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Abstract 

Parallel discrete event simulation (PDES) simply known as parallel or distributed 

simulation is the execution of single discrete event simulation program on a parallel computers. 

PDES is largely accepted to promote interoperability and reusability of simulation components 

and to speed up the large scale simulations. In PDES, simulation is divided into small tasks which 

are placed on different processor for execution. Hence, the simulation system can be viewed as the 

combination of concurrent processes, each of them executing in a sequential manner on the 

separate processor and modeling some part of the physical system. All these processes 

communicate with each other by sending time stamped event messages. An event can be any 

update in the state of the simulation system at any simulation timestamp.   

The events are scheduled in timestamp order. Events are causal related to each other and 

processed in timestamp manner. The other adopted techniques are conservative and optimistic. In 

conservative approach, the causality errors are not allowed and each event is processed after all 

the events which could affect it. In optimistic approach allow causality errors and use some 

detection and recovery mechanisms for the efficient processing of the events. Timewrap is the 

most commonly known protocol. In timewrap, whenever a causality error occurred a rollback 

mechanism initiated to recover the simulation to a state of correct computation. In order to roll 

back other processes, system sends the anti messages to other processes whenever a causality error 

occurs so that all the events that are processed prematurely can be undone. Thus, Roll back 

mechanism costs a lot of time in sending anti messages and state saving. 

This thesis presents an efficient optimistic protocol to minimize the rollbacks in the 

simulation system. We optimize the timewrap protocol in a way that the processes which are 

communicating and sending messages more rapidly bring closer to each other to improve the 

efficiency and to minimize the number of roll backs. To analyze the performance, the PHOLD 

application is used which is the standard PDES benchmark. The PHOLD provides the easily 

understandable controls to analyze the performance and test the functionality simultaneously. 
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Chapter 1 

1. Introduction 

This chapter gives the basic idea of the concepts involved in this research. It also presents 

the background and motivation for this study. Moreover, it provides an idea of expected results, 

and methodology to get and evaluate the results. Finally, it presents the structure of this thesis 

document. 

1.1 Introduction of Domain 
Parallel discrete event simulation (PDES) can be expressed as the execution of DES project 

over numerous processors in parallel way [1]. Generally this is done to expand the execution and 

to scale DES to a bigger setups PDES significance is expanding because of the parallelism in the 

computational equipment with less concentrate on change of clock speed. The parallelism is used 

by developers to overcome the performance issues in simulations. However parallelization of 

simulation program requires skills and expertise for the development and execution of the PDES 

codes. Cloud computing provide the solution by hiding the details of the simulation from the users. 

PDES program contain logical processes (LPs) which exchanges time stamped messages 

for communication. Each LP process these events in a time stamped manner to portray the changes 

in the simulation program. Synchronization of the parallel simulation is the major problem in the 

PDES. Events on each LP are executed in increasing time stamp order to ensure that no future 

event can affect the events in the past. Time wrap is the well known protocol of optimistic 

synchronization which uses roll backs to address the causality problem [2]. In timewarp the LPs 

are permitted to execute all the events it has received regardless of the time stamp. When the event 

have smaller time stamp than the earlier received events than the computation for those events 

have to be undone. If messages were sent to other LPs by this LP than those messages must be 

undone. Anti messages are the negative message used to undone these events.  

Cloud computing is a service oriented technology where software is provided I the form of 

service through virtualized environment. Clients can use those resources from the remote locations 
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to compute the tasks. Cloud computing provides the solution to the long standard problem of 

having a skill set of executing the complex application codes. 

 

1.2 Problem Statement 
In  a  multi-tenant  environment  like  cloud,  PDES  systems  can  have  number  of rollbacks 

because  computations  of  other  users  can  slow  the  progress  of  some  LPs  resulting  in number 

of straggler messages and rollbacks. In this thesis we will study the synchronization among 

different LPs and network performance during the simulation and propose a mechanism to handle 

the cloud environment effectively. 

 

1.3 Purpose 
The purpose of this research is to minimize the number of roll backs in PDES and 

increase the efficiency of the system. 

1.4 Thesis Outline 

 

Rest of the thesis report is structured as follows: 

 

 Chapter 1: In this chapter, the introduction of research domain, problem statement, 

purpose, scope and objectives of this thesis are explained. 

 

 Chapter 2: In this chapter, the major components of Parallel discrete events simulation and 

the two synchronization methods are explained. 

 

 Chapter 3: In this chapter, the several related Synchronization algorithms with their pros 

and cons are reviewed. 

 

 Chapter 4: In this chapter, our proposed scheme and simulation setup for the validity of 

proposed scheme is explained. 
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 Chapter 5: In this chapter, results are presented. 

 

 Chapter 6: In this chapter, conclusion of entire work is briefly explained. 
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Chapter 2 

2. Theoretical Background 

2.1 Simulation with discrete events 
Simulation is the art of mimicking the real world large and complex problems virtually on 

computers. It is the technique widely used to analyze the performance and behavior of the models. 

In simulations the computers are used to analyze and evaluate the models. Simulation is the 

efficient and cost effective way of designing the new systems according to the real word 

requirements [1]. Large and complex systems can be simulated to evaluate and can the optimized 

by analyzing their performance from simulations. Simulations provide the effective way of 

implementing the assumptions on the simulated environment before implanting them directly to 

the original system which can minimize the cost and risk of failure of the system.  

TS 7 TS 7 TS 7 TS 7

Processed event Current Event Unprocessed event

Simulation Time

 

Figure 1 Simulation with Discrete Events 



 

5 
 

A simulation environment records state of the system over time. There can be a continuous 

or the discrete system. In continuous system the states of the program changes continuously over 

time. Whereas in discrete systems the state only modifies at a specific point in time [2]. In 

simulation progress of time is presented by the time progress function. Function classifies the 

simulation in two methods, event driven and time driven. The time is measured after small intervals 

in time driven method which gives the impression that the system is evolving continuously with 

time. Whereas time is measured in events which are the distinct points of time in simulation. 

Discrete systems are more appropriately simulated by event driven simulation method [3]. 

Moreover, these two methods can be combined for the simulation of more complex systems such 

as in simulation of computer networks, the fluid dynamics of the traffic can be captured by using 

continuous simulation method and the detail transactions of the network can be described by 

discrete events as shown in Figure 1. 

 In this thesis, our main focus is on discrete event simulation and its parallelization 

techniques. In discrete events simulation the event list is maintained which used a priority queue 

data structure and sorts the messages on time stamp on which they are scheduled. The current time 

of the simulation is specified by the clock variable. A loop can be used to process an event with 

the lowest time stamp and set the value of the clock with its timestamp. Each time when an event 

is processed the state of the simulation system changes which may result in generation of more 

events to be processed in simulated future. The loop makes sure that the simulation is running until 

the end of the simulation. 

2.2 Parallel discrete event simulation 
 Parallel discrete events simulation is the execution of simple discrete event simulation 

program on parallel computers. By introducing the parallelism in the model, PDES can control the 

limitations of sequential simulations in memory space and execution time [4]. Hence the complex 

and large and time critical systems which require the immense computing resources can be 

efficiently modeled in PDES as shown in Figure 2. 
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Figure 2 Parallel Discrete Events Simulation 

 Replicated trials is the simplest form of parallel simulations in multiple illustrations of a 

simulation program can be concurrently executed on parallel connected computers. This is a 

simple approach but its drawback is that it does not speedup the process and there is no memory 

efficiency because of the sequential execution.  

 Functional decomposition is the other type of parallel simulation in which different 

functions of the simulation program such as event handling and random number generation are 

assigned to different processors. The main problem of this form is that the simulation functions 

are tightly coupled and need to be synchronized among the components which can affect the 

parallelization. 

 A DES model works on an assumption that the system change states, only at the discrete 

points of time [5]. When an event is processed the simulation model changes its state. For instance 

in the simulating the communication network may use state variables to specify the communication 

links status, length of the message queues etc. A typical event can be receiving or forwarding a 

message at some node in the network or failure of any network component etc. our main focus is 
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on the parallelization of DES programs to improve the efficiency of the simulation systems. The 

parallelization becomes difficult when we takes count of the operation of sequential DES program. 

 A sequential simulation uses three types of data structures (1) variables which specify the 

state of the simulation system. (2) List of events that contains all the unprocessed events which are 

being scheduled, (3) a clock to note the progress of the simulation. Every event change the state 

of the system which is being simulated and contain a timestamp to specify the time at which change 

has occurred.  The main loop continuously process and remove the lowest time stamped event 

from the list. Event processing includes execution of some simulated code which reflect some 

change in the state of the system and in result more events are scheduled in the future to represent 

the causality relationship. 

 In this execution, it is important to process the event with the smallest time stamp. This is 

because an event with the larger time stamp can possibly modify the state variables of the event 

that have lower time stamp. Which results the system in which a future event can affect the past 

event that is unacceptable. These type of errors called causality errors as shown in Figure 3. 

E1,21 E2,29 E4,35 E6,50

E3,31 E5,40
 

Figure 3 Causality Constraint 

 The parallelization of the simulation program involves in concurrently processing the 

events on different processors. Difficulty arises in direct mapping of above paradigm on to shared 

memory multiprocessor. Consider two events E1 and E2 with timestamps T1 and T2 with T2 > T1 

are executing concurrently. If E1 modifies the state variable which is being read by E2 than E2 
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must be executed after E1 to ensure that there is no causality error. There must be some sequencing 

constraint to ensure the correct computation. 

Existing technologies avoid such problems by making sure that no processes shall have 

direct access to the shared state variables. A physical system viewed as a combination of multiple 

physical processes which communicates with each other in simulated time.  A physical process 

further have LP as shown in Figure 4. The communication between physical processes is done by 

sending times tamped events between logical processes. Every logical process represent some part 

of the state of the physical system it is representing and a clock variable which specifies the 

progress of the process. Causality errors can be avoided by adhering the local causality constraint 

that is all logical process should be processed in non decreasing timestamp order.it the 

responsibility of sequential simulation mechanism to ensure that no causality constraint should be 

violated during the execution of simulation program ion parallel computers. PDES is complex 

because the constraints on which the order is determined for the execution of the events are 

complex, highly data dependent and relative to each other.  
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LP

LP

 

Figure 4 Logical Processors (LP) 

PDES mechanisms is classified into two categories i) Conservative and ii) Optimistic [6]. 

2.2.1 Conservative mechanism 
In this type of categories every possibility of causality error is avoided by following a strategy 

to process the events only when it is safe [7]. Initially the distributed simulation mechanisms follow 

the conservative approach. The major problem in this approach is to find out when it is safe to 

process an event. For example an event E1 with timestamp T1 can be processed, if a process can 

determine that there will be no such event in simulated future with time stamp smaller than T1.  
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Figure 5 Conservative Synchronization 

In [8] and [9] authors designed algorithms of PDES in which it is statically specified that which 

process can communicate with which other process and on which link. To identify the time which 

is safe to execute an event, it is important that each message is transmitted according to their 

timestamp in chronological order. Every link is associated with a clock, which have the timestamp 

of the event that is at the queue’s front. If the queue does not have any event then the clock has the 

timestamp of the event that has been processed latest. The process select the link with lowest clock 

value every time, if link’s queue is not empty, the process updates its local clock to the link’s clock 

and process the message. The order of the receiving events will be correct because each message 

in future will have the timestamp greater than a local clock because their arrival in chronological 

order. The process blocks the message if the queue is empty because it can later receive a message 

with greater timestamp than all the input timestamps. Process wait for a message to update the 

link’s clock, before updating its local clock to ensure the chronology. This protocol ensure 
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chronological integrity by processing events only in nondecreasing timestamp order as shown in 

Figure 5. 

 

LP 1

LP 3LP 2

7

1091015

(Waiting 
on 

LP1)

(Waiting 
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LP2)

(Waiting 
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Figure 6 An example of deadlock 

A cycle of blocked processes result in deadlock in the system and each process is blocked due 

to the small clock value. For example Figure 6 illustrates a deadlock scenario. All the processes 

are waiting on their incoming links because of the empty queue. Every process is on deadlock 

although other queues have messages that are waiting to be processed. Deadlocks are avoided by 

the null messages. Null messages does not have any involvement in the physical system and are 

only used for the synchronization of the system [10]. For example if LPA sent time stamped null 

message is sent TN to LPB, it is just an indication to LPB from LPA that it a message with a time 

lesser than TN will not be sent. The clock value of the incoming link is used to determine the 

timestamp of the unprocessed event that has to be removed next from the buffer of the link. This 

lower limit than can be used to identify the ts of the outgoing message. Every time the execution 
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is done, the procedure sends a null message to each of the yield interface with this lower limit. 

Receiver than computes its lower bound and send it to its neighbor and so on. 

  

2.2.2 Optimistic Synchronization 
 Optimistic synchronization works differently than conservative synchronization and allow 

the local causality errors to happen [11]. Event with smaller timestamp are allowed to execute as 

long as LP is able to identify the causality as shown in Figure 7. The problematic events are then 

reversed by rolling back. This approach is efficient than conservative approach and the topology 

of the simulation does not needed to be known. 

LP

24 18 11 7 5 322 32

Straggler message

Events received from other LPs

 

Figure 7 Optimistic Synchronization 

Time wrap 
 Time wrap [12] [13] is the optimistic synchronization protocol for distributed simulations. 

In time wrap the local clock is set to the minimum received time of unprocessed events. Local 

clock is called Local virtual time (LVT). Process can execute the messages as long as it has input. 

During execution it may receive the event of smaller timestamp than LVT. In this case the process 

roll back in all the processed events with greater time stamp [14]. The event that caused the roll 



 

13 
 

back called straggler. All the events that has been processed earlier are undone receiving a 

straggler. 

 This type of execution can affect two factors of the simulation that has to be rolled back. 

The state of the LP and other are the messages that are communicated to other processes [15]. State 

of the LP can be rolled back by saving states periodically and restoring them when roll back occurs. 

Events are rolled back by sending the corresponding anti messages which cancels the originally 

processed event. The anti message is used to annihilates the corresponding message exists in the 

queue. If an anti message is received for the message which has been processed earlier  process 

receive the anti message of the message which has been processed earlier than the roll back must 

be started for that process. 

 The minimum of the timestamps of all the processes and the LVTs is known as Global 

Virtual Time (GVT). Events with lower timestamps than GVT can never be rolled back, so these 

events can be discarded to release the memory [16]. 

 The above procedure can be understood as aggressive cancellation. The alternative of which is 

lazy cancellation [17]. Anti messages are not sent continuously in lazy cancellation. The process 

continue to process messages and when an anti message is scheduled it is compared with the 

messages in output queue, and if the same message is already queued than the anti message is 

discarded [18]. The anti message can only be sent if the same message was not regenerated earlier. 

Lazy cancellation may or may not improve the performance of the system. 
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Chapter 3 

3. Literature Review 

Cloud computing is a model where virtualized computing resources at remote location provide 

software as a service to the clients. Cloud computing provides the facility to clients to compute 

highly intensive tasks on remote resources and charge them on the basis of the usage [19]. Large 

scale parallel simulation require clusters and high performance computing machines which may 

become problematic because of their high costs. Cloud computing offers such facilities on lower 

costs and makes it more accessible to the simulation community. Moreover execution of parallel 

discrete events simulation over clouds opens different challenges in terms of performance. In this 

section we will focus on some of the techniques to improve the performance of PDES on cloud 

environment.  
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Figure 8 Time wrap framework for cloud computing environment 

 In [20] authors proposed a protocol to address the synchronization problem in optimistic 

synchronization. In cloud environment the existence of other user’s computations may lead to 

increase the number of roll backs in traditional optimistic PDES i.e Timewrap. Some LPs which 

are used by some other user may slow down its progress as compared to the LPs that are lightly 

loaded which may become the cause of larger number of rollbacks and straggler messages. 

Furthermore cloud environment may have more communication delays as compared to the tightly 

coupled computing platforms which also become the cause of excessive straggler messages.  

Timewrap is a well established protocol to resolve the synchronization issue in optimistic 

PDES that used roll backs to avoid local causality errors. Figure 8 shows the timewarp mechanism 

for cloud computing environment. Each of the LPs are allowed to process all events that they 
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received. When the straggler is received all the events relevant to the straggler must be rolled back. 

TWSMIP address the challenges that arise when Timewrap is executed on cloud environment that 

are efficient utilization of resources, load distribution, efficient execution, fault tolerance and 

process synchronization. TWSMIP distribute status message across all the LPs residing on other 

processors. These status messages known as heart beat (HB) messages provide information about 

other LPs which may send the messages. These messages have information about sent messages 

to detect straggler message and to avoid roll backs. The number of HB messages can be reduced 

significantly by sending HB messages to only those processors which have communicated since 

the computation of last GVT value. Each process enters in HB phase after a fixed time and start 

sending HB messages to the processors to which it is communicating. The events are continuously 

processed by the LPs with the receiving of HB messages. When a straggler message is received 

through HB message LPs started to roll back to the time of straggler message. Anti messages also 

generated to stop other LPs from processing the false computations.  

HB messages has two array fields one for the timestamp TS and other is for identification 

number of messages MID. LPs saves information of multiple messages in these arrays when it 

send messages to other LPs. Each LP stores timstamp and MID of all the messages it has 

communicated. So each LP has two list one that is maintained by itself which logs the messages 

that are arrived and other is for HB messages. These two lists are compared, if these two lists are 

not same than it means straggler messages is present in the simulation system. In this case 

computation stops and LPs are rolled back to the straggler time stamp. If straggler has TS higher 

than the local time then the LPs continues to process events till it reaches the time stamp of 

straggler. Figure 9 shows the straggler identification between two processes.  
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Figure 9 Straggler identification between two processes (LPi and LPj) 

 In [21] authors discussed the challenges for the execution of PDES on cloud environment. 

Cloud environment best performs in the conditions where high bandwidth is needed for 

communication. The problems arise for simulation applications which communicates by sending 

small messages and require the quick delivery of those messages. Cloud computing environment 

shares its resources among many users. Virtual clusters are assigned to the users but users does not 

have the access to the processors assigned to those virtual clusters. Execution of parallel simulation 

application can become problematic in such cases, specially those applications which uses 

optimistic synchronization techniques. Interactive simulation require the computations to meet the 

real time constraints so the response time can become critical in such applications.  

To address these challenges authors adopted master worker architecture.  Master worker 

paradigm in which large computations are divided into small tasks that are distributed to the 

multiple workers that works under the direction of the master. This mechanism is well suited for 

PDES in cloud environment. Despite sending the small messages among different LPs in 

traditional PDES, the master/worker mechanism aggregates the messages and send them as one 
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unit which results in better utilization of the bandwidth. In master/worker paradigm the state of the 

LPs must be maintained so that it can be leased to a different worker. Furthermore the messages 

between the LPs must be recorded so that local causality constraint should be met.  

The master/worker mechanism promotes the separation between the master and the worker. 

The master is further divided in three services as describe in. The services comprised of proxy, 

message state servers, and work unit state servers. This distributed environment helps to maintain 

scalability of the simulation system. The actual simulation is performed on the worker by 

contacting the backend services for the synchronization of simulation and the related messages. 

When the execution is completed the variables are uploaded to the state servers. 

Proxy

TM Manager
Connection 

Manager

Work unit 
state 

manager

Message state 
manager

Simulation 
manager

Work Unit State 
Server

Connection 
Manager

State 
Manager

Message State 
Server

Connection 
Manager

State 
Manager

Worker

 

Figure 10 Aurora proxy internal components 
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The aurora proxy controls the simulation and all the services. The message state server and 

work unit servers are managed by associated managers in the aurora that record the metadata. 

These managers are i) state server manager, simulation package manager and message state server 

manager as shown in Figure 10.  

 Parallel applications heavily utilize resources for the execution making interaction between 

nodes nearly impossible. Hence, vacating the processors are important in parallel application so 

that owner of the machines can resume the interactive work either by checkpointing the the 

application or by migrating the processor to other hosts. In [22] authors presented a new approach 

of migration and check pointing for parallel applications. Transparency of the checkpointng from 

the application perspective is provided so that application must not be aware of migration of 

processes or the checkpointing. Virtual address is used so that processes in the application used 

same address till the end. Mapping of the original to current addresses is maintained by each 

process and these tables have to update upon migration.  

 Ready message is used to identify that there should not be any message in the transit when 

the migration or the checkpoint is taken. When a checkpoint has to be taken each process is 

notified. Ready message is sent by each process to every other process to indicate that the channel 

from this process is clear. Checkpoint is to be taken when each process received the RM and the 

application is restarted. After restart the mapping tables are updated so that current addresses can 

be updated. Upon restart the receiving messages are checked from the buffer that there are not the 

same messages that were received earlier. If there is such a message present in the buffer it is 

retrieved and returned. One special process designated as a coordinator called deamon process 

which is responsible for dynamic load management, resource management or a user command 

migration.  

 The simulation applications are characterized by their size, scale, event interaction and the 

nature of computation. The desired features require highly scalable PDES engines for processing. 

In [23] a PDES engine is designed to process time warp based optimistic parallel applications. The 

engine runs on massive parallel architectures with minimal overhead.  

 The engine is designed with a unique approach to cater the wide range of synchronization 

techniques. It comprises of a unified architecture to support multiple types of simulations. The 



 

20 
 

processes cake make use of many synchronization mechanisms and can dynamically select the 

required mechanism. Three priority queues containing LPs references are maintained on kernel of 

the engine. A queue that holds the LPs ordered on the earliest events that could be committed 

called Committable queue. Second queue holds the LPs ordered on earliest events that could be 

executed called Process able queue. Third queue holds the LPs ordered on earliest events that could 

be generated in future called Emittable queue. The engine uses internal LPs which are used for 

synchronization and parallel communication. Kernels also have flow control mechanism 

implemented on them so that the messages that are failed because of the full buffers could be sent 

again by the kernel processes. PHOLD benchmark application is used to study the performance. 

PHOLD helps in testing the performance and functionality. In PHOLD a fixed number of the 

messages distributed between LPs. 

 In [24] authors presented a thread based model ROSS-MT for PDES simulator for 

minimizing synchronization delays and message copying. In traditional PDES simulators 

processes are used that communicates by sending messages between each other. In ROSS-MT 

threads ae used instead of processes as shown in Figure 11. The motivation for using threads is 

that there is no need to transfer messages between threads because of their same memory image. 

Therefore a single input queue was maintained in place of queues for each thread, which records 

all the events from other threads. Furthermore a thread contains its own scheduler, event queue 

and memory manager for fossil collection.  
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Figure 11 Multi threaded ROSS 

 A pointer is attached in input queue of the destination for communication. The sender 

threads keep copy of every message it has sent so that if rollback occurs anti messages can be sent. 

Threads on the receiver uses priority queue for processing the events, events are transferred from 

input queue to priority queue for processing. So synchronization delays are completely avoided. 

The results shows the substantial improvements in performance. 

 In [25] authors presented a master worker architecture (Aurora) for the execution of large 

scale PDES programs over computational resources connected through a network. Several 

researches have been done to utilize the massive computing power of the internet through public 

distributed projects. Projects based on volunteer distributed computing like SETI@home [26], 

distributed.net and community Grid were successfully completed. The idea of Aurora is to 

minimize the gap in general computing and the PDES by using web services. Web services allow 

interoperable communication to the application over the internet. Web services focuses more on 
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interoperability over performance where as in aurora the priority id given to performance and 

interoperability is provided on the machine architecture level. 

Server

Communication interface

Logical Process 
Management Module

Time Management 
Module

Client Authentication and 
metadata information 
management module

Service routines

 

Figure 12 Aurora Server 

 Aurora works on basic principles of PDES comprises of collection of LPs communicating 

by exchanging time stamped events. In aurora LPs are grouped into work units which is the unit 

of work transmitted between master and a worker. Master manages the work units and allocate 

them to each worker. Worker performs the executions and upload the results to the master and the 

cycle continues until the end of the simulation. Aurora works on the basis of conservative 

synchronization algorithm to execute only the events with ts order to avoid local causality 

constraint. Aurora uses the SOAP as the default communication mechanism to support the 
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interoperability between heterogeneous play forms. The communication system shown in Figure 

12 is invoked during the handshaking of client and server. The disadvantage of using the web 

services for PDES is the low performance [27]. To overcome this limitation gSOAP [28] toolkit 

is used which is designed with high performance and languages and machine interoperability as 

well. The management and control algorithms which are combined to make a master are managed 

by the aurora server. Server contains the three modules i) Logical process management ii) time 

management iii) Aurora client. The Figure 12 shows the interaction between different components 

of the aurora server. LP manager analyze all the LPs. LPs may be aggregated by the application to 

form a single work unit. Each work unit stored on server contains the state vectors for simulation 

variables. After the execution of the work unit the client returned it back to the server. State vectors 

of the work units are updated by the LP manager. The synchronization support is provided by the 

aurora time management module. A simple algorithm to compute the LBTS value of future 

messages is sufficient because the time management executions are done on the server. The client 

authentication and management module keep record of all the work units that are either available 

or not. The available work unit shows that no computations are going on by any client on the work 

unit and it can be leased to any client’s request. A work unit when leased assigned a unique global 

key to allow the work unit to be issued more than once or it can be issued to multiple machines for 

fast execution. The workers in the architecture are maintained by aurora client. The work units are 

received by the aurora client from server through web service requests execute it and uploads the 

message buffer and state vectors back to the server. The aurora client send series of requests to the 

server for the available work units. State vector and the incoming messages are downloaded from 

the server when the client receives the availability of work unit from the server and start the 

execution. Once the execution is completed the state vector is uploaded back to the server. 

 In [29] a technique named Dynamic Local Time Window Estimate (DLTWE) is presented 

to control the optimism in PDES. DLTWE is particularly designed to increase the efficiency of 

simulation applications with highly variable time intervals between inter-LP events. In DLTWE 

each LP estimate the timestamp of the next outgoing event and keep sending these estimations to 

the neighboring LPs which update their local simulation time using these estimates. The occurence 

of the straggler messages cannot be rulled out because the timestamps are marely estimates, so LP 

must do rollbacks when received a straggler message. Moreover if the estimates are correct and 

accurate then there will be less number of rollbacks which results in higher efficiency.  
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 In DLTWE each LP maintain three types of data structures i) sub-domain state, ii) event 

queue and iii) roll back history. The LPs communicate with other LPs by sending time stamped 

events. Each LP process these events and update the state variables. If the event is a straggler then 

roll back is performed. In this paper authors have presented two typed of roll backs i) simple roll 

back and ii) selective roll back. In simple roll back the events that were processed after the straggler 

are processed back and the LP’s time is set to the previous time of the straggler. The messages that 

were sent during the roll back are cancelled by using anti messages and sending them to the 

corresponding LPs. On receiving anti message the roll back process is started on the LP. In 

selective roll back when LP received a straggler message it performs a refined analysis before roll 

back. The LP finds the events that were processed and are related to the straggler and roll back 

only these events which ultimately reduces the cost from the simple roll back. Roll back due to the 

straggler messages may decrease the efficiency of the system. So an LP should not update its local 

time same as the time stamp of the straggler message that may be received in future. In DLTWE 

each LP send the estimated ts of the next straggler to the neighboring LPs which is calculated with 

the help of current members of the events queue. The LP does not update its local time from the 

received estimate time stamp.  
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Chapter 4 

4. Proposed Scheme 

Cloud computing provide the users with the facility of executing their tasks on virtualized 

resources at remote locations. Large scale high performance computing tasks need high 

performance resources for computations which ultimately increase the costs. In cloud computing 

environment clients does not need to worry about the physical systems, virtualized infrastructure 

is being provided to the clients to execute the complex tasks. Cloud has provided the cost effective 

solution to the HPC community. 

 PDES is a collection of LPs which communicates with each other by sending time stamped 

messages. The major problem in PDES is the synchronization of the LPs. Optimistic approach 

uses roll backs mechanism to ensure the synchronization in a PDES program. Time wrap is a well 

known approach used for the optimistic synchronization. Execution of time wrap over a multi 

tenant cloud environment may lead to a excessive number of roll backs due to the computation of 

other users on some LPs. Moreover because of virtualized nature of cloud environment some LPs 

may reside far from each other resulting in longer communication delays ultimately increasing the 

number of roll backs.  

Our proposed methodology involves around the minimization of communication delays 

and eventually the number of roll backs in execution of PDES program over cloud environment. 

As discussed earlier the LPs communicate with each other by sending time stamped events with 

other LPs. Each LP maintains two queues one is to log all the message received from other LPs 

according to their timestamps and other is to maintain record of all the messages sent to other LPs. 

Each time when a message is received from some LP. It is compared with the time stamp of the 

last received message. If the time stamp of the received message is less than the last received 

message than LP started the roll back mechanism and send anti messages to other LPs to which it 

communicated earlier to undo all the false communication. Each time when an anti message is 

received the LP undo all the messages which were being processed earlier and have the time stamp 

less than the time stamp of the anti message 
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 To minimize the roll backs each LP continuously monitors the communication with other 

LPs. After a fixed time LP goes to analyzing phase and analyze the number of messages sent to 

other LPs. The LP to which the maximum messages were sent is requested to swap with the 

neighboring LP, so that the distance between the more communicating LPs can be minimized 

which eventually result in decreasing the number of roll backs occurring during the execution. 

This methodology helps in reducing the communication delays, improve the efficiency of the 

system and ultimately decrease the number of roll backs.   

 

Figure 13 Message passing mechanism  
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Figure 14 Number of messages sent from LP2 to other LPs  

 

Figure 15 Migration of LP and table update 

 Each LP select random LPs from its routing table to send messages. In Fig 13 LP2 start 

sending messages to other randomly selected LPs from its routing table. LP0 is a leader selected 

to monitor the traffic pattern among LPs and helps later in migration of LPs. After some time 

simulation goes into a pause state to monitor the messages sent to other LPs. Each LP keeps record 

of the number of messages it has sent to other LPs. In Fig 14 a table of LP2 shows the number of 

messages which LP2 has sent to other LPs. This table is then sent to leader LP for analysis that to 

which LP it has sent more messages. In this case LP3 is the LP that has to be migrated. All the 
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state variables of LP3 are sent to the nearest LP and tables of LP2 are updated that has been shown 

in Fig 15.  
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Chapter 5 

5. Performance Evaluation 

In this section the performance of the proposed methodology are presented.  

5.1   Benchmark Application 
 For performance study we used PHOLD which is a standard benchmark for PDES 

applications. In PHOLD LPs distributes a fixed number of events to random destination with 

increased time stamps. PHOLD is used widely for performance evaluation. Model comprises of 

the objects that contains the events. An event is sent to other randomly selected object and later 

that object send another event to the third object and the simulation continues like this. The number 

of events in the simulation remains constant.  

For the experiments we used 10000 events distributed across different number of LPs in 

different scenarios. The comparison was done with the performance of traditional time wrap 

protocol. We analyzed parameters as 

i) Number of rollbacks 

ii) Efficiency of the system 
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5.2  Results 
 

 

Figure 16 Roll backs in Traditional Time wrap 

We first implemented traditional time warp protocol to justify the results and the 

comparison of our proposed approach. Fig 16 shows average number of committed events and the 

number of roll backs during the number of simulation experiments. The Y-axis represents the total 

number of events and X-axis represent the number of LPs involved in each simulation. The 

simulation was performed using LPs ranging from 10 to 150.  
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Figure 17 Effciency of Traditional Timewrap 

Figure 17 shows the efficiency in percentage for the traditional timewrap protocol for the above 

performed experiments. Efficiency increases with the increase of number of LPs in most of the 

cases as shown in fig. efficiency was calculated on base of the results shown in Figure 16. 

 

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Ef
fi

ci
e

n
cy

LPs

Effciency



 

32 
 

 

Figure 18 Roll backs in Proposed Technique 

Figure 18 shows average number of committed events and the number of roll backs during 

the number of simulation experiments of our proposed approach. The Y-axis represents the total 
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number of events and X-axis represent the number of LPs involved in each simulation. The 

simulation was performed using LPs ranging from 10 to 150. 

 

 

Figure 19 Efficiency of Proposed Technique 
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Figure 19 shows the efficiency in percentage for the traditional timewarp protocol for the 

above performed experiments. Efficiency increases with the increase of number of LPs in most of 

the cases as shown in fig. efficiency was calculated on base of the results shown in Figure 18. 

 

Figure 20 Roll backs comparison between traditional Timewarp and Proposed Scheme 

 The comparison was done from the results that we produced from traditional time warp 

and our proposed approach. Figure 20 shows the comparison of number of roll backs occurred in 

traditional time warp and our proposed approach. It can be seen that number of roll backs 

significantly reduced in our proposed approach.  
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Figure 21 Efficiency comparison between traditional Timewap and Proposed Scheme 

Figure 21 shows the comparison in terms of efficiency for the traditional timewrap and our 

proposed technique and it was observed that our proposed technique reduces the number of roll 

backs thus ultimately improves the overall efficiency of the simulation. Which results in better 

performance of overall simulation execution.  
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Chapter 6 

6. Conclusions and Future Directions: 

6.1 Conclusion: 
In a multi tenant environment like cloud computing environment resources are shared 

among many users. The work load of every user may vary over the time. During the on running 

execution of parallel simulation applications new resources may become available and the existing 

resources may become heavily loaded due to other users work load. An ideal program must adapt 

these changes for the better utilization of resources and to increase the performance of the system. 

PDES program communicate through messages between the processes which results in increase 

in network cost and message failure due to the traffic on the network. Traditional Time wrap 

program on cloud environment can perform poorly because of the multi user shared nature of the 

cloud environment which leads to uneven processing.  

In this thesis we studied the options regarding the improvement of the performance of 

simulation in cloud environment. We designed a new process migration protocol to decrease the 

number of roll backs by decreasing the gap between the LPs, which also improve the overall 

efficiency of the system. The gap between the LPs are minimized by migrating the LPs nearest to 

each other by assessing the communication between them. Experiments shown significant results 

with less number of rollbacks and improved efficiency of the simulation program. 
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