A Cluster Based Fault Tolerant and Highly
Available Architecture for Stateful Web
Application Firewalls

Zafar Ali

2008-NUST-MS PhD-I1T-32

Supervisor

Dr. Zahid Anwar

A thesis submitted in partial fulfillment of the requirements for the degree of
Masters of Science in Information Technology (MSIT)

In

NUST School of Electrical Engineering and Computer Science
(SEECS),

National University of Sciences and Technology (NUST), Islamabad,
Pakistan

NUST School of Electrical Engineering and Computer Sciences
A center of excellence for quality education and research

CERTIFICATE

Certified that the Scrutinizing Committee has reviewed the final documentation of Mr. Zafar Ali
Reg. n0.2008-NUST-MS PhD-IT-32 student of MS-IT-9 thesis title A Cluster Based Fault
Tolerant and Highly Available Architecture for Stateful Web Application Firewalls and found

satisfactory as per NUST’s standard format for Master Thesis.

President

WgCdr (R) Muhammad Ramzan

APPROVAL

It is certified that the contents and form of thesis entitled “A Cluster Based Fault Tolerant and
Highly Available Architecture for Stateful Web Application Firewalls” submitted by Zafar
Ali have been found satisfactory for the requirement of the degree.

Advisor: Dr. Zahid Anwar

Signature:

Date:

Committee Member: Dr. Hafiz Faroog Ahmed

Signature:

Date:

Committee Member: Dr.Raihan ur Rasool

Signature:

Date:

Committee Member: _Mr. Aatif Kamal

Signature:

Date:

IN THE NAME OF ALMIGHTY ALLAH
THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY PARENTS, SISTERS AND A FRIEND

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, nor material which to a
substantial extent has been accepted for the award of any degree or diploma at SEECS or at any
other educational institute, except where due acknowledgement has been made in the thesis. Any
contribution made to the research by others, with whom | have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

| also declare that the intellectual content of this thesis is the product of my own work, except for
the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author: Zafar Ali

Signature:

ACKNOWLEDGEMENTS

First and foremost, | would like to extend my humble gratitude to Almighty Allah who always
bestowed His blessings on me and gave me courage to accomplish this task. Darood-o- Salaam
to Prophet Muhammad (P.B.U.H) chosen by Almighty Allah to guide the mankind to divine
path.

I am truly indebted to my supervisor Dr. Zahid Anwar for his support, guidance and unending
tolerance. He patiently spelled out all new concepts and completely guided me in all technical
directions. | own that without the inspiring guidance of Dr. Zahid Anwar, this research would not
have materialized. | extend my appreciation to my co-supervisor Dr. Hafiz Farooq Ahmad.
Whenever there was a problem he steered me through. I am thankful to all of my committee
members, for their guidance throughout the research work of this thesis. | really have no words
of thanks for my friends and research fellows for their co-operation. | would always cherish the

moments spent with them.

I can never forget the contribution of my parents in providing their all assistance to me. | owe all
my achievements to my parents whose assistance and prayers enabled me to surpass all the

hurdles in my life.

My Friend Neelofar provided me full support during the entire period of my research. Whenever

I was downhearted, she encouraged and provided me with the power to overcome my hardships.

Zafar Ali

ABSTRACT

Application layer Firewalls are required to prevent attacks on the top three layers of OSI
model i.e. session, presentation and application because traditional network firewalls do not
understand attacks directed at disrupting HTTP(S) traffic. Web Application Firewall (WAF)
architecture based on a single process does not provides fault tolerance and scalability
because it doesn’t utilizes the system resources completely. This thesis proposes a virtual
cluster of WAFs in a reverse proxy configuration that aims to solve the problem of resource
utilization and scalability by deploying it on multiple machines. The virtual cluster is
incremental; it creates on-demand WAF nodes in presence of heavy load. Load balancing
among virtual node is stateful to maintain session integrity and transparent fault tolerance
mechanism to the users. Solutions for load balancing and fault tolerance exists at the network
layer e.g. Heartbeat/Linux package, Ultra Monkey and LVS/Linux but these solutions are
limited to application layer. We have implemented an application layer heart beat mechanism
for transparent fail over that is adaptive and provides a sophisticated load balancing algorithm
without an overhead of probe packets. The central component of our proposed architecture is
the Dispatcher that receives HTTP traffic and distributes it among WAF nodes in a round
robin fashion. The functionality of the Load balancer component is to provide intelligent
routing decisions, handle cache, heart beat mechanisms and fail over. For evaluating the
implemented solution the selected WAF product used is SWAF (A Semantic Based Web
Application Firewall highly available). SWAF is a java based WAF consisting only of a
single JVM process. Evaluation is performed by comparing performance results of SWAF
addition or removal of our virtual cluster architecture with multiple SWAF nodes. Benchmark
results show that load balancer with 8 and 12 SWAF nodes increased the performance(in
terms of response time, data transferred in KB and error ratio) of the system significantly
when the number of users are increased to tens of thousands in presence of session-based

attack traffic and SWAF still performed detection correctly.

Vi

Table of Contents

MOtIVatioN &INTTOAUCTIONcoviiiiiiiieic ettt re et e e b e neenneeneas 1
1.1 Web Application FIFEWALIS...........coiiiiiiiiie et 2
S 1o 1 = o1 1 PSPPSR 4
1.3 High AVailabilityc.cooiiiie e 6
O O U (< SO PRO PSRRI 6
I o= To =T 1 - Ty o | oo PSPPSR 7
1.6 FAUIL TOIBIANCE.iiiieiieieie ettt bbb s 8
A |V [1Y L1 o] OSSP 8
IS T O o] T £ VOSSR 9
I I B T T S @ o=V - 4 o] OSSP 9

EXISting WOrK & LItEratUure SUIVEYccuoiiiiieie e ste et e e sae e enne e 10
2.1 Resource Utilization in Java Dased ProCESScccouiiiriiiiiiiniiisicieie e 11
2.2 URL FOrMAlIZAIONeoiiieie ettt ae et eneeneennaenns 12
2.3 CONENT-AWAIE ROULINGeovviiiiiiiieieite ettt sre s 13
2.4 Content Aware Distribution vs. NAT Base ROULING..........ccocvririiiniiiiieiene e 14

2.4.1 SESSION INTEGIITY.c.eititiiteiiiiieeieee ettt bbb 14
2.4.2 Sophisticated Load BalanCing..........cccceieviriiinieieienese e 15
2.4.3 DIfferentiated SEIVICES......coiviieiieieee ettt e sne e 15
2.4.4 URL formalization and context aware roUtingcccocererenenenienniene e 16
2.4.5 Highly available CIUSTEIS.cuiiiiiii s 16

CUrrent SYSEEM ATCRITECTUNE.........iiiii ittt nre s 18
00 R Y SRS 19
3.2 Ontology for designing Of CONTEXL..........ciiriiiiiiiiiee e 19
3.3 RuUle Based REASONING.......ccuiiiieiiiirieniesie sttt nre s 20
3.4 SYSEEM ATCRITECTUIE ...ttt ere s 21

341 ONt0IOGY IMANAGETeeviiiiieiiieiieee ettt 21
3.4.2 HTTP EXIractor @nd ParSErcocveueiieiieie e siesieseesieesie e sie e snee e ense s sneeneas 21
3.4.3 AANBIYZET ..ot 22

344 RUIE ENGING....oiiiiiiiiieiete et bbbttt bbb 22
345 AAMIN CONSOIE ..ottt ste et e nreennas 22
3.4.6 LOGGING MOUUIE. ... 22
4.7 CaChe CONrOIIET ..ot 22
3.5 SeSSION BASEU ATEACKS.ccviiiiiiiieieiie sttt 23
3.5.1 SESSION FIXAIONeiiiiiiiciieiieeie ettt ettt e b sne e 23
3.5.2 SeSSION HIJACKING. .. .ottt s 23
T TR T O3 o SRRSO 23
3.5.4 DOS (Denial Of SEIVICES) ...cviiiieiiieiiii ittt 24
3.6 Limitations of current System arChiteCIUIE.........c.cciveiiieiii i 24
A0S TU 1111 PP 25
Proposed SyStem ANCHITECIUIEcouiiiie et 26
O R B T 1Yo - (o -] PP OUPSOPRPR 28
4.1.1 ProtoCOl HANAIEToouiiiiiie e 28
4.1.2 LIStENEI AN PAISEI....c.eiiiiiiei ittt 28
4.1.3 L0AA BAIANCETecviiiieieie et 29

A L4 CACNE. ittt 29
TS | SRRSO 29
416 Fault TOlerance MOTUIE..........ccoiiieieiee e 29
4.1.7 Heart BEAt SYSIEIM......coiiiiiiiiiicieee e 30
4.2 Load Balancing AlGOrithmi.........cooviiiiiiiieii e 30
4.3 WAF’S VIrtUAl CIUSTETeeiiiiiiiiic ettt e e are e 31
4.4 Distributed Cache OF WAFooi et 31
A5 SUMMATY .ottt bbb bbb e bt sae e bt e e b 32
SYSTEM DEVEIOPIMENT ...ttt bbbttt nbe bt 33
5.1 DISPALCNET. ... 34
5.1.1 ProtoCOl HANAIETooeiiieieee ettt 34
5.1.2 LiSEENEI AN PAISEI i iiieiieeiesiie sttt ettt et eneesreeeeeneesneennas 34

o T0 O S o - To [=T 1 - (o] USROS 36

o T0 0 O o o - TSRS 36
ST R T - | (= TR PP APRTPPR 38

5.1.6 FaUIt TOIEIANCE IMOQUIE ettt eeese e enenenennennnnne 38

5.1.7 Heart BEAt SYSIEM.......c.oiiiiiiieiieiiee e 40

5.2 Distributed Cache OF WAF ...t 40
5.3 SUMIMAIY ..ottt bbbt bbb ettt en e ne s 41
V7= 11T 1o o SRR 42
T A O V=T VTSRS 43
I AV Y [0 Ua o] O 1 (- 1 T USSR 43
6.2.1 Number of REQUESLES / SECONM........coviiiiiiiriiiiriieiieiee e 43
6.2.2 Total number of samples in the teSt rUN ..o 43
6.2.3 Total throughput Of the TEST........eiiiii s 43
B.2.4 EITON RALE ...ttt 44

6.3 SAMPIE APPHCALIONS ...t b e sre s 44
IR V1Y =T oL T L PSS RPUR 44
6.3.2 WACKOPECKO ..ot 44
6.3.3 Sample Static WEDSITEcceiiiiiiice 45

6.4 TESHNG RESUILSveiiiie et e e sre e 45
6.4.1 Machine SPECITICALIONc.ccoviiiiiiie it 45
6.4.2 TESHNG SCENAIIOScviiiieeitie ettt ettt et e s e te e e e r e e anb e e sbeeenneesreeanes 45
6.4.3 Attackers to Normal USers REQUESESccueiieiieiieii e 47
6.4.4 Throughput (Requests/second/WAF) VS Number of USersccccoovevvevveieciiesnnenne. 48
6.4.5 Throughput (KB/second/WAF) VS amount of data transferredc.ccceeveiernnnne. 50
6.4.6 Error Rate (%) VS NUMDEr OF USEIS......c.cciiiiieiieie e 51
6.4.7 Parser COMPAIISON.ciuiiieiieeiieeteseesteete s e ste e e e s e te st e s teesteaseesaeesbeeseesteeseanaesraeneas 52
6.4.8 Performance Comparison (Response Time in millisecond)cccccovevevveieiiecinennn. 53
Conclusion & Future ENNANCEMENTSccviieiieiieie et nas 54
7% A O o o 1153 o] o PR 55
7.2 FULUPE WWOTK ...ttt st te e te e e snaente e e nreenneaneens 55

R E =T =] 0TSSR 56
BIDHOGIAPNY ...ttt e r e 57

List of Figures

Figure 1: Deployment of Web Application Firewall as Reverse ProxXyccccoceevenieeneniennnnnne. 4
Figure 2: Horizontal Scalability-new node with identical functionality is added in a system to

=0 LIS o0 (=1 V= o Vo SRR 5
Figure 3: Vertical Scalability- adding more main memory, network interfaces to a node or
Processing to SatiSfy MO FEQUESTS.........cviiiee ettt et esreeneennee e 5
Figure 4: Stateless load balancing- scheduling algorithms are used to determine which user
request is to be forwarded t0 WHiCh SEIVET.c.coviiiiiiicc e 7
Figure 5: State full load balancing- customer is guaranteed to maintain a session with a specific
= V=T T T T 10 Lo 1 SRR 8
Figure 6: Memory allocation t0 @ JaVa PrOCESS........cciiiiiririeieieie ettt 11

Figure 7: Current System Architecture- the System is designed as a surrogate proxy/reverse
proxy that is deployed in front of web server intercepting all incoming and outgoing requests to

aNd FromM the WED SEIVET........cee ettt sre e 21
Figure 8: High level architecture diagram of proposed Architecture- for load balancing a very
thin dispatcher is used which takes very little time to load balance..............ccccccoevveveieii e, 27
Figure 9: High level architecture diagram of dispatcher- major components are protocol handler,
cache, listener and parser, heart beat mechanism, fault tolerance module and load balancer. 28
Figure 10: Class Diagram of DISPatCher.........cccooiiiiiiiiiiiiieeee e 36
Figure 11: Class Diagram of ProtoColccoieiiiiiiiiiiceee e 36
Figure 12: Class Diagram of Listener and Load Balancer.............cccccveiiiiiinininienenc e 37
Figure 13: Class Diagram 0f CaCheccoiiiiiiii e 38
Figure 14: Class Diagram Of STtcccvovieiieiiiie et 38
Figure 15: Class Diagram of Fault TOIEranCe...........ccoviieeiieiiie e 39
Figure 16: Class Diagram of Heart Beat SYStemMccciiiiiiiii i 40
Figure 17: Static versus Dynamic Pages in Sample Web Applications..........cccccccevvveviieiieennen, 46
Figure 18: Specifications of Windows System used for Evaluation.............c.ccoceovieiencnciennn 46
Figure 19: Throughput achieved by the proposed system against number of requests/ normal
users. Results are evaluated using multiple WAF nodes and Load balancer.............c..cccccevvenens 48
Figure 20: Throughput achieved by the proposed system against number of requests/malicious
users. Results are evaluated using multiple WAF nodes and Load balancer.............c.ccccccevvenens 49
Figure 21: Through put (Static VS. Dynamic VS. Combination of Static and Dynamic Websites)
WILH LB (L2 WAFS) .ottt bbbttt ettt bbb 50
Figure 22: Throughput achieved by the system against amount of data transmitted by the users.
Results are evaluated using multiple WAF nodes and Load balancer............cc.ccocooviiiiiiiicnnnn, 50
Figure 23: Error Rate (%) against nUMber of reqUESES/USENSccoieieririiinieeeee e 51
Figure 24: Parser COMPAITSONoiuiitiiueiuiaieeeeeeieste sttt et ese e sesb et b et et e e e e nbesbesbesne e 52
Figure 25: Performance Comparison (Response Time in millisecond) of proposed architecture
With Apache and IMOO SECUNILY.......c.civeiieieiieie et e et e e ae s e nreenenree e 53

List of Tables

Table 1: Summary Report without Load Balance...................cooooiiiiiii .,

Table 2: Percentage of occurrence of different attacks..............c.oooiiiiiiiiiiiin.

Xi

CHAPTER # 01

Motivation &Introduction

1.1 Web Application Firewalls

A firewall restricts unauthorized access into a network. Firewall can be implemented through
hardware, software or by combining both. Firewall doesn’t permit unauthorized usage of private
networks connected to internet, especially intranets. Some firewall techniques are packet

filtering, circuit level gateway implementation and proxy server [1].

Web applications have grown the business nowadays. Ecommerce applications are usually web
applications and contain major financial transactions. Security is high priority in these
applications. Security is required not only at network layer but also at application layer a lot of
work is done for the security at network layer and these security mechanisms are mature enough
to prevent attacks through this layer. However, attackers have a fair chance of attack using
application layer [2] [3] [4] [5]. According to an estimate from major cyber security
organizations like MITRE, OWASP [3], WHITE HAT, ACUNETIX almost 75% of the attacks
are launched at application layer now a days.

Web application firewalls are used to protect attacks at the application layer on http traffic or on
web applications. They do not require modifications of application layer source code in most of
the cases. These firewalls are deployed as reverse proxy as shown in figure 1. Due to inspection
of heavy traffic, these firewalls cause a delay in response time depending on the complexity of
the filter [6]. These firewalls are known as “Deep packet inspection firewall”. Due to complex
filtering mechanisms these firewalls introduce higher processing loads than routing [7] [8] [9].
For instance 300,000 packets per second have to be processed by a firewall that interconnects
two 100MBPS networks [10]. Such a thorough filtering of traffic causes significant performance
degradation [7] [11].

Application firewalls work by determining whether a process should accept the given
connection. They accomplish their functionality by the connections between lower layers of the
OSI model and the application layer by hooking into socket calls. These application layer

firewalls are also called socket filters.

Application firewalls work in two modes i.e.: active or passive. Active application firewalls

inspect all incoming requests actively against known vulnerabilities such as parameter and

cookies tampering, cross-site scripting and SQL injection. Only “clean” requests are passed to
the application. Passive application firewalls acts like IDS (Intrusion Detection System). They
also inspect the incoming requests for known vulnerabilities, but they do not deny or reject those

requests if a potential attack is discovered [12].

Application layer firewalls improve the overall security of the application infrastructure by
preventing attacks that are likely to cause a service outage or structural damage to data sources.
Application layer firewalls are generally remotely updateable, which allows them to prevent
newly discovered vulnerabilities. These firewalls are more advance as compared to adding
specific security-focused code in applications, as it requires longer development and testing

cycles.

Application firewalls improve overall security of infrastructure of an application by defending
against attacks that can cause structural damage to data sources or service outage. These
firewalls are generally remotely updateable and thus they prevent recently discovered

vulnerabilities as well.

The motivation of this research is to design WAF architecture to prevent all the attack

vulnerabilities mentioned above.

Web Servers

/\ Internet
(. (3 <
HTTP/HTTPS
Traffic
- DM2
<

Network Firewall Y

WAF
Intranet

SH&-

S
S

Figure 1: Deployment of Web Application Firewall as Reverse Proxy

1.2 Scalability

It’s the application or system property to cope with increased amount of work in an expanded
way in situations like increased demand for processing, network, file system resources or
database access. Scalability is a major need of web-bases systems to be able to accommodate for
more user requests in terms of complexity and number. Increasing the number of servers to cope
with increased user requests is not an actual solution of scalability problem as it creates bottle
neck at front end by moving it from back end. This risk even higher when put into consideration
that web-based applications require that the front-end component can catch more information

that exists at application level instead of TCP level.

Load

Node

Node

Load

Node

Node

Node

Node

Node

Figure 2: Horizontal Scalability-new node with identical functionality is added in a system to redistribute the load

Virtual Node 2

Virtual Node 1

Virtual Node 0

Dual Core
Single Processor

16MB Ram

Scales Out

Figure 3: Vertical Scalability- adding more main memory, network

to a node or processing to satisfy more requests.

Virtual Node 3

Virtual Node 2

Virtual Node 1

Virtual Node 0

Dual Core

Dual Processor

32MB Ram

interfaces

There are two types of scalability horizontal and vertical. Horizontal scalability means adding
new nodes with identical functionality in a system to redistribute the load. Web servers and SOA
scale out by adding more servers to network which is load balanced so that incoming user
requests many be distributed among them. Common term for this approach is cluster. Vertical
scalability means expanding system by adding more main memory, network interfaces to a node
or processing to satisfy more requests. Hosting services companies usually follow this approach
by increasing the main memory and number of processors to host more virtual servers in the
same hardware.

Single process based WAF is not suitable for large scale organizations due to heavy load. In this
research we have proposed a more scalable WAF architecture suitable for heavy traffic.

1.3 High Availability

Availability is defined as the provision of useful resources by the system over a defined period of
time. High availability is represented by high functional continuity with in a time window

represented by the relationship between downtime and uptime.
A =100 (100*D/U)

In above equation U stands for uptime and D for downtime. U and D are represented in minutes.
Availability and uptime is not the same thing. System may be up but unreachable and thus
unavailable due to network issues. However unavailability and downtime are synonymous.
Availability can be measured as the number of seconds or minutes of estimated downtime with
respect to number of seconds or minutes in 525,600 minutes or 365 day year, with U as constant

term.

WAF is deployed as reverse proxy. If it fails, all web servers become unavailable. The WAF
architecture proposed in this thesis is highly available as if any WAF node fails or overloads,

another WAF node takes its charge.

1.4 Cluster

Cluster is a group of computers which are connected in a manner that they work together in such
way that for the users they appear to be a single system. They are used to improve availability,

services, computational power or data manipulation performance. Clusters are more cost

effective than a single computer with the same computational power. Systems which are part of
cluster are connected to each other over very high speed LAN like gigabit Ethernet, Myrinet,
Infiniband or other technologies. WAF architecture proposed in this research is cluster based so

provides scalability and high availability.

1.5 Load Balancing

Load balancing is used for maximizing throughput and minimizing response time by distributing
requests among maximum available resources. There are two types of load balancing stateless
and state-full. Scheduling algorithms are used to determine which user request is to be forwarded
to which server. Web services and applications are mostly balanced by using round robin
scheduling algorithms. Expiration algorithms and frequency rules are used to balance caching
pools. Pseudo-random schedulers may use in applications where stateless requests arrive with
uniform probability for any number of servers. Applications where some content is statically
more popular, like music stores, may use asymmetric load balancers to forward popular requests

to higher performance servers and rest of the requests to less powerful clusters or systems.

In state-full applications customer is guaranteed to maintain a session with a specific server in a
pool. These applications require sticky or persistent load balancing. Figure 5 shows persistent

balancer that maintains sessions from multiple clients.

R=Request
ED

Consumer n=Sequence Number

Load Balancer

(ir:)) D)
Mode

Node

Node Node

Figure 4: Stateless load balancing- scheduling algorithms are used to determine which user request is to be forwarded to

which server.

Consumer Consumer Consumer

Sticky Load

Node Node Node Node

Figure 5: State full load balancing- customer is guaranteed to maintain a session with a specific server in a pool.

WAF slows down as the number of users increase from three thousand and is almost unavailable
after seven to eight thousand users load. The WAF architecture proposed in this research

automatically shifts the load to other WAF nodes if one node is overburdened.

1.6 Fault Tolerance

Redundancy in system design is based on assumption that failure of any system component is
independent of failure of other components. Fault tolerant system remains available in case of
failure of one or more components. Although overall efficiency and throughput decreases but
still these systems remain available. Component redundancy is use to handle software or
hardware faults. Fault tolerance requirements are taken from SLAs and their implementation
depends on software or hardware components, and on their interaction rules.

As the WAF architecture proposed in this research uses multiple WAF nodes, system is fault

tolerant along with highly available as failure of one node does not fail the overall system.

1.7 Motivation

Web application security is a vast area which is expanding day by day. WhiteHat Security’s own
research from weekly assessments of hundreds of the largest and most popular public-facing and
pre-production websites confirms this fact: 9 out 10 websites have vulnerabilities [13].82% of
websites have had at least one security issue, with 63% still having issues of high, critical or
urgent severity [14]. Due to the increasing number of attacks on the web applications, prevention

and detection of these attacks are very difficult at the application layer. There is a need for

8

https://www.whitehatsec.com/home/resources/stats.html
https://www.whitehatsec.com/home/resources/stats.html

common way of representing knowledge of web attacks which can help security community in
detection and prevention of these attacks. Current architecture is suitable for SME (small and
medium size enterprise), but has performance issues in large scale enterprises. Current
architecture of WAF has the following limitations: It does not provide fault tolerance and
scalability and it does not utilize the resources of the system completely being a single JVM
process. Motivation is to create a scalable and fault tolerant system that would be suitable for

large scale organizations.

1.8 Objective

Application layer Firewall is required because traditional network firewalls do not understand
attacks directed at the code of the application using the normal channels through which the
application is reached legitimately such as HTTP and HTTPS (SSL) for web applications. If the
traditional firewall monitors TCP port 80, the traffic is allowed through; no matter what
malicious code it may contain. So there is a need of application layer firewall which prevents
attacks on the top 3 layers of OSI model i.e. session, presentation and application layer.
Scalability and fault tolerance are desirable attributes for every system specially WAFs. The
objective of this research is to introduce a scalable and transparent fault tolerance mechanism
that is a need to design a distributed architecture for WAFs. The objective is how to introduce the
scalability and transparent fault tolerance without causing any performance degradation in the

system.

1.9 Thesis Organization

This thesis is ordered into seven different chapters. Chapter 2 provides an extensive literature
survey of the existing ontology in the web application security. Chapter 3 presents the current
system architecture. Chapter 4 presents the proposed system architecture. Chapter 5 presents
the system design and Implementation. Chapter 6 presents evaluation and testing. Chapter 7

presents conclusion and future work.

CHAPTER # 02

Existing Work & Literature Survey

10

This chapter provides the background knowledge for this research. It gives a detailed overview
of ontology that currently exists in the Web Application Security domain.

2.1 Resource Utilization in Java based Process

Each java program runs as a single process. It does not share memory with other processes. Each
process is allocated with a memory called as heap memory with other processes. In normal
circumstances JVM handles the heap by creating java heap for each JVM process. -Xms and -
Xmx settings are used to configure the heap size. A JVM process can only get 2GB of memory if
underlying OS is 32-bit at maximum [15], but actually this level has never been attained.
According to various blogs only 1.5 GB can be achieved by a single JVM process, including
Heap Size and others (others includes permanent space, code generation, socket buffers, thread
stacks, directed memory space, JNI code, garbage collection, and JNI allocated memory) as
shown in figure 6. Since the process of object creation leads to memory locking, hence on a
multi-CPU machine (threads run concurrently) there can be contention of memory locking
resulting in performance degradation [15]. If JVM have not enough memory for such operation,
it is liable to crash. Although current architecture is suitable for SME (small and medium size
enterprise), but has associated performance issues on large scale enterprises. Being a single JVM
process, it does not utilize the resources of the system completely.

, OS Memory (RAM) |
r
.
Process Heaplqava']ava exe)

Figure 6: Memory allocation to a java process

11

2.2 URL Formalization

The purpose of URL formalization is to implement the URL table so that it can facilitate a fast
lookup. Each node in the URL table is a variable length alphabet string. Therefore, tree-like [16]
data structure is considered to be the most common solution to implement a data structure that is
generally used for storing strings. Trio is based on the idea of tree structure in which each string
is represented by a leaf and the value of the string corresponds to the path from the root of the
tree to the leaf. But basic tree-like data structures demand large storage requirement. Moreover
they need multiple (depend on the string length) costly memory access. If such string searching
function is implemented in the layer-7 router that will be severe performance degradation. The
primary task is to convert each variable-length string into fixed-length binary string by using a
hash function. The binary string is stored in a LC-tree [17] [18], which is a level-compressed
version of trio having the ability of efficient lookup [17]. When a packet conveying HTTP
header arrives, the content aware routing mechanism retrieves the URL in the HTTP header.
Then it uses the same hash function to convert the URL into the fixed length binary string. For
example, a URL /entertainment/music/JAZZ/ has been converted to a string composed of 6e70,
4aTf and aTb3 (here, hex is used for convenient expression). In the URL table, a search for an
entry is being made by the muting mechanism to get the longest match when compared to the
binary string. This mechanism experiences the overhead of retrieving variable length string and
name conversion. Since the HTTP header is composed of variable length strings, hence parsing
the header to retrieve the necessary information for content-aware routing turns out to be a
significant burden. For further accelerating the lookup in the URL table, a novel mechanism
termed as URL Formalization is used. The problem can be solved by making every directory and
file of the Web content as formalized expression. Hash function then is used to convert the
original name of every directory and file into a fixed length and formatted name. Afterward, the
html files and script files that generate dynamic content is parsed by another program. Then it
modifies the embedded hyper-links to conform the new name. For example, if an embedded link
points to the URL for example “http://pds.cse.nsysu.edu.tw/people/myluo”, should be converted
to “http”//pds.cse.nsysu.edu.t /[[/4593/6827/”, where the name “people” and “myluo” are
converted to a formalized name 4593 and 6827 respectively, and the “[!” is a preamble. The
preamble is a “magic number”, which is designed to specify that the following path name is a

formalized URL. This also implies that the name of the first level directory is the name of

12

preamble, and all the hosted content should be placed under this directory. The preamble design
is of significant importance. It enables the routing mechanism to know whether the URL of a
request is in normal form or formalized form. Since the operations of parsing and reconstructing
the HTML files and scripts are pre-computed off-line hence they do not inflict any performance
penalty on regular operations of the server system and the request routing mechanism. The
reason of using a variable-length alphabet string to name a file or directory is because it is
mnemonic, therefore becomes easier for humans to memorize. However, in most cases URLS are
invisible to the users and they do not care about the name of URL. Ann HTTP request is issued
when the browser follows a link: either explicitly, when the user clicks on an anchor, or
implicitly, via an embedded image or object.

2.3 Content-Aware Routing

Numerous distributing mechanisms have been proposed over the past few years. These schemes
can be classified into the following categories: client side approach [2] [3], DNS-based approach
[4] [5], TCP connection routing [6] [7], HTTP redirection [8], and content-based routing [9] [10]
[19]. Among these, Content based routing mechanism is the best choice to the Web hosting
environment. The reason is that other schemes only can perform request routing based on some
simple criterion, thus these simple routing schemes are no longer adequate. On the contrary, the
content-aware routing mechanism can offer many potential benefits [19], such as sophisticated
load balancing, QoS support, session integrity and flexibility in content deployment. The method
of content-aware routing can be summarized as follows: a dispatcher node that executes the
routing mechanism is responsible for pre-forking a number of persistent connections to the back-
end nodes. The system resources are then allocated by dispatching client requests on these
trunks. The client side browser first need to create TCP connection, as a client tries to retrieve
specific content. The incoming TCP connection requests are acknowledged and handled at the
dispatcher until the client sends packets conveying the HTTP request, which contains the URL
and other HTTP client header information. A decision, regarding how to route the request is
made by the dispatcher by looking into the HTTP header. The dispatcher then opts for a server
that is best suitable to this request. It then chooses and idle pre-forked connection from the
available connection list of the target server. The related information about the selected

connection in an internal data structure termed as “mapping table” i.e. binding the user

13

connection to the pre-forked connection is then stored by the dispatcher. Once the connection
binding is established, the dispatcher handles the consequent packets by changing each packet’s
IP and TCP headers. The packet between the user connection and the pre-forked connection are
seamlessly relayed so that the client and the server can transparently receive and recognize the
packets. In case of server overload or server failure, the request can be migrated to another node.
To ensure high reliability the server cluster should comprise on two important capabilities:
checking and failover. That is, some intermediate state of user requests should be logged
periodically by failover mechanism. It should enable the ongoing requests on the failed node to
be continued processing with a valid intermediate state in another working node. Both these
techniques have been scrutinized and are well-known in the research area of fault tolerance, but
implementing these techniques in the distributed web server still causes many novel challenges.
It is quite expensive to log every incoming request for check pointing. In a Web hosting system,
all contents are not equally important to the client and the service provider because of their
importance or cost, some of the hosting contents cannot tolerate service disruptions. The
distributing mechanism can differentiate the important requests (e.g. requests for mission critical
services or requests for content owned by important customer(s) from regular web surfing
requests with the content-aware routing capability. Moreover to recover a web request of failed
server to continue execution in another working node is a challenge. Such recovery mechanism

should be user-transparent and smooth.

2.4 Content Aware Distribution vs. NAT Base Routing

For routing request to individual servers within cluster, the existing NAT base approaches have
usually emphasized only on user transparency, load distribution and scalability. While content
aware distribution take into account other issues as well and are integrated in content aware
distribution.

2.4.1 Session Integrity

Since the HTTP protocol is stateless i.e. Web server executes each request independently without
relating that request to pervious or subsequent requests. However in many cases maintaining
state information is of vital importance for example, such state might contain the contents of an
electronic “shopping cart” (a purchase list in a shopping mall site) or list of results from a search

request. When the user visits a shop, or asks for the next 25 items from a search, the state

14

information from the previous request is required. Cookies or hidden variables within html forms
are among the schemes that have been employed to maintain state information. In a cluster-based
server, these methods might not be processed appropriately. In selecting a server, if the routing
mechanism doesn’t examine the content of each request then it can be possible that a request
belonging to session is dispatched to the wrong server because the state concept is an
increasingly critical part of web behavior for commerce, web-oriented database, and other
dynamic transaction applications; this might limit the usefulness of cluster architecture.

2.4.2 Sophisticated Load Balancing

To utilize the cluster resources evenly and efficiently, a server cluster requires some sort of load-
balancing mechanism for directing requests. In existing web sites, the service type of incoming
requests can be of various types as static web pages, dynamic content generated by CGI scripts,
or multimedia data such as streaming audio or video. Each request consuming the service time
and the amount of resources vary widely and depends on several other factors for example a
request for executing a CGI script normally requires a great deal of computing resources to static
file retrieval requests. This heterogeneity in request often results in skewed utilization of server
cluster consequently, a more sophisticated load-balancing mechanism based on the service type
of each request is essential. In many existing systems the load balancing capability is still limited

because they don’t consider service type of each request.

2.4.3 Differentiated Services

The web persists to develop from its preliminary role as a provider of read only access to static
documentation-based information, and is becoming a platform for supporting complex services.
However, most current web servers, both cluster-based and monolithic provide service in a best-
effort manner that does not distinguish between the requirements of different requests. This
approach does not work well. Different services may have different requirements for quality of
service. It is difficult to enforce priority policies and provide desired quality of service if the
routing schemes don’t match the server type of each request. Otherwise, not all content are
equally important to the client and server provider. However, requests for popular pages have the
tendency to overcome the requests for other critical pages such as product list or shopping-
related pages. Consequently,