

Figure 23: Error Rate (%) against number of requests/users .. 51

Figure 24: Parser Comparison .. 52

Figure 25: Performance Comparison (Response Time in millisecond) of proposed architecture

with Apache and Mod Security ... 53

xi

List of Tables

Table 1: Summary Report without Load Balance………………………………………… 60

Table 2: Percentage of occurrence of different attacks…………………………………….61

1

CHAPTER # 01

Motivation &Introduction

2

1.1 Web Application Firewalls

A firewall restricts unauthorized access into a network. Firewall can be implemented through

hardware, software or by combining both. Firewall doesn’t permit unauthorized usage of private

networks connected to internet, especially intranets. Some firewall techniques are packet

filtering, circuit level gateway implementation and proxy server [1].

Web applications have grown the business nowadays. Ecommerce applications are usually web

applications and contain major financial transactions. Security is high priority in these

applications. Security is required not only at network layer but also at application layer a lot of

work is done for the security at network layer and these security mechanisms are mature enough

to prevent attacks through this layer. However, attackers have a fair chance of attack using

application layer [2] [3] [4] [5]. According to an estimate from major cyber security

organizations like MITRE, OWASP [3], WHITE HAT, ACUNETIX almost 75% of the attacks

are launched at application layer now a days.

Web application firewalls are used to protect attacks at the application layer on http traffic or on

web applications. They do not require modifications of application layer source code in most of

the cases. These firewalls are deployed as reverse proxy as shown in figure 1. Due to inspection

of heavy traffic, these firewalls cause a delay in response time depending on the complexity of

the filter [6]. These firewalls are known as “Deep packet inspection firewall”. Due to complex

filtering mechanisms these firewalls introduce higher processing loads than routing [7] [8] [9].

For instance 300,000 packets per second have to be processed by a firewall that interconnects

two 100MBPS networks [10]. Such a thorough filtering of traffic causes significant performance

degradation [7] [11].

Application firewalls work by determining whether a process should accept the given

connection. They accomplish their functionality by the connections between lower layers of the

OSI model and the application layer by hooking into socket calls. These application layer

firewalls are also called socket filters.

Application firewalls work in two modes i.e.: active or passive. Active application firewalls

inspect all incoming requests actively against known vulnerabilities such as parameter and

3

cookies tampering, cross-site scripting and SQL injection. Only “clean” requests are passed to

the application. Passive application firewalls acts like IDS (Intrusion Detection System). They

also inspect the incoming requests for known vulnerabilities, but they do not deny or reject those

requests if a potential attack is discovered [12].

Application layer firewalls improve the overall security of the application infrastructure by

preventing attacks that are likely to cause a service outage or structural damage to data sources.

Application layer firewalls are generally remotely updateable, which allows them to prevent

newly discovered vulnerabilities. These firewalls are more advance as compared to adding

specific security-focused code in applications, as it requires longer development and testing

cycles.

Application firewalls improve overall security of infrastructure of an application by defending

against attacks that can cause structural damage to data sources or service outage. These

firewalls are generally remotely updateable and thus they prevent recently discovered

vulnerabilities as well.

The motivation of this research is to design WAF architecture to prevent all the attack

vulnerabilities mentioned above.

4

Network Firewall

Internet

Web Servers

DM2

Intranet

1 U

WAF

HTTP/HTTPS

Traffic

Figure 1: Deployment of Web Application Firewall as Reverse Proxy

1.2 Scalability

It’s the application or system property to cope with increased amount of work in an expanded

way in situations like increased demand for processing, network, file system resources or

database access. Scalability is a major need of web-bases systems to be able to accommodate for

more user requests in terms of complexity and number. Increasing the number of servers to cope

with increased user requests is not an actual solution of scalability problem as it creates bottle

neck at front end by moving it from back end. This risk even higher when put into consideration

that web-based applications require that the front-end component can catch more information

that exists at application level instead of TCP level.

5

Node Node Node

Load

Balancer

Node Node Node Node

Load

Balancer

Scales

out

Virtual Node 1

Virtual Node 2

Virtual Node 3

Virtual Node 0

Dual Core

Dual Processor

32MB Ram

Virtual Node 0

Virtual Node 1

Virtual Node 2

Dual Core

Single Processor

16MB Ram

Scales Out

Figure 2: Horizontal Scalability-new node with identical functionality is added in a system to redistribute the load

Figure 3: Vertical Scalability- adding more main memory, network interfaces

to a node or processing to satisfy more requests.

6

There are two types of scalability horizontal and vertical. Horizontal scalability means adding

new nodes with identical functionality in a system to redistribute the load. Web servers and SOA

scale out by adding more servers to network which is load balanced so that incoming user

requests many be distributed among them. Common term for this approach is cluster. Vertical

scalability means expanding system by adding more main memory, network interfaces to a node

or processing to satisfy more requests. Hosting services companies usually follow this approach

by increasing the main memory and number of processors to host more virtual servers in the

same hardware.

Single process based WAF is not suitable for large scale organizations due to heavy load. In this

research we have proposed a more scalable WAF architecture suitable for heavy traffic.

1.3 High Availability

Availability is defined as the provision of useful resources by the system over a defined period of

time. High availability is represented by high functional continuity with in a time window

represented by the relationship between downtime and uptime.

 A = 100 (100*D/U)

In above equation U stands for uptime and D for downtime. U and D are represented in minutes.

Availability and uptime is not the same thing. System may be up but unreachable and thus

unavailable due to network issues. However unavailability and downtime are synonymous.

Availability can be measured as the number of seconds or minutes of estimated downtime with

respect to number of seconds or minutes in 525,600 minutes or 365 day year, with U as constant

term.

WAF is deployed as reverse proxy. If it fails, all web servers become unavailable. The WAF

architecture proposed in this thesis is highly available as if any WAF node fails or overloads,

another WAF node takes its charge.

1.4 Cluster

Cluster is a group of computers which are connected in a manner that they work together in such

way that for the users they appear to be a single system. They are used to improve availability,

services, computational power or data manipulation performance. Clusters are more cost

7

effective than a single computer with the same computational power. Systems which are part of

cluster are connected to each other over very high speed LAN like gigabit Ethernet, Myrinet,

Infiniband or other technologies. WAF architecture proposed in this research is cluster based so

provides scalability and high availability.

1.5 Load Balancing

Load balancing is used for maximizing throughput and minimizing response time by distributing

requests among maximum available resources. There are two types of load balancing stateless

and state-full. Scheduling algorithms are used to determine which user request is to be forwarded

to which server. Web services and applications are mostly balanced by using round robin

scheduling algorithms. Expiration algorithms and frequency rules are used to balance caching

pools. Pseudo-random schedulers may use in applications where stateless requests arrive with

uniform probability for any number of servers. Applications where some content is statically

more popular, like music stores, may use asymmetric load balancers to forward popular requests

to higher performance servers and rest of the requests to less powerful clusters or systems.

In state-full applications customer is guaranteed to maintain a session with a specific server in a

pool. These applications require sticky or persistent load balancing. Figure 5 shows persistent

balancer that maintains sessions from multiple clients.

Figure 4: Stateless load balancing- scheduling algorithms are used to determine which user request is to be forwarded to

which server.

8

Figure 5: State full load balancing- customer is guaranteed to maintain a session with a specific server in a pool.

WAF slows down as the number of users increase from three thousand and is almost unavailable

after seven to eight thousand users load. The WAF architecture proposed in this research

automatically shifts the load to other WAF nodes if one node is overburdened.

1.6 Fault Tolerance

Redundancy in system design is based on assumption that failure of any system component is

independent of failure of other components. Fault tolerant system remains available in case of

failure of one or more components. Although overall efficiency and throughput decreases but

still these systems remain available. Component redundancy is use to handle software or

hardware faults. Fault tolerance requirements are taken from SLAs and their implementation

depends on software or hardware components, and on their interaction rules.

As the WAF architecture proposed in this research uses multiple WAF nodes, system is fault

tolerant along with highly available as failure of one node does not fail the overall system.

1.7 Motivation

Web application security is a vast area which is expanding day by day. WhiteHat Security’s own

research from weekly assessments of hundreds of the largest and most popular public-facing and

pre-production websites confirms this fact: 9 out 10 websites have vulnerabilities [13].82% of

websites have had at least one security issue, with 63% still having issues of high, critical or

urgent severity [14]. Due to the increasing number of attacks on the web applications, prevention

and detection of these attacks are very difficult at the application layer. There is a need for

Sticky Load

Consumer Consumer Consumer

Node Node Node Node

https://www.whitehatsec.com/home/resources/stats.html
https://www.whitehatsec.com/home/resources/stats.html

9

common way of representing knowledge of web attacks which can help security community in

detection and prevention of these attacks. Current architecture is suitable for SME (small and

medium size enterprise), but has performance issues in large scale enterprises. Current

architecture of WAF has the following limitations: It does not provide fault tolerance and

scalability and it does not utilize the resources of the system completely being a single JVM

process. Motivation is to create a scalable and fault tolerant system that would be suitable for

large scale organizations.

1.8 Objective

Application layer Firewall is required because traditional network firewalls do not understand

attacks directed at the code of the application using the normal channels through which the

application is reached legitimately such as HTTP and HTTPS (SSL) for web applications. If the

traditional firewall monitors TCP port 80, the traffic is allowed through; no matter what

malicious code it may contain. So there is a need of application layer firewall which prevents

attacks on the top 3 layers of OSI model i.e. session, presentation and application layer.

Scalability and fault tolerance are desirable attributes for every system specially WAFs. The

objective of this research is to introduce a scalable and transparent fault tolerance mechanism

that is a need to design a distributed architecture for WAFs. The objective is how to introduce the

scalability and transparent fault tolerance without causing any performance degradation in the

system.

1.9 Thesis Organization

This thesis is ordered into seven different chapters. Chapter 2 provides an extensive literature

survey of the existing ontology in the web application security. Chapter 3 presents the current

system architecture. Chapter 4 presents the proposed system architecture. Chapter 5 presents

the system design and Implementation. Chapter 6 presents evaluation and testing. Chapter 7

presents conclusion and future work.

10

CHAPTER # 02

Existing Work & Literature Survey

11

This chapter provides the background knowledge for this research. It gives a detailed overview

of ontology that currently exists in the Web Application Security domain.

2.1 Resource Utilization in Java based Process

Each java program runs as a single process. It does not share memory with other processes. Each

process is allocated with a memory called as heap memory with other processes. In normal

circumstances JVM handles the heap by creating java heap for each JVM process. -Xms and -

Xmx settings are used to configure the heap size. A JVM process can only get 2GB of memory if

underlying OS is 32-bit at maximum [15], but actually this level has never been attained.

According to various blogs only 1.5 GB can be achieved by a single JVM process, including

Heap Size and others (others includes permanent space, code generation, socket buffers, thread

stacks, directed memory space, JNI code, garbage collection, and JNI allocated memory) as

shown in figure 6. Since the process of object creation leads to memory locking, hence on a

multi-CPU machine (threads run concurrently) there can be contention of memory locking

resulting in performance degradation [15]. If JVM have not enough memory for such operation,

it is liable to crash. Although current architecture is suitable for SME (small and medium size

enterprise), but has associated performance issues on large scale enterprises. Being a single JVM

process, it does not utilize the resources of the system completely.

Figure 6: Memory allocation to a java process

12

2.2 URL Formalization

The purpose of URL formalization is to implement the URL table so that it can facilitate a fast

lookup. Each node in the URL table is a variable length alphabet string. Therefore, tree-like [16]

data structure is considered to be the most common solution to implement a data structure that is

generally used for storing strings. Trio is based on the idea of tree structure in which each string

is represented by a leaf and the value of the string corresponds to the path from the root of the

tree to the leaf. But basic tree-like data structures demand large storage requirement. Moreover

they need multiple (depend on the string length) costly memory access. If such string searching

function is implemented in the layer-7 router that will be severe performance degradation. The

primary task is to convert each variable-length string into fixed-length binary string by using a

hash function. The binary string is stored in a LC-tree [17] [18], which is a level-compressed

version of trio having the ability of efficient lookup [17]. When a packet conveying HTTP

header arrives, the content aware routing mechanism retrieves the URL in the HTTP header.

Then it uses the same hash function to convert the URL into the fixed length binary string. For

example, a URL /entertainment/music/JAZZ/ has been converted to a string composed of 6e70,

4aTf and aTb3 (here, hex is used for convenient expression). In the URL table, a search for an

entry is being made by the muting mechanism to get the longest match when compared to the

binary string. This mechanism experiences the overhead of retrieving variable length string and

name conversion. Since the HTTP header is composed of variable length strings, hence parsing

the header to retrieve the necessary information for content-aware routing turns out to be a

significant burden. For further accelerating the lookup in the URL table, a novel mechanism

termed as URL Formalization is used. The problem can be solved by making every directory and

file of the Web content as formalized expression. Hash function then is used to convert the

original name of every directory and file into a fixed length and formatted name. Afterward, the

html files and script files that generate dynamic content is parsed by another program. Then it

modifies the embedded hyper-links to conform the new name. For example, if an embedded link

points to the URL for example “http://pds.cse.nsysu.edu.tw/people/myluo”, should be converted

to “http”//pds.cse.nsysu.edu.t /[[/4593/6827/”, where the name “people” and “myluo” are

converted to a formalized name 4593 and 6827 respectively, and the “[!” is a preamble. The

preamble is a “magic number”, which is designed to specify that the following path name is a

formalized URL. This also implies that the name of the first level directory is the name of

13

preamble, and all the hosted content should be placed under this directory. The preamble design

is of significant importance. It enables the routing mechanism to know whether the URL of a

request is in normal form or formalized form. Since the operations of parsing and reconstructing

the HTML files and scripts are pre-computed off-line hence they do not inflict any performance

penalty on regular operations of the server system and the request routing mechanism. The

reason of using a variable-length alphabet string to name a file or directory is because it is

mnemonic, therefore becomes easier for humans to memorize. However, in most cases URLs are

invisible to the users and they do not care about the name of URL. Ann HTTP request is issued

when the browser follows a link: either explicitly, when the user clicks on an anchor, or

implicitly, via an embedded image or object.

2.3 Content-Aware Routing

Numerous distributing mechanisms have been proposed over the past few years. These schemes

can be classified into the following categories: client side approach [2] [3], DNS-based approach

[4] [5], TCP connection routing [6] [7], HTTP redirection [8], and content-based routing [9] [10]

[19]. Among these, Content based routing mechanism is the best choice to the Web hosting

environment. The reason is that other schemes only can perform request routing based on some

simple criterion, thus these simple routing schemes are no longer adequate. On the contrary, the

content-aware routing mechanism can offer many potential benefits [19], such as sophisticated

load balancing, QoS support, session integrity and flexibility in content deployment. The method

of content-aware routing can be summarized as follows: a dispatcher node that executes the

routing mechanism is responsible for pre-forking a number of persistent connections to the back-

end nodes. The system resources are then allocated by dispatching client requests on these

trunks. The client side browser first need to create TCP connection, as a client tries to retrieve

specific content. The incoming TCP connection requests are acknowledged and handled at the

dispatcher until the client sends packets conveying the HTTP request, which contains the URL

and other HTTP client header information. A decision, regarding how to route the request is

made by the dispatcher by looking into the HTTP header. The dispatcher then opts for a server

that is best suitable to this request. It then chooses and idle pre-forked connection from the

available connection list of the target server. The related information about the selected

connection in an internal data structure termed as “mapping table” i.e. binding the user

14

connection to the pre-forked connection is then stored by the dispatcher. Once the connection

binding is established, the dispatcher handles the consequent packets by changing each packet’s

IP and TCP headers. The packet between the user connection and the pre-forked connection are

seamlessly relayed so that the client and the server can transparently receive and recognize the

packets. In case of server overload or server failure, the request can be migrated to another node.

To ensure high reliability the server cluster should comprise on two important capabilities:

checking and failover. That is, some intermediate state of user requests should be logged

periodically by failover mechanism. It should enable the ongoing requests on the failed node to

be continued processing with a valid intermediate state in another working node. Both these

techniques have been scrutinized and are well-known in the research area of fault tolerance, but

implementing these techniques in the distributed web server still causes many novel challenges.

It is quite expensive to log every incoming request for check pointing. In a Web hosting system,

all contents are not equally important to the client and the service provider because of their

importance or cost, some of the hosting contents cannot tolerate service disruptions. The

distributing mechanism can differentiate the important requests (e.g. requests for mission critical

services or requests for content owned by important customer(s) from regular web surfing

requests with the content-aware routing capability. Moreover to recover a web request of failed

server to continue execution in another working node is a challenge. Such recovery mechanism

should be user-transparent and smooth.

2.4 Content Aware Distribution vs. NAT Base Routing

For routing request to individual servers within cluster, the existing NAT base approaches have

usually emphasized only on user transparency, load distribution and scalability. While content

aware distribution take into account other issues as well and are integrated in content aware

distribution.

2.4.1 Session Integrity

Since the HTTP protocol is stateless i.e. Web server executes each request independently without

relating that request to pervious or subsequent requests. However in many cases maintaining

state information is of vital importance for example, such state might contain the contents of an

electronic “shopping cart” (a purchase list in a shopping mall site) or list of results from a search

request. When the user visits a shop, or asks for the next 25 items from a search, the state

15

information from the previous request is required. Cookies or hidden variables within html forms

are among the schemes that have been employed to maintain state information. In a cluster-based

server, these methods might not be processed appropriately. In selecting a server, if the routing

mechanism doesn’t examine the content of each request then it can be possible that a request

belonging to session is dispatched to the wrong server because the state concept is an

increasingly critical part of web behavior for commerce, web-oriented database, and other

dynamic transaction applications; this might limit the usefulness of cluster architecture.

2.4.2 Sophisticated Load Balancing

To utilize the cluster resources evenly and efficiently, a server cluster requires some sort of load-

balancing mechanism for directing requests. In existing web sites, the service type of incoming

requests can be of various types as static web pages, dynamic content generated by CGI scripts,

or multimedia data such as streaming audio or video. Each request consuming the service time

and the amount of resources vary widely and depends on several other factors for example a

request for executing a CGI script normally requires a great deal of computing resources to static

file retrieval requests. This heterogeneity in request often results in skewed utilization of server

cluster consequently, a more sophisticated load-balancing mechanism based on the service type

of each request is essential. In many existing systems the load balancing capability is still limited

because they don’t consider service type of each request.

2.4.3 Differentiated Services

The web persists to develop from its preliminary role as a provider of read only access to static

documentation-based information, and is becoming a platform for supporting complex services.

However, most current web servers, both cluster-based and monolithic provide service in a best-

effort manner that does not distinguish between the requirements of different requests. This

approach does not work well. Different services may have different requirements for quality of

service. It is difficult to enforce priority policies and provide desired quality of service if the

routing schemes don’t match the server type of each request. Otherwise, not all content are

equally important to the client and server provider. However, requests for popular pages have the

tendency to overcome the requests for other critical pages such as product list or shopping-

related pages. Consequently, enterprisers and service providers want to exert explicit control

over resource-consumption policies in order to provide differentiate quality of services due to the

variety of content.

16

2.4.4 URL formalization and context aware routing

Mon-Yen Luo and chu-Sing Yang discussed the architecture and some key mechanisms of an

integrated framework for providing reliable and highly manageable web hosting service on a

scalable server clusters system [20]. A novel idea of URL formalization and corresponding data

structure has been proposed by them for load balancing and fault tolerance, they had used a

content aware routing algorithm. Content aware routing algorithm takes decision on the basis of

URL table where URL table contains tree model of web application, pages content size, priority

and processing nodes. By using hash table or hash tree, a URL table can be implemented. On

base of parent URL, they have provided decision specific to URL as well as wild card. By

introducing the cache in the system, the performance of routing decision can be improved. A

heart beat mechanism is used to monitor the reliability of a node which is based on the adoptable

beat rate depending on the load on that node. Due to that dispatcher it is able to recognize the

load on the particular node. Two kinds of values are being sent in a probe packet one is warning

value that is sent when the node is loaded the other value is dead value which is assumed when

packet is not received to the dispatcher after the specified time interval. They have provided a

system claiming no performance degradation; providing intelligent heart beat system and

transparent fault tolerant mechanism but the drawback of the system is that it is application

specific solution and it needs lot of details from the application.

2.4.5 Highly available clusters

Pablo Neira Ayuso, Rafael M. Gasca and Laurent Lefèvre discussed the three major issues about

the firewall architecture in their research [21]. Among these issues, the first issue one is the

performance issue which causes reduction in the bandwidth and throughput of the network.

Second issue is availability and the third issue is complexity. According to them, performance is

the principal issue because if that is not determined the firewall may turn out to be bottleneck in

the system. The four different architectures of firewalls conferred by the authors are as follows:

 The Primary-Backup approach

 Multi-Primary Multipath Firewall Cluster

 Multi-Primary Firewall Cluster Sandwich

 Multi-Primary Hash-Based State full Firewall Cluster

Some of these architectures are applicable to stateful firewalls while the rest are applicable to

stateless firewalls. The most effective architecture also relevant to WAF is ’Multi-Primary Hash-

http://dl.acm.org/author_page.cfm?id=81453660329&coll=DL&dl=ACM&trk=0&cfid=86508661&cftoken=83051355
http://dl.acm.org/author_page.cfm?id=81100510118&coll=DL&dl=ACM&trk=0&cfid=86508661&cftoken=83051355
http://dl.acm.org/author_page.cfm?id=81100473827&coll=DL&dl=ACM&trk=0&cfid=86508661&cftoken=83051355

17

Based State full Firewall Cluster’ because this architecture is for state full firewalls like WAF.

2.4.6 High performance load balancing algorithm in Jcluster

Bao-Yin Zhang1, Ze-YaoMo1, Guang-Wen Yang2 and Wei-Min Zheng illustrated the API

provided for the dynamic load balancing and high performance communication named Jcluster in

their research [22]. For efficient load balancing, Jcluster is considered to be an efficient Java

parallel environment. They designed a task scheduler which is responsible for scheduling the

task between the nodes. If any node is becoming stale, it aids that node to steal a task from the

busy node. The task scheduler is based on a Transitive Random Stealing algorithm. They have

also improved the random stealing algorithm which was based on selecting the task randomly if

the working queue of that node is empty. By introducing the transitive policy, they have

improved the RS algorithm. In their scheme any idle node can obtain a task from another node

with much fewer stealing times on a large-scale cluster. This significantly reduces the idle time

for all nodes and also the network communication overhead and ultimately contributes in

enhancing the scalable performance of the system. The system is implemented in Java pure Java

implementation of the system makes it suitable for heterogeneous clusters.

18

CHAPTER # 03

Current System Architecture

19

3.1 SWAF

As discussed previously (section 1.3) a brief about Web Application Firewalls has been

elaborated. When Network Firewalls came up with maturity to handle attacks on network layer, a

great shift of attacks were cited when it focused on application layer too. Until recently a great

volume of research has been dedicated to handle attacks on this layer including the current

developed product. For real time results and effectiveness it is tested with an already existing

firewall known as SWAF (Semantic Based Web Application Firewall).

The current system of SWAF is multi-threaded single JVM process. All components discussed

later are the part of the single JVM process. The system has the following features:

 The system is based on some effective semantic technique that enables system to

understand the context of user input.

 The system generates attack rules automatically.

 The attack rules contain the general representation of attack.

 The system minimizes the human intervention by making most of the task automatic and

provides user friendly interface to the administrator.

Application level attacks can only be catered at the application layer. Security mechanism on the

application layer means that it knows the context of the application layer. Therefore to capture

the context of application layer some semantic technique is required. In a Web application with

TCP/IP suite, the application context refers to the deployed application and the underlying

application layer protocol.

3.2 Ontology for designing of Context

The proposed solution contains the context of underlying protocol i.e., HTTP, general web

application working, and the application level attacks. In addition, it also contains the content

structure i.e. HTML. Ontology has been used for engineering the required knowledge. The

ontological representation enables the system to reason over the context supplied and generates

more assertions. An explicit specification for a conceptualization is termed as Ontology [23]. To

provide a formal specification of the concepts and relationships that can exists between entities

within a domain, IMP Ontology is used. It offers powerful constructs that include machine

interpretable definitions of the concepts and the relations between them. Ontology provides the

significant and sufficient constructs that are required to enable a software system to reason over

20

an instance of the entity within domain [23]. An ontology representation language is used to

design and implement a data model, depicting the domain of application layer attacks and

intrusions. Ontology facilitates powerful constructs that expresses concepts as machine

interpretable definitions and their relations within the domain. This feature enables different

software systems (most probably deployed in heterogeneous environment) to share a common

understanding of information under consideration. Moreover, it allows the software systems with

an immense ability to reason over and analyze this information. Accordingly, ontology is

designed to enable knowledge sharing and reuse between the entities within a domain [24].

Ontology representation languages may be represented into first-order relational sentences and a

set of first-order logic axioms. This mapping doesn’t allow the interpretations of the non-logical

symbols [25], which enable the instances of the ontology to be operated over using formal and

complete theorem proves.

3.3 Rule Based Reasoning

Similarly, in order to manipulate ontology rules are required. Rules also enable rule based

reasoning on the layer above the ontology. Hence Knowledge base contains the ontology and

rules. The information required to create attack representation automatically is enclosed in the

inferred result. This functionality is required to query the inferred model to construct attack

representation using that inferred model. By using rule based reasoning over knowledge base,

inferred model is constructed. This model is then used to generate attack detection rules.

21

Web Application Firewall(WAF)

HTTP Interceptor Logging and Monitoring

Rule-based Analysis Engine Knowledge Base

Interceptor

Parser

Log Manager

Admin ConsoleLogger

Inference Engine

Analyzer

Rule Generator

MySQL

Database

Ontology

Store

Rule

Cache

HTTP Traffic

Web Server

Web

Application

Figure 7: Current System Architecture- the System is designed as a surrogate proxy/reverse proxy that is deployed in

front of web server intercepting all incoming and outgoing requests to and from the web server.

3.4 System Architecture

The System is designed as a surrogate proxy/reverse proxy that is deployed in front of web

server intercepting all incoming and outgoing requests to and from the web server. The system

has the capability to shield all attacks to web application. The architecture of the proposed

system is shown in figure 7. The main components include HTTP Extractor, HTTP Parser,

Packet Analyzer, Rule Engine, Ontology Manager, Inference Engine, Logging Module, and

Knowledge Base. The different components are summarized as follows:

3.4.1 Ontology Manager

For querying of knowledge base, the interface is provided by Ontology manager. A popular Jena

API is contained in it. This free and open source API is developed by IBM. For manipulating

Ontology, Jena API provides an extensive set of API.

3.4.2 HTTP Extractor and Parser

HTTP Extractor is accountable for extracting HTTP messages from raw network stream. The

22

extracted messages are then sent to the HTTP Parser. According to the standardized message

format, the Parser parses the HTTP message. The convention of HTTP 1.1 has been followed by

us in parsing out the HTTP message. It creates HTTP parsed message object and then send it to

analyzer.

3.4.3 Analyzer

On the basis of semantic rule object, analyzer performs analysis on the received HTTP parsed

message object. This module is accountable for detecting intrusion, generates alerts, directs

logging module to log single message or whole session. The actions such as packet drop, session

tear-down, redirecting to the logging module are also carried out by it.

3.4.4 Rule Engine

For creating semantic based rule object, rule engine is used. The rule engine is used to define the

principle of governing, conduct or to guide behavior actions. In SIDS, on the basis of the

knowledge stored in the knowledge base, rules are created automatically. Rules are generated by

the Rule engine after querying the inferred model. Rule object consist of two parts.

3.4.4.1 Filter/ Indicator

The attacks at specific portion in the HTTP Message are detected by Indicators. Regular

expression is used to build indicators.

3.4.4.2 Rule action

The actions that should be executed when the corresponding indicator is found or matched, is

contained in rule action. Alert, Log, Discard, Allow and Ignore are the examples of rule action.

3.4.5 Admin Console

It facilitates the administrator by providing an interface. Through the interface, the admin can

either configure the system or can write commands for further assistance of administrator alerts

are also displayed on admin console.

3.4.6 Logging Module

It provides the facility of logging messages or whole session.

3.4.7 Cache Controller

Cache Controller is responsible for managing cache content. For additional inspection, it

temporarily caches the message or session. Moreover, it provides faster mechanism for sending

message to the web application. One copy of the message is send to the cache while the other is

23

send to the Parser by HTTP extractor. Message is from the cache to the web application, if it is

legitimate. It obviously saves time of rebuilding the message from parsed message object.

3.5 Session Based Attacks

SWAF not only detects the request base attacks, but also keeps track of attacks that may occur

not based on single request. The attacks that can be launched using more than one request are

called session base attacks for these types of attacks SWAF maintain state regarding client traffic

and session. Following are the types of attacks currently handled by SWAF

3.5.1 Session Fixation

System vulnerability can be exploited through session fixation attack which is possible to fixate

some person’s session identifier. Most of these attacks are web based, and rely mostly on

acceptance of session identifiers from POST data or URLs (query string). For fixing this attack

SWAF uses following prevention mechanism. SWAFTOKENID is generated and associated

with each client’s session. SWAFTOKENID is attached with each request in that client session is

either in query string or in post data parameter. All SWAFTOKENIDs are store in memory table

in SWAF. Each SWAFTOKENID is associated with cookies and client IP. One

SWAFTOKENID can only be assigned to a single client and if same SWAFTOKENID is

received from different client IP, SWAF considers it as session fixation attack.

3.5.2 Session Hijacking

Session hijacking is a valid computer session exploitation to gain unauthorized access to services

or information in a computer system. The attack is basically launched using the cookies use to

authenticate a user to remote server. This attack is particularly relevant to web developers, as the

HTTP cookies which are used to maintain session on websites can easily be stolen using an

intermediary computer or by accessing the saved cookies on victim’s computer. SWAF handles

this attack in a way similar to session fixation. Same SWAFTOKENID and memory table is used

to prevent this attack and cross site scripts (XSS) are disabled as well.

3.5.3 CSRF

CSRF is abbreviation of Cross-site forgery. It is also known as session riding or one click attack.

In this attack unauthorized commands are transmitted from a user that the website trusts. In

contrast to XSS (Cross Site Scripting) which exploits the user using a site user trusts, CSRF

exploits the trust that site has in some user’s browser. SWAFTOKENID is also used to prevent

24

CSRF attacks. All responses have some links. SWAF attaches a SWAFTOKENID with each link

before forwarding it to client. When any request sends through this link from client,

SWAFTOKENID in request query string and at SWAF server is matched. If both

SWAFTOKENID are same, the request is legitimate else considered as CSRF attack.

3.5.4 DOS (Denial of services)

Using denial of service attack, an attacker makes a network resource or computer unavailable to

its intended users. Although motives for, targets of and means to carry out this attack may vary,

but it is actually an effort to prevent a site or service from functioning efficiently either

indefinitely or temporarily. For preventing DOS attack IP and IP/resource tables are used for

SWAF. Information recorded in IP table is client IP, total no of requests sent/second and

information recorded in IP/resource table is client IP, resource URI and total no of requests per

second. If any client IP exceeds limit from any table, its request will be blocked, thus preventing

DOS attacks.

3.6 Limitations of current system architecture

Java based technology is used to implement the current system. It works as a single JVM

process. There is an obvious limitation of being single process (JVM process). Current

architecture is suitable for SME (Small and Medium size Enterprise), but has performance issues

on large scale enterprises. Current architecture of WAF has the following limitations:

 It does not provide fault tolerance and scalability.

 Being a single JVM process, it does not utilize the resources of the system completely.

This architecture works as the single JVM process hence limited to utilize the only resources

provided to a single process by operating system. Even though the system is multi-threaded but

still it is treated as single process by operating system. Because of tight mapping of different

components with each other, current architecture does not support scalability. Depending upon

user load, other instance can be created. Using only a single thread to intercept all requests will

result in creating a bottle neck in system hence failure of any component can cause the whole

system to crash.

 The weaknesses of current solution are listed as under:

 It works as a single JVM process

 It is not scalable for large scale organizations.

25

 In case of failure, no fault tolerant mechanism is available.

3.7 Summary

This chapter scrutinizes the idea for an effective application level security mechanism. Most of

the issues in low traffic server solutions have been the major concern of current system. The

present high level architecture for semantic based application level intrusion detection system

has also been presented by the current system besides, various components in the current system

architecture has been highlighted.

26

CHAPTER # 04

Proposed System Architecture

27

This chapter discusses proposed architecture detail. It states that we can overcome the limitations

of the current system and the mechanism to over comes those limitations Implementation of

those components is discussed in detail in next chapter. This chapter explains high level

overview of the components of the proposed architecture. It also describes high level architecture

diagram of our proposed system shown in Figure8.

Figure 8: High level architecture diagram of proposed Architecture- for load balancing a very thin dispatcher is used

which takes very little time to load balance

The major problem in current architecture is that it is creating a bottleneck for overall system.

The main reason is discussed in previous chapter was the deep inspection of the contents as

HTTP request and response both are inspected so it takes lot of time in over all request response

cycle. In order to avoid this delay more than one WAF can be used to divide the load. This

approach also works better in the case of large number of users. For load balancing a very thin

dispatcher is used which takes small amount of time for load balancing Due to multiple

instances of WAF in proposed architecture not only load balancing but fault tolerance is

achievable. In case of a failure of one WAF node all its traffic can be redirected to other WAFs.

By making the fault tolerance mechanism transparent, the request can be cached at dispatcher till

the response receives and state of WAF is maintained at central point so that all WAFs can

access that information.

Cache0 Cache 1 Cache 2 Cache 3

Distributed Cache of WAF

Node

WAF

Node

WAF

NodeWAF NodeWAF

Dispatcher

28

4.1 Dispatcher

Dispatcher is introduced in front of WAF in proposed architecture to make the architecture

distributed. First goal is to design the dispatcher in such a way that it should take minimum

amount of time to parse the request, to take decision in selection of WAF node for request and to

send back response to the user. Similarly transparent fault tolerance can be achieved in case of

failure of any WAF node, and dispatcher stores any necessary information regarding that

purpose. Following are the major components of dispatcher as shown in figure 9

Figure 9: High level architecture diagram of dispatcher- major components are protocol handler, cache, listener and

parser, heart beat mechanism, fault tolerance module and load balancer.

4.1.1 Protocol Handler

This module is used to define the implementation of protocols to be handled by the dispatcher

and create listener for that protocol. Dispatcher is not protocol specific; it can be used for any

kind of protocol provided that handling mechanism of the protocol is defined in dispatcher. Any

Protocol can be added to this module by providing details of that protocol.

4.1.2 Listener and Parser

This module is used to create listener for the protocols specified in the protocol handler. Listener

is responsible to open a port (either the default port or configurable port) defined for that

protocol. Similarly parser is responsible to parse the incoming traffic in required format. The

29

parser is again protocol specific; for each protocol its parser should be written. In proposed

architecture main goal is to create a very light weight parser. The parser for HTTP protocol is

written in such a way that it takes minimum time and gets only required information in formatted

output. For now it is only getting request line of HTTP protocol and session information and

client information is being used from listener part of the module.

4.1.3 Load Balancer

This module is used to distribute the load among the available WAF nodes. The load balancer is

using weighted round robin algorithm for this purpose. Each WAF node has been assigned a

weight on the basis of resources available on that node. By the time the weight of the node is

being incremented on the basis of the traffic load assigned to that node. Load balancer selects

next WAF node on the basis of load balancing algorithm defined in section 4.1.2. Stateful load

balancer is used in the dispatcher which keeps track of client state. If any WAF node is assigned

to a particular client same WAF node will be used for that client in that particular session until

and unless that node is not failed.

4.1.4 Cache

This module caches the client request until its response is received from the WAF node. This

module is used to hold client request information for short period of time so that if request sent to

the WAF node get failed due to failure of WAF node that request can be send again using other

WAF node and provide transparent fault tolerance to the user.

4.1.5 State

This module is used to hold the states of client. The state information includes the client IP,

session ID and the WAF node assigned. This information is useful for stateful load balancing. As

dispatcher is using stateful load balancing it gets client information from this module and assigns

WAF node accordingly.

4.1.6 Fault Tolerance Module

This module handles any failure in WAF node. This module uses information from cache

module and state module. When any failure detected by heart beat system, it sends its

30

information to fault tolerance module which in turn gets that request information from cache

module. System gets next WAF node with the help of load balancer module and send request to

the newly selected WAF node with failed WAF node information. This information is being sent

using special HTTP header. When any WAF node reads that header, it reloads the state of the

failed WAF node in its own state and process that request.

4.1.7 Heart Beat System

This module is used to ping WAF nodes on configured time to check the availability and load on

the WAF nodes. When heart beat mechanism finds any WAF node’s failure it activates fault

tolerance mechanism.

4.2 Load Balancing Algorithm

The stateful load balancer is used in the proposed architecture so that client’s first request is

assigned to any WAF node and all subsequent requests from that client will be sent to that

particular WAF. Load balancing algorithm selects node on the first request and assign the same

WAF node on subsequent requests until and unless that WAF node fails. The steps of algorithm

are given below.

1. When HTTP request is received in listener module, it calls load balancer which is

responsible for selecting the WAF node.

2. Load balancer used in dispatcher is stateful. So in the first step it coordinates with state

module and checks if the state of the client is stored there.

3. If the client’s state with same session ID exists in the state module; it assigns that request

to that particular WAF node.

4. In case state of client is not present in state module it means it is first request from that

client and load balancing algorithm uses weighted round robin algorithm to select WAF

5. The request is assigned to that selected WAF.

6. The request is cached in cache module so in case of any failure it can be used. The state

of client is stored in state module. State contains client IP, session ID and selected WAF

node.

31

4.3 WAF’s virtual cluster

After the Dispatcher the second level in high level architecture diagram shown in figure 8 is

WAF nodes. Web application firewalls deeply inspects the HTTP traffic and takes time to detect

different kinds of application layer attacks. This process takes a lot of time so having single

WAF node as in current architecture was basic reason of bottleneck as all the traffic for the web

servers need to be passed through these WAF servers. Increasing resources on Web servers’ size

does not provide any scalability or fault tolerance in the system. Due to increase of users in the

system, system gets unavailable by the passage of time and traffic load. So there was a need of

multiple WAF nodes, which can share load among themselves. For this reason cluster of WAF

node is create. This cluster is called virtual cluster as it is a cluster of JVM processes rather than

physical machines. As discussed in earlier chapters there is certain limitation on resource

utilization of JVM process in a single system even if resources are available, so creating multiple

JVM processes on single machine can help to maximum utilization of resources on single

machine to provide vertical scalability. JVM process can also run on other machine to provide

horizontal scalability and any number of WAF node can be attached provided the support in

dispatcher module. Now in proposed architecture as WAF is not single, there is no single point

of failure. If any WAF node fails whole system will not unavailable. Thus fault tolerance can be

achieved with scalability of the system.

4.4 Distributed Cache of WAF

Web Application Firewalls WAFs are not only used for stateless application layer attacks but

they also take care of session based attacks, where attack can’t be detected from a single request

but it is detected from all the requests in that session. Similarly WAFs also take care of DOS

attacks. Mostly for handling session based attacks, WAFs store some information for that client

session. So for transparent fault tolerance mechanism if any WAF node gets failed there should

be some mechanism to recover the state of failed node so that session base attacks can be

detected. For this purpose distributed cache of WAFs is introduced in proposed architecture;

where each WAF node stores its state. That distributed cache is accessible to all the WAF nodes

in the cluster so that if any WAF node gets down, its state can be stored to other WAF nodes and

can handle session base attacks on bases of state maintained by the failure node.

32

4.5 Summary

This chapter shows top level proposed architecture of the system, different parts of the proposed

.are discussed Dispatcher contains Listener and parser, cache, state, load balancer, fault

tolerance and heartbeat module, which not only provide load balancing but also transparent fault

tolerance. Virtual cluster is used for scalability and fault tolerance purpose which provides

horizontal and vertical scalability. Distributed cache of WAF is maintained so that state of any

WAF can be restored in case of failure.

33

CHAPTER # 05

System Development

34

In chapter four proposed architecture was discussed. This chapter discusses in detail how the

proposed architecture is being designed and implemented. Implementation of all the components

along with all the classes and code snippet are discussed in detail. This chapter describes class

diagram of our system design shown in Figure10.

5.1 Dispatcher

As there is single dispatcher which is serving all the requests and distributes the load among all

WAF nodes, it takes minimum time to process the request. If the processing of dispatcher takes

more time it creates bottleneck in the system. So the main idea behind design and development

of the dispatcher is to “keep things simple and fast”. Similarly transparent fault tolerance can

be achieved in case of failure of any WAF node and for that necessary information is stored.

5.1.1 Protocol Handler

This module is designed in generic way it is not any protocol specific. Protocol is the top class in

the hierarchy as shown in figure 11. Any protocol needs to be child of the Protocol class.

Currently the implementation of HTTP protocol and FTP protocol is provided. Any protocol can

be extended easily in the dispatcher by providing the implementation and handling of that

protocol, which must be child of the main Protocol class as shown in figure 11.

5.1.2 Listener and Parser

This module is used to create listener for the protocols specified in the protocol handler. Listener

is responsible to open a port, either the default port or configurable port defined for that protocol.

Port is the main class of whole dispatcher. It has functionality of listener and parser. It runs

thread to listen traffic for the protocols specified in the configurations. Port is responsible to

parse the request. It only parses the request line of http protocol. Complete parsing of the HTTP

packet is avoided because it is time consuming. When any WAF node has been assigned, the

request is sent and received by LoadHandler class. In case of any error, ErrorHandler class takes

control and if necessary, gives control to QuitRunnable to kill that thread.

35

WAFServerMoni

tor pingTime: long

 stop: Boolean = false

 Run()

 Shutdown()

 isShutdown(): boolean

 setPingTime(time: long)

CacheObject

 modTime: long

 obj: Object

 setModifierTime()

 setModifierTime():

long

 getObject(): Object

ClientState

 clientIp: String

 sessionId: String

 server: WAFServer

 getClientIp(): String

 setClientIp(Ip : String)

 getServer(): WAFServer

 setServer(server: WAFServer)

 getSession(): String

 seetSession(sessionId : String)

Port

 port: String

 realServers: ArrayList

 nextIndex: int

 weightUsed: int

 stickyTime:long

 pingTime: long

 pool: PooledExecutor

 protocolName: String

 liveCount: int = 0

 clientCache: Hashtble

 Logger: Logger

 init()

 start(): boolean

 stop: boolean

 getRealServers(): ArrayList

 addRealServers(ip: String, Port: int)

 getPortStr(): String

 clear()

 getNextServer(addr: InetAddress)

 handleIncomming(in: Socket)

 getPool(): PooledExecutor

 getPort(): String

 setPort(prot: String)

 getStatus(): boolean

 getProtocolStr(): String

 getProtocol(): Protocol

 setStickiness(time: long)

 getPingTime(): long

 getInSocketOpts(): WAFSocket

 getOutSocketOpts(): WAFSocket

 incrementLiveCnt()

 decrementLiveCnt()

 getLiveCnt(): int

 getServerT(): PortDisplay

 fromXML(e: Element)

 toXML(buf: RxXXL)

ProtocolFactory

 Protocols: String[*] {unique}

 getProtocolList(): String

 getProtocol(name: String): Protocol

Protocol

 Name: String

 Props: Properties

 getProperty(name: String): String

 setProperty(name: String, val:

String)

 getProperties(): Properties

LoadHandler

 In: Socket

 Out: Socket

 Counter: int

 Run()

 doneDraining()

 drain(inp:InputStream, out:

OutputStream)

 handle(ex: Throwable)

FtpProtocol

HttpProtocol

PortDisplay

 portNumber: int

 socket: ServerSocket

 stop: Boolean = false

 totalCount: long

 Run()

 Shutdown()

 isShutdown(): boolean

 getTotalCnt(): long

CacheManager

 sleepTime: long

 cache: Hashtable

 stop: Boolean = false

 Shutdown()

 setSleepTime(time:long

)

<<Interface>>

ErrorHandler

Handle(ex:

Throwable)

QuietRunnable

 run

 execute()

LbStateManager

 clientStates:

Map<>
 addState()

 getClientState()

+Port

+Protocol

-Port

+LoadHandler

+Port

+MonitorThread

-Port

+Port

+ServerThread

+cacheManagerThread

+Eh {readonly}

+QuietRunnable

36

ProtocolFactory

 Protocols: String[*] {unique}

 getProtocolList(): String

 getProtocol(name: String): Protocol

Protocol

 Name: String

 Props: Properties

 getProperty(name: String): String

 setProperty(name: String, val: String)

 getProperties(): Properties

FtpProtocol

HttpProtocol

Figure 10: Class Diagram of Dispatcher

Figure 11: Class Diagram of Protocol

5.1.3 Load Balancer

This module is used to distribute the load among the available WAF nodes. Again Port class is

using weighted round robin algorithm to select next WAF node by using getNextServer() method

as shown in figure 12 above. This module keeps track of WAFs using WAFServer class. This

module maintains cluster table of WAF. WAFServer class contains IP, port and weight of WAF

node. WAFProcessor class is used to determine different characteristics of WAF node.

5.1.4 Cache

This module caches the client request until its response is not received from the WAF node. This

module consists of two main classes, one class is CacheObject and other is CacheManager as

shown in figure 12. CacheObject holds the client request and request time when sent to any

37

+LoadHandler

LoadHandler

 In: Socket

 Out: Socket

 Counter: int

 Run()

 doneDraining()

 drain(inp:InputStream, out: OutputStream)

 handle(ex: Throwable)

<<Interface>>

ErrorHandler

Handle(ex:

Throwable)

PortDisplay

 portNumber: int

 socket: ServerSocket

 stop: Boolean = false

 totalCount: long

 Run()

 Shutdown()

 isShutdown(): boolean

 getTotalCnt(): long

+QuietRunnable

+Eh {readonly}

QuietRunnable

 run

 execute()

+serverThread

Port

 port: String

 realServers: ArrayList

 nextIndex: int

 weightUsed: int

 stickyTime:long

 pingTime: long

 pool: PooledExecutor

 protocolName: String

 liveCount: int = 0

 clientCache: Hashtble

 Logger: Logger

 init()

 start(): boolean

 stop: boolean

 getRealServers(): ArrayList

 addRealServers(ip: String, Port: int)

 getPortStr(): String

 clear()

 getNextServer(addr: InetAddress)

 handleIncomming(in: Socket)

 getPool(): PooledExecutor

 getPort(): String

 setPort(prot: String)

 getStatus(): boolean

 getProtocolStr(): String

 getProtocol(): Protocol

 setStickiness(time: long)

 getPingTime(): long

 getInSocketOpts(): WAFSocket

 getOutSocketOpts(): WAFSocket

 incrementLiveCnt()

 decrementLiveCnt()

 getLiveCnt(): int

 getServerT(): PortDisplay

 fromXML(e: Element)

 toXML(buf: RxXXL)

-Port

WAF node. Request time updates if same request is sent to other WAF node in case of failure.

CacheManager is a thread which keeps track of requests which are being sent to WAF nodes but

still there response is not received.

Figure 12: Class Diagram of Listener and Load Balancer

38

5.1.5 State

This module is used to hold the states of client. The state information includes the client IP,

session ID and the WAF node assigned. ClientState and LbStateManager classes are used for

maintaining state of client in Dispatcher. ClientState has attributed to hold the information

required storing client information and LbStateManager keeps track of all the client states.

Figure 13: Class Diagram of Cache

Figure 14: Class Diagram of State

5.1.6 Fault Tolerance Module

This module handles any failure in WAF node. This module includes Port and LoadHandler

classes, ErrorHandler in the dispatcher and StateBackup and StateRecover classes in WAF node.

When any failure is detected by Port and LoadHandler classes, control is being transferred to the

CacheObject

 modTime: long

 obj: Object

 setModifierTime()

 setModifierTime(): long

 getObject(): Object

CacheManager

 sleepTime: long

 cache: Hashtable

 stop: Boolean =

false
 Shutdown()

 setSleepTime(time:long)

 run()

ClientState

 clientIp: String

 sessionId: String

 server: WAFServer

 getClientIp(): String

 setClientIp(Ip : String)

 getServer(): WAFServer

 setServer(server: WAFServer)

 getSession(): String

 seetSession(sessionId : String)

LbStateManager

 clientStates: Map<String, ClientState>

 addState(clientstate: ClientState)

 getClientState(clientIp: Sring) ClientState

39

ErrorHandler class which starts the fault tolerance mechanism. It gets next WAF with the help of

Port class update state, caches accordingly and sends request from cache to next WAF node. As

discussed earlier WAF also maintains state so in current design distributed cache is maintained in

shared directory where each WAF stores its state on a file using StateBackup class. When some

WAF node gets failed, selected WAF node recovers failed WAF node state by using

StateRecover class.

Figure 15: Class Diagram of Fault Tolerance

+LoadHandler

-Port

Port

 port: String

 realServers: ArrayList

 nextIndex: int

 weightUsed: int

 stickyTime:long

 pingTime: long

 pool: PooledExecutor

 protocolName: String

 liveCount: int = 0

 clientCache: Hashtble

 Logger: Logger

 init()

 start(): boolean

 stop: boolean

 getRealServers(): ArrayList

 addRealServers(ip: String, Port: int)

 getPortStr(): String

 clear()

 getNextServer(addr: InetAddress)

 handleIncomming(in: Socket)

 getPool(): PooledExecutor

 getPort(): String

 setPort(prot: String)

 getStatus(): boolean

 getProtocolStr(): String

 getProtocol(): Protocol

 setStickiness(time: long)

 getPingTime(): long

 getInSocketOpts(): WAFSocket

 getOutSocketOpts(): WAFSocket

 incrementLiveCnt()

 decrementLiveCnt()

 getLiveCnt(): int

 getServerT(): PortDisplay

 fromXML(e: Element)

 toXML(buf: RxXXL)

LoadHandler

 In: Socket

 Out: Socket

 Counter: int

 Run()

 doneDraining()

 drain(inp:InputStream, out: OutputStream)

 handle(ex: Throwable)

<<Interface>>

ErrorHandler

Handle(ex:

Throwable)

StateBackup

 run()

StateRecover

 run()

+QuietRunnable

+Eh {readonly}

QuietRunnable

 run

 execute()

40

5.1.7 Heart Beat System

This module is used to ping WAF nodes on configured time to check the availability and load on

the WAF nodes. WAFServerMonitor class is a thread which has specified ping time. It checks

periodically if all the WAFServers are responding or not. If any WAFServer becomes

unavailable it sets it’s wafServerStatus as false.

Figure 16: Class Diagram of Heart Beat System

5.2 Distributed Cache of WAF

In previous chapters it was discussed that WAF maintains state for prevention of session based

attack. So the concept of distributed cache is introduced i.e. there is a central repository where all

41

WAF nodes maintain their state which is accessible by all WAF nodes so if any WAF node fail

down, its status can be recovered. A shared directory is used where each WAF node writes its

status on any shared file after some regular time interval to prevent session based and DOS

attacks. This task is being done by using StateBackup class shown in figure 12. When any WAF

gets failed, its state is recovered by using StateRecover class shown in figure 12.

5.3 Summary

This chapter described detailed system design and implementation of all the components of

proposed system. It describes the class diagram for Dispatcher ant its module like Listener and

parser, cache, state, load balancer, fault tolerance and heartbeat module. Distributed cache of

WAFs is maintained in form of shared directory where each WAF writes its response in files so

the state of any WAF can be restored in case of failure.

42

CHAPTER # 06

Evaluation

43

6.1 Overview

In this chapter the focused evaluation is discussed while making the test runs and comparing

them over different setups. Test runs are performed on both Windows machines and on high end

Linux machines using different loads. Results are concluded at the end.

6.2 Evaluation Criteria

A tool named 'Jmeter' [26] by apache is used to test the system. Jmeter is stress testing tool

which is used to measure the performance outcome of an application. In this tool there are

several characteristics which help in setting up a test run for an application. Stress varies based

on these characteristics. The major characteristics of a test run includes following properties.

 Number of Requests / Second

 Total Number of samples in the test run

 Total Throughput of the test

 Error Rate

6.2.1 Number of Requests / Second

This parameter defines the concurrent number of requests generated by Jmeter in that test run.

Number of requests per second is defined as total number of users in the test run into the number

of requests generated by one user in one second. This parameter defines the work load to the

application in one second.

6.2.2 Total number of samples in the test run

This parameter defines the total number of sample (Requests) made to the application by the test

run. This parameter mainly depends on the number of samples recorded by Jmeter during the

recording phase of testing.

6.2.3 Total throughput of the test

Throughput is defined as rate of successful end to end communication. So in Jmeter all the

requests having valid response add in to throughput parameter.

44

6.2.4 Error Rate

Error rate represents any type of error code in response message or delayed or no response from

the application. The more the error rate, the fewer throughputs will be generated by the test run.

High error rate means application gets down during the test run. This factor helps us determining

the applications capacity.

6.3 Sample Applications

There are three sample applications used for the testing purpose. The ratio between static and

dynamic pages in each application is shown in figure 17.

 WebGoat

 WackoPecko

 Sample Static website

6.3.1 WebGoat

WebGoat is a deliberately insecure J2EE web application maintained by OWASP (Open Web

Application Security Project) designed to teach web application security lessons. In each lesson,

users must demonstrate their understanding of a security issues by exploiting a real vulnerability

in the WebGoat application. For example, in one of the lessons the user must use SQL injection

to steal fake credit card numbers. The application is a realistic teaching environment, providing

users with hints and code to further explain the lesson. This is completely dynamic website,

where pages are being created run time by using parameters in query String with static image

resources. This application contains 71 dynamic pages created on run time bases.

6.3.2 WackoPecko

WackoPecko is vulnerable website for learning and security tool evaluation. This application has

been built in PHP and hosted on wamp server. This application contains guest book and upload

picture and guest note with add delete functionality. This application has almost dynamic pages

while some pages are static like home page, contact us page and term and conditions page. So

this application contains 75% dynamic pages and 25% static pages. This application contains 12

pages.

45

6.3.3 Sample Static website

This is a sample static web site that contains static html pages and images. This application

contains 7 sample web pages plus images used on that website. This application is hosted on

wamp server.

6.4 Testing Results

6.4.1 Machine Specification

First tests are performed with small number of sample size. The machine has window 7 operating

system installed. The system specification of machine on which load balancer, multiple SWAF

application, web application (WebGoat, WeckoPecko and sample static site) and Jmeter was

installed to test the systems is given in figure 18.

6.4.2 Testing Scenarios

In testing, four machines are used.

 One is running load balancer and WAFs.

 All other running single or multiple WAFs.

 JMeter is running from 1 machine to 6 machines.

Load is tested with following scenarios

 Without load balancer 1 WAF node

 1 load balancer and 1 WAF node

 1 load balancer and 2 WAF nodes

 1 load balancer and 8 WAF nodes

 1 load balancer and 12 WAF nodes

46

Figure 17: Static versus Dynamic Pages in Sample Web Applications

Figure 18: Specifications of Windows System used for Evaluation

0

10

20

30

40

50

60

70

80

WebGoat WackoPecko Static Site

N

u

m

b

e

r

o

f

P

a

g

e

s

Web Applications

Dynamic Pages

Static Pages

47

Label #Samples Average Min Max Std. Dev Error % Throughput KB/sec
Avg.
Bytes

/WebGoat/image…. 58 1055 7 2068 816.64 0 8.9 0.07 476

/WebGoat/image…. 58 1096 10 1985 818.05 0 8.9 0.52 3605

/WebGoat/image…. 58 747 7 2026 791.12 0 8.9 0.1 690

/WebGoat/image…. 58 618 10 1981 737.42 0 8.9 0.46 3163

/wacko/ 100 9529 54 28670 7839.03 0 1.4 4.83 3563

/wacko/pictures…. 100 15131 263 32012 10152.07 0 12.2 0.82 4126

/wacko/upload 50 20431 15 31974 10914.04 0 24.3 4.92 12444

/wacko/upload 50 22508 260 32012 10969.32 0 19.5 4.65 14672

/wacko/upload 50 22766 40 319818 9251.31 0 17 4.27 15389

/wacko/upload 50 21605 1862 31943 6693.03 0 15 3.35 1373

/wacko/upload 50 23513 1641 31923 6470.35 0 13.5 3.52 16045

/wacko/upload 50 23651 1759 33376 6237.49 0 12.2 3.07 15421

/wacko/upload 50 22866 1905 33387 5978.86 0 11.2 2.28 12471

/wacko/upload 50 24646 238 33374 6926.38 0 10.3 2.04 12142

/wacko/upload 50 22908 2334 31850 6147.47 0 9.8 2.05 12831

/wacko/guests/ 98 15963 1145 51604 11832.87 0 10.6 0.54 3112

/wacko/pictures…. 100 24251 12904 58408 12393.65 0 15.4 0.75 2983

/wacko/users 198 11474 1187 43369 7920.55 0 23.8 1.16 2979.2

/wacko/users 50 19025 8410 57343 14235.1 0 10.3 0.5 2983

/wacko/pictures…. 50 28538 10876 75871 16862.08 0 11.6 0.56 2983

/WebGoat/image…. 16 4493 840 40224 9647.92 0 1.1 0 49

/WebGoat/javas…. 3 436 1962 1227 559.32 0 9.1 31 2079

Total 3477 7404 6 87179 10899.21 0.12 2.7 14.63 5524.3

Table 1: Summary Report without Load Balancer

6.4.3 Attackers to Normal Users Requests

During testing 4 types of attacks were simulated i.e. session fixation, SQL injection, XSS and

DTS. Ratio of these attacks is given in table 2. In every thousand requests four hundred requests

(40%) were attacks. Out of ten thousand requests fifteen hundred were Session fixation, one

thousand were SQL injection, hundred were XSS and nine hundred were DTS attacks.

48

Attack Percentage of occurrence

Session Fixation 40%

SQL injection 27.5%

XSS 7.5%

DTS 25%

Table 2: Percentage of occurrence of different attacks

6.4.4 Throughput (Requests/second/WAF) VS Number of Users

Figure 19: Throughput achieved by the proposed system against number of requests/ normal users. Results are evaluated

using multiple WAF nodes and Load balancer.

Figure 19 shows the throughput achieved by the proposed system against number of requests

from normal users. Graph clearly shows that initially when the numbers of users were less, WAF

gave the highest throughput. But as the number of users increases, throughput decreases. System

with “WAF only” reaches to almost zero throughput with 10,000 Users. Adding a load balancer

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T

h

r

o

u

g

h

p

u

t

Number of Users

WAF

LB(1 WAF)

LB(2 WAF)

LB(8 WAF)

LB(12 WAF)

49

with single WAF further decreases the throughput. By adding 2, 8 and 12 WAFs respectively

with a load balancer gives almost same throughput with fewer users but as the number of users

increase there is a comparatively noticeable increase in throughput. Adding two WAFs with a

load balancer shows negligible increase in throughput as compared to WAF without load

balancer and combination of single WAF plus a load balancer. System with 8 and 12 WAFs and

a load balancer stabilizes the throughput even with increase in number of requests.

Figure 20: Throughput achieved by the proposed system against number of requests/malicious users. Results are

evaluated using multiple WAF nodes and Load balancer.

Figure 20 plots the same statistics as in figure 19 but in this case requests are from malicious

users. Although throughput varies in a same way as in figure 19 for the varying number of

requests, but over all throughput achieved by the system is less as compared to throughput

achieved in case of normal users. The difference in throughput decreases as the number of WAF

nodes increases and it becomes almost negligible in case of eight and twelve WAF nodes.

0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T

h

r

o

u

g

h

p

u

t

Number of Users

WAF

LB(1 WAF)

LB(2 WAF)

LB(8 WAF)

LB(12 WAF)

50

Figure 21: Through put (Static VS. Dynamic VS. Combination of Static and Dynamic Websites) with LB (12 WAFs)

Figure 21 shows the throughput achieved by the system in case of fully static, fully dynamic and

combination of static and dynamic websites. System gives the maximum throughput when all the

pages in a website are static and gives minimum throughput if the website under test is a fully

dynamic. Most of the websites are combination of static and dynamic pages and throughput

achieved in this case is between fully static and fully dynamic websites.

6.4.5 Throughput (KB/second/WAF) VS amount of data transferred

Figure 22: Throughput achieved by the system against amount of data transmitted by the users. Results are evaluated

using multiple WAF nodes and Load balancer.

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T

h

r

o

u

g

h

p

u

t Users

Fully Static

Combination of Static
and Dynamic

Fully Dynamic

0

10

20

30

40

50

60

70

80

90

Th
ro

u
gh

p
u

t
(K

B
/s

ec
o

n
d

/W
A

F

Number of Users

WAF

LB(1 WAF)

LB(2 WAF)

LB(8 WAF)

LB(12 WAF)

51

Figure 22 plots the throughput against number of users/requests. In this testing scenario the main

focus is amount of data (in KBs) send by the users instead of number of users/requests. Results

are almost same as in figure 19. With less transmission data WAF only system gives the highest

throughput, but as the amount of data increases throughput decreases. System with one WAF and

load balancer cannot improve the results; instead throughput is even less then WAF without

loadbalancer. System gives better throughput by increasing number of WAFs in combination

with load balancer. Initially with less amount of data 2, 8 and 12 WAFs in combination with load

balancer gives almost same throughput but as the amount of data increases there is a visible

difference in throughput. There are much improved results for 2 WAFs and load balancer but

complete stabilization is achieved by adding 8 and 12 WAFs with a load balancer.

6.4.6 Error Rate (%) VS Number of Users

Figure 23: Error Rate (%) against number of requests/users

Error rate represents lost requests. A lost request is a request whose response is not received.

Figure 23 plots error rate against number of requests/users. Initially when the number of requests

were as low as 1000, error rate was 0% with all the implementations (with and without load

balancer). As the number of requests increases, there is an increase in error rate Error rate is

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E

r

r

o

r

R

a

t

e

Number of Users

WAF

LB(1 WAF)

LB(2 WAF)

LB(8 WAF)

LB(12 WAF)

52

increased in case of WAF only and single WAF and load balancer. With two WAFs in

combination with load balancer error rate is less as compared to WAF only and single WAF and

load balancer combination but this error rate is not negligible. By adding 8 and 12 WAFs with

load balancer error rate remains near to zero even with the maximum number of requests under

testing scenario.

6.4.7 Parser Comparison

Figure 24: Parser Comparison

Parser is a program that parses http request string and creates java objects out of it. Parsing is a

time consuming job. Including parser in current implementation increases the response time. In

order to get best possible results in terms of throughput and response time, a thin parser is

written. This parser is implemented to parse only the first line of http request. As whole request

is not to be parsed, there is a visible decrease in response time as shown in figure 24.

0

50

100

150

200

250

300

350

400

450

500

R

e

s

p

o

n

s

e

T

i

m

e

WAF

LB

53

6.4.8 Performance Comparison (Response Time in millisecond)

Figure 25: Performance Comparison (Response Time in millisecond) of proposed architecture with Apache and Mod

Security

Figure 25 shows that there is a very huge performance gap between single WAF in combination

with load balancer and Apache and Mod Security. The gap is decreased by adding WAFs. Graph

shows that gap is almost negligible and performance plots of Apache and Mod Security touches

8 and 12 WAFs plus load balancer combination performance plots. Performance is measured in

terms of response time in milliseconds.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5
0

5
0

0

9
5

0

1
4

0
0

1
8

5
0

2
3

0
0

2
7

5
0

3
2

0
0

3
6

5
0

4
1

0
0

4
5

5
0

5
0

0
0

5
4

5
0

5
9

0
0

6
3

5
0

6
8

0
0

7
2

5
0

7
7

0
0

8
1

5
0

8
6

0
0

9
0

5
0

9
5

0
0

9
9

5
0

R

e

s

p

o

n

s

e

T

i

m

e

Number of Users

Apache

Mod Secuirty

LB(1 WAF)

LB(2 WAF)

LB(8WAF)

LB(12WAF)

54

CHAPTER # 07

Conclusion & Future Enhancements

55

This chapter concludes the overall work done in this thesis from the study of the scalability and

fault tolerance till its implementation and results, which shows that scalability and fault tolerance

is achieved.

7.1 Conclusion

In the beginning the idea of an effective application level security mechanism is scrutinized.

Most of the issues in low traffic server solutions have been the major concern of the current

research. The present high level architecture for semantic based application level intrusion

detection system has also been presented by the current system. Besides, various components in

the current system architecture have been highlighted. Top level architecture of the system and

the details of different parts are discussed. Dispatcher contains Listener and parser, cache, state,

load balancer, fault tolerance and heartbeat modules which not only provide load balancing but

also transparent fault tolerance. Virtual cluster is used for scalability and fault tolerance purpose.

Distributed cache of WAF is maintained so that state of any WAF can be restored in case of

failure. Detailed system design and implementation is discussed along with class diagrams of

dispatcher and its modules like Listener and parser, cache, state, load balancer, fault tolerance

and heartbeat module. Distributed cache of WAF is maintained in form of shared network

directory. Testing results clearly shows that proposed system is scalable and remains stable in

case of large number of users. In case of failure of any WAF node, any other WAF node takes

charge and all state of failed WAF node is recovered.

7.2 Future Work

The light weight dispatcher which is developed in this approach is working on weighted round

robin algorithm. Auto increment of cluster can be used in future to make system stable for longer

period of time. It means that if all WAF nodes seem to be busy, dispatcher should be intelligent

enough to create WAF node (JVM process) by itself for balancing the node. Currently shared

network drive is used for distributed cache which is bit slower. A “on memory” distributed cache

solution can be designed to speed up fault tolerance mechanism.

56

Annexure - A

References

57

Bibliography

[1] "FireWall," Webopedia, [Online]. Available:

http://www.webopedia.com/TERM/F/firewall.html.

[2] T. Rowan, "Application firewalls: filling the void," 2007, pp. 4-7.

[3] "The ten most critical Web application security vulnerabilities," 2007. [Online]. Available:

https://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf.

[4] "Only 10% of Web applications are secured against common hacking techniques," 2004.

[Online]. Available: http://www.imperva.com/company/news/2004-feb-02.html.

[5] G. Hulme, "New software may improve application security," 2001. [Online]. Available:

http://www.informationweek.com/story/.

[6] E. W. Flup and R. J. Farley, "A Function-Parallel Architecture for High-Speed Firewalls,"

IEEE International Conference on Digital Object Identification, 2006.

[7] E. D. Zwicky, S. Cooper and D. B. Chapman, "Building Internet Firewalls," Spring 2006.

[Online]. Available: http://pages.cs.wisc.edu/~jha/course-archive/642-spring-

2005/index.html.

[8] L. Qui, G. Varghese and S. Suri, "Fast firewall implementations for software and hardware-

based routers," in in Proceedings of ACM SIGMETRICS, June 2001.

[9] S. Suri and G. Varghese, "Packet filtering in high speed networks," in Proceedings of the

Symposium on Discrete Algorithms, 1999.

[10] R. L. Ziegler, Linux Firewalls, München: Markt + Technik Verl, 2002.

[11] P. Byrne, "Application firewalls in a defense-in-depth design," in Network Security,

September 2006, pp. 9-11.

[12] "Software Firewalls: Made of Straw?," Symantec.com, [Online]. Available:

http://www.symantec.com/connect/articles/software-firewalls-made-straw-part-1-2.

[13] "Software-as-a-service (SAAS) vs "Do-it-yourself" with a web application scanner,"

[Online]. Available: https://www.whitehatsec.com/resource/whitepapers/saas.html.

58

[14] "WhiteHat Security "Website Security Statistics Report"," [Online]. Available:

http://www.slideshare.net/jeremiahgrossman/whitehat-security-website-security-statistics-

report-q109.

[15] F. Hanik, "Inside the java virtual machine," 29 08 2007. [Online]. Available:

http://www.springsource.com/files/uploads/all/pdf_files/news_event/Inside_the_JVM.pdf.

[16] E. Fredkin, "Trie memory," Communication. Of ACM, May 1988, pp. 490-500.

[17] S. Nilason and G. Karlsson, "lP-address lookup using LC-tries," IEEE Journal on Selected

Areas in Communications, vol. 17, June 1999.

[18] A. Andersson and S. Nilsson, "Improved behavior of tries by adaptive branching,"

Information Processing Letters, vol. 46, pp. 295-300, 1993.

[19] C. Benecke, "A parallel packet screen for high speed networks," in Proceedings of the 15th

Annual Computer Security Applications Conference, 1999.

[20] M. Y. Luo and C. S. Yang, "System support for Scalable, Reliable and Highly manageable

Web hosting service," Symposium on Internet Technologies and Systems, 2001.

[21] P. N. Ayuso, R. M. Gasca and l. lefevre, "Demystifying Cluster-Based Fault-Tolerant

Firewalls," IEEE Internet Computing, vol. 13, no. 6, 2009.

[22] B. Y. Zhang, Z. YaoMo, G.-W. Yang and W.-M. Zheng, "Dynamic Load-Balancing and

High Performance Communication in Jcluster," IEEE International, 2007.

[23] T. Grubber, "A Translation Approach to Portable Ontologies. Knowledge Acquisition

Archive," June 1993, pp. 199-220.

[24] J. Undercoer, A. Joshi and J. Pinkston, "Modelling computer attacks: An ontology for

Intrusion Detection," The Sixth International Symposium on Recent Advances in Intrusion

Detection, pp. 113-135, 2003.

[25] R. Fikes and D. I. McGuinness, "An Axiomatic Semantics for RDF," 18 12 2001. [Online].

Available: http://www.w3.org/TR/daml+oil-axioms.

[26] "Criteria Evaluated by Apache Jmeter," [Online]. Available:

http://jakarta.apache.org/jmeter.

[27] A. Razzaq, A. Hur, N. Haider and F. Ahmad, "Multi-Layered Defense against Web

Application Attacks," Information Technology New Generations. Sixth International

59

Conference on Digital Object Identifier, pp. 492 - 497, 2009.

[28] "Application Layer Firewall," F5 Networks, Inc., [Online]. Available:

http://www.f5.com/glossary/application-layer-firewall.html.

