
SDN Query Abstraction for Switches
as Distributed Databases

By
Kamran Ali Akhtar

NUST201260752MSEECS60012F

Supervisor
Dr. Saad Bin Qaisar

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August 2016)

Approval

It is certified that the contents and form of the thesis entitled “SDN Query
Abstraction for Switches as Distributed Databases ” submitted by
Kamran Ali Akhtar have been found satisfactory for the requirement of
the degree.

Advisor: Dr. Saad Bin Qaisar

Signature:
Date:

Committee Member 1: Dr. Mian Hamayun

Signature:
Date:

Committee Member 2: Dr. Adnan Khalid Kiani

Signature:
Date:

Committee Member 3: Dr. Arsalan Ahmad

Signature:
Date:

i

Abstract

The languages currently used for describing network policies are not so effi-
cient and well known. The flow entries stored in network switches forwarding
tables, can be considered as distributed databases. SQL, originally designed
for relational databases, can be used for maintaining these distributed net-
work switches forwarding tables. SQL inherently includes CRUD (Create,
Retrieve, Update, and Delete) actions which are also used in network switch
forwarding tables. In our work we have proposed that by writing well known
SQL instructions using SQL framework on top of OpenFlow, we can lever-
age the DBMS CRUD actions for OpenFlow enabled network switches dis-
tributed databases changes. SQL being a well-known language has number
of open source implementations available. We have built a controller that
can understand SQL statements and translate them into OpenFlow instruc-
tions for applying CRUD actions on the switch flow tables in a network. By
using this approach we can benefit from SQL features like ACID (Atomicity,
Consistency, Isolation, and Durability) with little or no effort. For the im-
plementation and testing of our proposed solution, we built a controller that
accepts SQL instructions as input and deploys respective rules or query data
to and from the switches distributed flow tables.

ii

Dedication

I dedicate this thesis to my parents and my family.

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Kamran Ali Akhtar

Signature:

iv

Acknowledgment

I am thankful to Allah for his countless blessings throughout my life and also
during MS research. All the abilities in me and qualities in my work are due
to Allah’s grace. Parents are the most valuable individuals in this world.
Their support and prayers led me where I am today. Their support is and
will be a continuous source of inspiration for me. I am also thankful to my
family members and friends for their support and prayers.

I owe sincere gratitude to my thesis supervisor, Dr. Saad Bin Qaisar. His
valuable guidelines led me towards completion of research work. His trust in
me gave a boost to morale. His guidance helped me to cope the challenges
during the research phase. He remained a source of motivation for me during
my MS. I am also thankful to my worthy Committee members, Dr. Adeel
Baig, Dr. Zahid Anwar, Dr. Muhammad Shahbaz. Dr. Adnan Khalid Kiani
and Dr. Arsalan Ahmad for their valuable guidance during the research and
for their support of this work.

I am thankful to my friends for their motivation and guidance throughout
the research phase. I am obliged to Zeeshan Ali, Shafique ur Rehman, Abdul
Basit for all their support and guidance.

v

Table of Contents

1 Introduction 1
1.1 Abstractions in SDN . 1
1.2 Motivation . 3
1.3 Problem Statement . 7
1.4 Proposed Solution . 8

1.4.1 Expected Outcomes . 8
1.5 Thesis Organization . 8

2 Literature Review 10
2.1 Background . 10

2.1.1 Software defined Networking 12
2.1.2 Database . 14

2.2 Related Work . 14

3 Design and Implementation 17
3.1 Architecture . 18
3.2 Design . 21

3.2.1 Single Query Execution Model 22
3.2.2 Testing Parameters . 22
3.2.3 Test Scenarios . 22

4 Experimental Results and Evaluation 24
4.1 Line of Code comparison . 24
4.2 Executed Line of Code . 25
4.3 Qualitative Analysis . 28

5 Conclusion and Future Work 29
5.1 Research Contributions . 29
5.2 Problems . 30
5.3 Conclusion . 30
5.4 Future Work . 31

vi

TABLE OF CONTENTS vii

A Data used in constructing graphs 32

B Survey Form 34

List of Figures

1.1 OpenFlow Switches and Controller. 4
1.2 Database Management System (DBMS) Architecture. 4
1.3 Preference for writing MAC based firewall. 5
1.4 Preference for Using OpenFlow, Pyretic, SQL. 6
1.5 Give marks on scale of 100, how it is easy learning. 6
1.6 Programmers having knowledge of the 3 languages. 7

3.1 High Level Architecture of SQSDN Controller. 18
3.2 Architecture of SQSDN Controller. 19
3.3 Internals of DBMS. 20
3.4 Detailed Design of SQSDN. 21
3.5 Stages for processing the SQL. 22
3.6 Flexibly in Setting Flow-Based Control. 23

4.1 Line of Code Comparison of Different Applications. 25
4.2 ELOC Comparasion for 100 Flow deployments. 26
4.3 ELOC Firewall Flow deployments by varying blocking rules. . 27
4.4 ELOC LSW Flow deployments by varying number of hosts. . . 28

B.1 . 34

viii

List of Tables

4.1 Line of code comparison. 25
4.2 Executed Line of code comparison 26

A.1 Executed Line of Code for Flow deployments using firewall . . 32
A.2 Executed Line of Code for Flow deployments using firewall . . 32
A.3 Executed Line of Code for Flow deployments using LSW . . . 33
A.4 Executed Line of Code for Flow deployments using LSW . . . 33
A.5 Executed Line of Code for Flow deployments using LSW . . . 33

ix

Chapter 1

Introduction

1.1 Abstractions in SDN

Abstraction layers in software development are a key to overcome complexity.
Today’s operating systems are most complex software that are built from
many components. Basically the operating system is built with abstraction
for two reasons. To hide the details of components of one layer from other so
that a programmer working on one layer application, need not consider the
complexity of other layers and can write a program within a defined scope.
The layers have a specific interface with other layers for interaction. It also
controls the interaction between different applications so that an application
does not interfere with working of other application.

Abstractions are also used in OSI model to overcome the complexity of
interaction of one application running on one device with application running
on another device. Abstraction is also defined in TCP/IP networking model
in which one layered application on one device is communicating with other
application running on another device on corresponding layer. It has broken
the complexity into many layers. Now each layer has some defined function-
ality and is responsible for specific tasks. With this approach now each layer
can innovate individually and is not dependent on other layer. New tech-
niques of data handling can be developed without propagating development
errors to other layers. Each layer is providing a predefined interface and data
in agreed form. Each layer performs specific functions on data received from
its adjacent layer and forward to other layer.

With the advent of SDN now the control plan and data plan can run
on two different physically separate devices. Basically SDN brought this
abstraction. The southbound API for controlling data plan have been stan-
dardized by ONF as OpenFlow [1] and northbound API like Pyretic [2],

1

CHAPTER 1. INTRODUCTION 2

Frenetic [3], JOSN [4]etc. are revolutionizing to catch current needs of SDN.
Each layer can now scale and innovate independently. This thing brought
agility and scalability in developing modern networks with decreasing capital
and operating costs. In this approach a logically centralized controller work
with multiple heterogynous devices in data plan. SDN abstraction helps in
creating horizontal platforms in which the number of devices can be added
in data plan with increasing demands and more controllers can be added
to process requests arising from data plan. Open standard of southbound
API enables a programmer to write a single program that can control de-
vices from different venders and different specification. Because abstractions
break complexity and make things more manageable, in SDN it helps pro-
grammers to solve problems efficiently and increase their productivity. SDN
gives solutions with efficient code and code reusability. Once a layer is es-
tablished it handles its tasks independently without affecting other layers.
Testers can test functionality of different layers separately and can find and
mark bugs and propose solution for these bugs.

The abstractions also brought easiness in programming and especially in
SDN, abstraction reduce programming effort and brought new programming
paradigm. Abstraction of higher layers in SDN also solve coordination prob-
lems between different applications running simultaneously on the controller.
Lower abstraction layers solve these problems transparently from upper layer
and give a clean interface for programming. POX/NOX [5]are SDN con-
trollers that give operating system like abstraction, for generating OpenFlow
messages these requires to write low level OpenFlow structures and transmit
these messages directly to the switches connected with the network. Writing
application directly on POX controller require knowledge of lower level rou-
tines that store Openflow structures. These structures contain information
generated in result of different events, packet information and if one has to
send a message to the switch for performing any task he/she has to fill spe-
cific structure and send this structure to the switch. This approach is like
when programmers are doing system programming for Windows like operat-
ing system. They are writing handlers for every event that can affect their
application by filling different system structures and packing/unpacking in-
formation to do different tasks. In higher level programming languages like in
visual basic, programmers only change required properties and select events
that required modification and write code for only these events, they don’t
have to care about filling all structures to associate with a specific task.

In SDN new controllers like Floodlight [6], Opendaylight [7] are being
built to break programming complexity and separate the concerns in pro-
gramming different modules. With these advance controllers, programmers
are given different abstractions and interface to write application for these

CHAPTER 1. INTRODUCTION 3

controllers. Now different controllers are built with different aims to solve
different issues, some focus on scalability, some on application coordination,
efficiency, controller to switch traffic control, security etc.

In computer networks the networking devices like switches, routers, NAT
boxes etc. all contain a forwarding table that is populated with different
routing algorithms, by listening to the packets flowing through these devices.
These forwarding tables are of same kind with difference in information hold-
ing capacity. With advent of OpefFlow, now an OpenFlow enabled switch
has a standardized format of forwarding table depending upon its version.
The forwarding tables of OpenFlow enabled switches are called ”flowtables”.
The SDN controller perform CRUD (Create, Retrieve, Update, and Delete)
operations on the tables. These CRUD operations are same as those per-
formed by DBMS on database tables.

1.2 Motivation

As all network devices have forwarding tables to perform packet forwarding
and typical network control algorithms are running on these devices to pop-
ulate these tables. For having a controlled behavior of the network these
networked devices are configured by network administrators by using man-
agement consoles. These management consoles or management software are
vender dependent. It is a very tedious task to configure a network of het-
erogeneous devices from different venders. For a large network that requires
changing network management policy manual reconfiguration of devices do
not work. In these conditions management scripts are used, but dynamic
management policy cannot be deployed on network switch using these tech-
niques. With SDN that separates control plan from data plan as shown in
figure 1.1 now a logically centralized controller can program/configure het-
erogynous devices from different venders. SDN controller works with Open-
Flow enabled switches. These switches now can be programmed with SDN
controller to act like different devices like simple hub, layer 2 switch, router,
NAT box, firewall, load balancer etc. The SDN controller basically performs
CRUD operations on flowtables of network switches to give them behavior
like simple hub, layer 2 switch, router, NAT box, firewall, load balancer
etc.These CRUD operations are also performed in HTTP [8] like requests.

If we see from figure 1.2 in database domain the Database Management
System (DBMS) and database are running on two physically separate ma-
chines. The database is maintaining different tables that contain actual data.
The DBMS is performing CRUD operations on these tables using network
connection. Programs that required operations on data contained in database

CHAPTER 1. INTRODUCTION 4

Figure 1.1: OpenFlow Switches and Controller.

tables use Sequential Query Language (SQL) to ask DBMS to perform these
operation. The DBMS schedule these operations as transactions and execute
these operations on database.

Figure 1.2: Database Management System (DBMS) Architecture.

Here the analogy can be seen; both the Databases and SDN use CRUD
architecture. Both use Network connection to communicate with the data
source, in case of DBMS the database uses servers to hold data and in case of
SDN network switches are used to store flowtables. It is very interesting to
see that database and SDNs are working in the same way and performing two
very different tasks. The SDN is managing a network by deploying network
management policy on underlying devices and databases are storing huge
amount of data on data servers. But in SDN other controllers do not use SQL
instead they are using ”SQL like functions” or using and developing other
higher level languages/API eg. JSON [4], REST API [9]. The examples
of controllers that give SQL like functions in application programming are

CHAPTER 1. INTRODUCTION 5

Frenetic’s sub-language for network query [3], [10] ,Flowlog [11] etc. Instead
using SQL like syntax if we use SQL language that has evolved over time and
is been standardized, we can efficiently deploy network management policy
with SQL. The emergence of SQL and DBMS approaches with SDN will
not only give the easiness to the programmers, it will also help to leverage
database ACID properties and other transection processing properties.

Therefore, development of middleware API like SQL is highly required.
For assessing ease of use, learning and preference of SQL over OpenFlow
/ Pyretic and interest from network application programmers and software
developers we conducted a survey. In this survey we included over 73 pro-
grammers, all of them belongs at least MS study level and from research
community. About half of the programmers had taken SDN course where
they learn how to program for POX SDN controller. These programmers
are researching in EE, CS and IT fields. All have studied data communica-
tion/networking courses. The survey Performa is attached in Annexure A
and the results are discussed as under.

This survey was divided into two parts in first part some basic information
about programmers was gathered. In second part data about their preference
for using SQL, POX/OpenFlow and Pyretic was collected. For this, in first
question in first part, the programmers were shown sample code snippets of
MAC based firewall, written in SQL, POX/OpenFlow and Pyretic languages.
The programmers compared three languages and chose their language of
interest. The survey results are shown in the form of pie chart below.

Figure 1.3: Preference for writing MAC based firewall.

It can be seen from pie chart that 84% preferred SQL because of its clean,
easy and simple syntax.

CHAPTER 1. INTRODUCTION 6

Next they were posed question ”With SDN, the forwarding tables of
switches can be seen as database tables and with our test framework, SQL
can be used for writing in these tables. If you want to write an SDN ap-
plication then what language would you prefer among SQL, OpenFlow and
Pyretic?”. In the survey 82% programmers opted for SQL.

Figure 1.4: Preference for Using OpenFlow, Pyretic, SQL.

When we asked about easiness in learning from these languages we learned
that it share with respect to learning is about 50%. For summarizing the
results from this question we had taken average of marks given by the user
for three controllers, the data is shown in Annexure B.

Figure 1.5: Give marks on scale of 100, how it is easy learning.

To the best of our knowledge there is no forum available that gives the

CHAPTER 1. INTRODUCTION 7

statistics about how many programmers have SQL knowledge and how many
have POX/OpenFlow or Pyretic knowledge. To find this in our local domain,
the following question was posed to the programmers at our SEECS campus;
”In your thinking what % of all programmers have knowledge about SQL,
POX/OpenFlow or Pyretic?” Data from their answers shown that about 66%
programmers from all over programming community has SQL knowledge and
do not need to lean it from root.

Figure 1.6: Programmers having knowledge of the 3 languages.

The above survey shows that SQL, as a northbound API, provides signif-
icant ease of use as compared with the traditional coding models in contem-
porary controllers. As more then 65% programmers have SQL knowledge,
when they come to network programming they would find it very helpful.
Considering the switches as database components reduces software design
complexity. Our design reduces lines of code by approximately 20% (on av-
erage) as compared to the direct OpenFlow message representation in POX,
so more programmers opted to program using SQL.

1.3 Problem Statement

SQL is a standardized and well-known language. SDN controllers already use
functions that look like SQL instructions, for deploying network management
policy. The learning curve of SQL is steep. With SQL emergence in SDN
we can leverage a huge amount of verified code from database community.
This can enable SDN network programmers to benefit from functionalities
defined in databases. Especially as in database the transaction of one table

CHAPTER 1. INTRODUCTION 8

state to another, the Network management policy is also changing from one
state to another but it requires reconfiguration or deployments on all network
devices, means changes in all network devices flowtables.

In this study the suitability of SQL for efficient deployment of network
management policy using database abstraction will be investigated. As
database tables are analogous to network switches’ flowtables, the suitability
of SQL to change network switch flowtables will be investigated.

1.4 Proposed Solution

To verify the suitability of SQL for efficient deployment of network man-
agement policy, a SQSDN controller will be built. Different network man-
agement policy applications will be selected and these applications will be
written for SQSDN controller. These SQL and non SQL application will be
compared in terms of lines of code, and executed lines of code in different
scenarios.

1.4.1 Expected Outcomes

By successfully implementing our proposed solution we expect that SQL
can directly be used in SDN controllers. SQL is a standardized well known
language as compared to other SDN languages. We want to propose a verified
code base, from database domain, having various database functionalities for
SDN domain. These functionalities can be enabled in SDN with little effort.

We also expect 10% to 25% reduction in lines of code and a significant
reduction of executed lines of code, since a flow deployment instruction is
repeatedly executed whenever a flow deployment is required or a change in
flow-table is to be done.

1.5 Thesis Organization

This thesis is organized in mainly 5 chapters
Chapter 1 contains introduction to the SDN domain, motivations for

building abstractions, motivation for building an SQL based abstraction and
then propose a solution and presents our contribution in this domain.

Chapter 2 gives literature review of SDN and database fields. Defines the
key words used in this thesis.

Chapter 3 elaborate the high level architecture of proposed idea, basic
design features and the implementation details of proposed design, test ap-
plications, testing parameters and method of testing.

CHAPTER 1. INTRODUCTION 9

Chapter 4 has the test-bed details, experiment results and evaluation of
the results.

Chapter 5 presents the conclusion and suggested future work directions.
Bibliography section mentions the main sources of information and the

annexure section have supporting data used for building graphs in this thesis.

Chapter 2

Literature Review

2.1 Background

PLAN [12] is a language building active networks when only conventional
network equipment exist. It follows strict functional rule for writing pro-
grams. For remotely execution of PLAN based programs it defined certain
primitives. It attains its functionality by generating packets that carry pro-
grams or instructions and change these packet headers and call service routine
written in other languages.

Before standardizing OpenFlow to solve the problem of network manage-
ment that was caused by complexity in control and management plans 4D
[13] approach was proposed. They have proposed the refactoring of control
and management into three principle objectives; network level objectives, full
network views and direct control. It divided its architecture into four planes
i.e. data, discovery, dissemination and decision. It proposed to separate
decision logic from the underlying protocols to control the communication
between network elements. The decision plan maintains the higher level ob-
jectives and directs the configurations of network elements, how they process
and forward packets. The monitoring/measurement data collected by these
network elements like switches and routers help the decision plan to control
network state. In 4D architecture the network decisions are taken in and
logically centralized server. The network elements only run the discovery
protocols and follow the instructions from decision plan. The discovery plan
creates the logical identifiers for physical network elements and dissemina-
tion plan provide efficient communication between physical network elements
and decision plan. The result of this technique is the auto configuration of
network elements. It has issues in response time from decision elements as
the network elements scale 4D become unstable. it is not suitable enterprise

10

CHAPTER 2. LITERATURE REVIEW 11

level networks.
The modern networks relay heavily on centralized controller. All the

packets that do not match any flow, are forwarded to control plan. In enter-
prise networks centralized controllers are heavily loaded with packets coming
from switches. The enterprise administrators have to specify a fine-grain
network policy to process these packets on data plan. The DIFANE [14]
solution proposes a technique that partition flow rules on network switches,
so that maximum network traffic can be processed on data pan and traffic
between switch-controller is reduced. It deploy wildcard rules that process
more traffic on data plan on ingress switches and partition the traffic in to
data path and to authority switches. The flow rules deployed on authority
switches selectively send packets to control for new flow deployments. Using
this approach larger network can be controlled with fine-grained policies.

Onix [15] and Hyperflow [16]are presented for meeting the requirements
scalability in large production network. Both are logically centralized by
physically distributed controller. Onix gives a global view of network to
application and provides an API for writing network applications that run on
global prospective is suffered from issues like response time and unresponsive
behavior. The Hyperflow in contrast make localize decisions and minimize
the response time. Due to divided control plan it is resilient to component
failures and network portioning. But it has only local network view for
controlling network.

DevoFlow [17]breaks the coupling between control and global visibility,
in a way that it maintains a useful amount of visibility without imposing
unnecessary costs, it uses 10 53 times fewer flow table entries at an average
switch and uses 10 42 times fewer control messages. DevoFlow experimented
with both proposing control plan changes and data plan changes. Cloning
of flow entries are proposed for decreasing flow setup messages, flow entries
are decrease by using wildcards. Counters are approximated for decreasing
switch to controller traffic. By using this approach the limitation of scalabil-
ity in OpenFlow is addressed and more expandable solution is offered.

To resolve conflicts in sheared resource, whether a device has an au-
thority to perform a task or not and other decision making is accomplished
using hierarchical policies in conventional networks. Because the floatables
of commodity switches deploy flow to forward packets and do not understand
hierarchies this work proposed hierarchical flowtables [18] (HFT). With hi-
erarchical policies in SDN, the flow roured are deployed on switches in hier-
archic manner. The flow tables in different switches work in a hierarchy like
it is a HFT and each level switch perform different operation. By using this
technique the decisions are distributed over different levels of switches and
the decision distribution is performed by translating the network into a tree

CHAPTER 2. LITERATURE REVIEW 12

of flow tables.
Corybantic [19] proposed a design for modular composition of network

management applications that are competing for same resource. It tries to
optimize the objective functions to maximize the performance of the con-
troller. For this in Corybantic different modules are build that take care of
allocation of some objective function like bandwidth, power control and VM
migration. It can be used for IaaS ((Infrastructure as-a Service) in cloud
orchestration tools.

ONOS [20] is a distributed and logically centralized SDN operating sys-
tem. The motivations behind building this controller architecture are scal-
ability, performance and availability requirements from a larger network. It
gives the operating system level abstraction of a global network view, fault
tolerance with distributed but centralized controller. In ONOS architecture
they run OF managers using Floodlight controller on physically separate
machines and build a network view by collecting distributed key-value from
different machines and from a graph database. It used a distributed registry
that manages relationship between controllers and switch and react on at-
tachment or detachment of switches. If a switch losses connection with one
distributed registry instance, some other distributed registry instance will
take its control. ONOS abstraction gives a global network view that empow-
ers the application to deploy flow rules for full or partial path between source
and destination. With this an application can use global view to find host
location and its usage data to accomplish required tasks.

For solving different issues like efficiency, scalability, programmability,
modularity, application composition and distributed control plan different
controllers [21] are proposed. Each has its pros and cons. Here we review
some of controllers and other architectures for their programming interface.

2.1.1 Software defined Networking

The increasing number of mobile devices that are fetching data from data-
centers, distributed datacenters, cloud services and server virtualization are
driving force for new innovative and agile network architecture. The conven-
tional networks that are building from Ethernet-switches connected in tree
like structure make sense for client-server applications. Today’s dynamic
computing, enterprise level datacenters and multi services carrier environ-
ments need new network architecture. The data traffic patterns in datacen-
ters have been changed. Server is running as instance of virtual machines and
migrating in different datacenters on the fly. The users are acquiring compu-
tational resources from enterprises with cloud orchestration tools. Enterprise
businesses want their users to access their infrastructure and application any-

CHAPTER 2. LITERATURE REVIEW 13

where from globe. Datacenters are handling massive amount of data.
These requirements are impossible to be met with conventional network-

ing techniques. As the services and demands of networks are increasing the
complexity of networks is increasing. The management of these networks
becoming more difficult and cause inconsistent policies [3], [2]. The rapid
growth in bandwidth required more network resource and conventional net-
works fails to accommodate this change. The vender dependence is blocking
enterprises to use new services and capabilities. Businesses are seeking for
open interfaces so that they can build agile networks.

Ethane [22]frame work also given network administrators to deploy a flow
based fine-grained network management policy on network befor concept of
SDN. The SDN is a new emerging network architecture, [23] that decoupled
control plan from data plan. The control plan is now become directly pro-
grammable. With OpenFlow [1], [24] data plans open standard business are
free from enterprise dependence. Anyone can write controller for meeting his
specific requirements. Industry is building controller platforms where net-
work applicant can be written. These are giving programming abstraction
to the programmers.

The need if Information Centric Networking (ICN) is increasing. The
network should change itself as changing information patters. In [25]study
it is shown that SDN control and function can be used for adapting change
as change in information patters. this approach is using existing IP networks
and with the help of SDN performing ICN routing.

As OpenFlow has separated control plan and data plan it has enabled
to build better management tools. The OFConfig protocol [24] uses the
OF-Config 1.1 for network management. In this technique they translated
parameters from OFConfig to OVSDB for monitoring and controlling Open-
vSwitch (OVS).

In this paper [26] a scenario of VM migration is discussed. During migra-
tion process there may be packet losses or service disruption or bandwidth
chocking and cause service agreements problems. Authors proposed that
with SDN a controller will take decisions where to install or remove packet
forwarding rules in a network solve this problem. It ensures that the required
bandwidth is available on the switches where the VM is being migrated and
the migration process may not induce any packet loops or higher latency.
Working an abstract network view, the controller architecture has solved
this resource allocation problem.

CHAPTER 2. LITERATURE REVIEW 14

2.1.2 Database

In this early database techniques development paper Jeffrey [27] proposed
that the databases should be updated with database integrity constraints. In
this paper a methodology is proposed for updated in databases. Its reason to
change the old theory is based upon the argument that, if a small change in
theory is required then the update should be minimal and if several changes
are required then the old theory should be replaced with new theory. It
states that facts in database are of differed forms: derived and facts based
on actual information. The update should see how the logical database is
formed.

Active-database System [28] the integration of production rules like trig-
gers, protection, alerts and version control in to databases are proposed.
With these, a database can change dynamically and become an active appli-
cation. In some SDN applications, triggers are used for communication with
databases.

The schema like SQLGraph [29] translate its instructions in to SQL
relational model to take its benefits like locking, security, concurrency, query
optimization and ACID properties. It uses Gremlin language that works with
graph database and support CRUD operation, run over a query processing
framework to translate its queries into SQL queries. It translate Gremlin
query into single SQL query to eliminate client server protocol overhead and
efficiently deploy its query using relational database engine. RDF is another
language to query graphs uses SPARQL. To optimize the SPARQL it is
proposed in many works [30], [31] to translate it into SQL language.

2.2 Related Work

For implementing a high level policy on in a typical network, it contains het-
erogeneous set of devices that include switches, firewalls, NAT, middle boxes
[32]and load balancers. These devices need to program separately. For man-
aging these devices distributed scripting is required that is error prone. With
advent of OpenFlow [1]that is potential enabler of SDN the dumb switches
can be programmed to achieve functionalities like router, security device or
load balance. In this approach a logically centralized controller that is an
x86 based computer implement the high level policy. It computes routes be-
tween nodes and deploying appropriate flow entries in the underlying switch
table. These flow entries have two parts, match and action. According to
OpenFlow standard [33] switch collect the actions in the action set after
matching the packets against various fields and perform actions like forward,

CHAPTER 2. LITERATURE REVIEW 15

flood or drop the packet according to these actions in the action list. The
switch also collects the statistics by updating counters associated with that
flow for network traffic analysis and management.

Now defining policy directly in NOX [5] and Beacon [34] is difficult.
These controllers install flows on per event basis, in these programmer based
on these controllers, has to care about installing and how flows affect other
flows. Flow management language (FMS) was designed specifically for defin-
ing network policies. [35] it simplified the task of coding for defining a policy.
It works fine for writing new policies and has issues in writing subsequent
policies that required additional code outside FML.

Changing networks management policy is common to produce instability
in networks. A computer network can become unusable if network manage-
ment policy is not correctly installed on it. Even in process of deployment of
new network management policy networks become unresponsive. Different
policies and techniques have been proposed to solve this problem. In these
works [36], [37] an update abstraction proposed that works on different
run-times system.

The network application designers are moving towards modular programs
that are executing complex network function the dependencies become un-
avoidable. The concurrent operations of these applications that may be pro-
grammed to run independently may cause incorrect network behavior. The
Maestro [38]controller is giving an abstraction so that network application
can deploy their required flows on network revives without affection rules
from other languages. It used directed acyclic graphs (DAGs) to solve the
concurrency problem

NetCore [39] is a high level declarative language that has compositional
expressive and formal semantics. The language is used for expressing packet
forwarding policies. NetCore has a compiler to compile network policies and
a new run-time system. Its run-time is responsible for issuing commands to
get traffic statistics and installation of rules on the network switches.

For improving network management with SDN Procera [40]framework
proposed. It basically addressed three problems in network management.
The frequent changes with respect to the user behavior that cause change in
network conditions and state changes, use of high level language for having
batter visibility of network conditions to control and diagnose a problem
network policy and how a network can be configure with concurrent policies.
It uses high-level functional-language to respond network events. With its
functional behavior it can reconfigure network devices to data usage, traffic
flow, time and authentication status.

In this work [41] the authors tried to solve the network configuration
problem that occurs when more than one policy are implemented or changed

CHAPTER 2. LITERATURE REVIEW 16

concurrently. They used abstract topology and proposed an abstract packet
processing model with pyretic language that is using sequential composition
operator to process packets. This scheme gives the illusion that a packet
is processed from one policy and then from other and the operation of two
policies do not overwriting the changes by other. The order of the two poli-
cies implementation would be predetermined. They used virtual fields for
identifying the level of policy being implemented by Pyretic [2] language.

Yuki [42] has proposed an architecture that uses logical and physical
database to store network state. This architect is proposed to solve require-
ment of asynchronous updates in network. In this approach they stored has
two type to table to store information, one is called physical information
table, is storing properties related with physical network, like: propagation
delay and link capacity. Other is called intermediate code tables are storing
properties related with network working like; flow path of a type of pack-
ets and path IDs (VLAN tags). In this different application are running as
configuration engines. The configuration engines are running independently
from each other and updating the logical databases. The network adminis-
trator active different configuration engines to achieve his desired behavior.
The configuration engines can be added running controller. The implemen-
tation of this architecture can run on different controllers and a separate
conversion driver is required each controller.

Peng proposed a Stateman [43] service as an abstraction, so that they can
run transparently from each other. The service manages network state and
its changes and other network application operate independently from each
other. Network management application can read and propose any change in
network state, according to their requirement. The Stateman collect all the
changes from different applications and merge these changes to form a target
state and update the network to the target state. This service can be used
as an abstraction for coordination between different network management
applications.

Chapter 3

Design and Implementation

As in cloud computing where data centers running at different geograph-
ical locations provide the web services and data services. Users from dif-
ferent parts of world can acquire resources like web servers, leased dedi-
cated servers and custom networks. It requires the use of Cloud Orchestra-
tion Tools (COTs) like OpenStack, CoudStack, Eucalyptus, and Abiquo etc.
These tools help users to get their requirements fulfilled. Some COTs have
graphical user interfaces to get user requirements and give full control of the
required resources. These COTs use higher level programming languages
and APIs to tell underlying controllers to reconfigure there devices to get
required functionality. Now these devices can be physical devices or software
or virtual devices like Open vSwitch, virtual routing devices etc., which are
in network virtualization. Frenetic, Pyretic like languages and REST, JSON
like APIs are used to write programs for SDN controllers or to communicate
requirements to the SDN controller. At this layer these Frenetic, Pyretic like
languages are used for Network Function Virtualization.

These languages and APIs are evolving and more efficient methods are
being invented to have better agility and dynamic behavior. As the Frenetic
[3], Pyretic [2] and Kinetic [44] like languages use a Runtime System that
is written on top of NOX/POX controllers and give a programming abstrac-
tion for higher layers. Other controllers like Floodlight [6] use REST, JSON
APIs to give interface for external application to communicate with con-
troller application to convey their requirements. For innovation and ease of
programming at this layer SQL database abstraction is proposed. COTs can
directly generate SQL instruction or can use a middle level abstraction like
Pyretic to use SQL for deployment of network policy or configure network to
meet the requirements.

17

CHAPTER 3. DESIGN AND IMPLEMENTATION 18

Figure 3.1: High Level Architecture of SQSDN Controller.

3.1 Architecture

For deployment of network management policy we built a SQSDN controller.
Its basic architecture is shown bellow. There are two main modules of Con-
troller. One module contains a DBMS implementation. We had included
SQLite3 code base for this purpose and the other is coordination module
that handles events, data from application and give API for sending Open-
Flow messages and receiving SQL statements. On top of these modules user
have to write application that generate SQL statements to do CRUD opera-
tion on flowtables.

We have used the functionality of POX controller as a SDN operating
system as it gives OS level abstraction. Our implementation’s modules are
adding a programming abstraction over operating system abstraction. On
top of programming level abstraction programmers write their application.

As SQL is giving database abstraction for distributed tables over network
switches, we had included a full implementation of DBMS in our architecture.

From DBMS implementation we used its code base to get our required
functionalities. For getting more functionalities from DBMS in SDN, now
one have to only connect modules with SDN, as code is already included in
our implementation. The DBMS implementation is shown in figure as below.

CHAPTER 3. DESIGN AND IMPLEMENTATION 19

Figure 3.2: Architecture of SQSDN Controller.

As from figure, it also has built in form of modules and abstractions. Each
abstraction is giving specific API’s for interaction with other abstraction.

The SQL instructions are mainly of two types Data definition language
(DDL) and Data Modification language (DML) [45]. DDL is concern with
database schema i.e. number and type of tables, field and data types of these
fields. The DML is concerned with SDN. As by this type of instructions, SQL
perform CRUD operation. The instructions used for these operations are in-
sert, select, update and delete/drop. These SQL instructions are received on
DBMS interface that passes these instructions to SQL’s command processor.

The command processor send these instructions to tokenize for recogniz-
ing their type and then these tokens are send to parser. The parser module
check the code for Symantec and syntax errors and recognize its function.
The parser calls appropriate code from generator module to generate its code.
As the SQLite is an independent DBMS that can run on any operation system
the code generated from its implementation run on a virtual machine that
generate operating system understandable code. This code is having ACID
properties and use pager to achieve these properties. The B-tree module
handles the data for saving on operating system file level abstraction.

In our implementation we have used functionalities up to parser module
and leave the inclusion of other properties for future work. We have written

CHAPTER 3. DESIGN AND IMPLEMENTATION 20

Figure 3.3: Internals of DBMS.

CHAPTER 3. DESIGN AND IMPLEMENTATION 21

our own code generator module that does not send control back to command
processor module. It generates the code for POX operating system that
send’s packets to modify flowtables on network switches.

3.2 Design

The detail design of SQSDN controller will elaborate the working of this im-
plementation. As shown in figure below; the programmers can write appli-
cation by considering network switches as distributed database tables, they
query these tables with database abstraction i.e SQL. This SQL API per-
forms CRUD operations on these database tables using SQSDN controller.
Here in POX, SQL uses the OpenFlow that is running as lower level API
like other higher level languages C, FORTRAN use assembly as lower level
language or object code. The SQL statements from SDN Applications are
received at coordination module that sends these instructions to core mod-
ule. This is where DBMS implementation lies. It performs DBMS operation
tokenization, parsing and code generation in this module and finally send
OpenFlow message using POX abstraction to network switches.

Figure 3.4: Detailed Design of SQSDN.

In response to these flow deployments switches can generate messages,
these messages are consumed by event processor in coordination module.
The coordination module is also managing a replica of switches for getting
statistics from these switches.

CHAPTER 3. DESIGN AND IMPLEMENTATION 22

3.2.1 Single Query Execution Model

The single query execution model as shown in figure below will help in ex-
plaining how the SQL query is executed in SQSDN controller. When a SQL
query is raised it is received at coordination module which sends it to core
database module that parse that query and understand it’s meaning, it also
generate friendly error messages to tell programmer where there is the prob-
lem in this query. According to its meaning it identifies its CRUD operation
and call code generation module that generate flow mod messages for Open-
Flow. Then these messages are sent to the switch using POX operation level
abstraction.

Figure 3.5: Stages for processing the SQL.

3.2.2 Testing Parameters

As we are building an abstraction to include a high level language (SQL) as
an API in SDN. SQL is a language of relational databases and is considered
as higher level language then C, C++, Visual Basic. It reduces the line of
code to implement CRUD operation on network switches.

As the flow deployment instructions are repeatedly called in different
programming scenarios according to requirements with varying parameters,
we will also test the number of times the flow deployment instructions are
used.

We will compare the line of code (LOC) in writing SQL SDN applica-
tions with application written in POX. We also compare the flow deploy-
ment instructions that are executed in performing different tasks using both
techniques to get an idea about the executed line of code (ELOC).

3.2.3 Test Scenarios

We have selected two cases from simple application and two from advance
level application to compare LOC and ELOC. We borrowed Hub, Layer2
forwarding (LSW) application from POX distribution and taken firewall and

CHAPTER 3. DESIGN AND IMPLEMENTATION 23

Intrusion detection and mitigation system from developers from universities
and written our own respective application to compare with these application

Figure 3.6: Flexibly in Setting Flow-Based Control.

Our SQSDN application works by taking flow table as shown in above
figure. It can be seen different rules have different meaning and by deploying
appropriate flow rule we can convert a OpenFlow enabled switch to any
device like switch, router, firewall, load balancer and to forward packets to
any other port for deep packet inspection.

Chapter 4

Experimental Results and
Evaluation

For implementation and results generation a test bed deployment was used.
For this purpose a computer system with Core i3 1.7GHz processor and 64bit
operating system was utilized. Hyper V technology was enabled on it, so that
the virtual environment can run as truly as 64 bit environment. We have
used Oracle VM virtual box for creating virtual environment and managing
virtual machines resources. We installed Ubuntu 14.04.1 LTS LINUX oper-
ating system on the test bed virtual machine with wireshark [46]as network
monitoring tool and IPERF [47] for traffic generation tool. For emulating
network behavior we have installed mininet [48]version 2.1.0 and for get-
ting SDN OpenFlow enabled switching functionality, we have ovs-vswitch
[49](Open vSwitch) 2.3.90 that enables us to use OpenFlow [33]versions
0x1:0x1 on network switches.

For development purpose we have used POX latest version available on
github. We have developed a framework naming SQSDN on top of POX
network controller operating system.

4.1 Line of Code comparison

Line of code comparison of POX and SQSDN application hub, firewall learn-
ing switch and intrusion detection and mitigation system can be seen in table
and depicted below. In the table it can be seen that writing Hub code in
POX it used 22 lines and SQSDN used 9 which is more than 50% less as
compared to POX. In case of firewall, POX application consumed 36 lines
and SQSDN based application consumed 29 lines that are 20% less. For
LSW, POX has 96 lines of code as compared with SQSDN that has 85 lines

24

CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATION 25

of code with 12% decrease. In case of IDMS, POX based application used
125 lines of code as compared 87 lines with SQSDN which is 30% decrease.

Table 4.1: Line of code comparison.
Controllers \ Application Hub Firewall LSW IDMS
POX 22 36 96 125
SQSDN 9 29 85 87

These statistics are also shown in graph, here it can be seen that on
average the SQSDN based application reduced 28% of line of code for building
network application.

Figure 4.1: Line of Code Comparison of Different Applications.

4.2 Executed Line of Code

The network applications mostly do CRUD operations recursively and are
making flow modification in one way or the other. It is presented in the
figure below that if the selected four example applications make 100 flow
deployments, how many LOCs will be executed in flow deployment instruc-
tions? We have gathered statistics for POX and SQSDN implementations
and plotted in this figure.

From table, it can be seen that POX Hub will execute 300 lines of code as
compared with SQSDN that do the same task by executing 200 lines. LSW

CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATION 26

POX application executed 700 lines of code as compared with SQSDN based
LSW that executed 500 lines of code in deployment of 100 flows on a switch.
Firewall POX application executed 700 LOC and SQSDN executed 200 LOC.
The IDMS POX application executed 700 LOC as compared with SQSDN
that executed 700 LOC to deploy 100 flows in switch flowtable. Here it should
be noted that as more matching instruction are used for packet forwarding
the difference in ELOC’s would be more prominent. In case on Hub it just
forwards messages, LSW matches 5 fields and for Firewall and IDMS only
one field is matched.

Table 4.2: Executed Line of code comparison .
Controllers \ Application Hub Firewall LSW IDMS
POX 300 700 700 700
SQSDN 200 500 200 200

From graph it can be seen that as complex application are written in
SQSDN, it will reduce more LOC as compared with POX based application
and in case of Executable Lines of Codes (ELOC) the difference will be more
significant.

Figure 4.2: ELOC Comparasion for 100 Flow deployments.

In the results shown in figure 4-3 we have used firewall application scenario
for both implementations (SQSDN and NOX). We gradually changed the
number of blocking rules from 1 to 25 and recorded the ELOCs. For executing

CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATION 27

this scenario we had emulated a network of 50 nodes using mininet and tested
the network for ”All Pair’s Connectivity”. We changed the blocking rules by
writing 1 rule in blocking policy file and repeating the experiment by varying
this value up to 25.

From Figure 4-3 it can be seen that with the use of SQSDN there is
increase in executed lines of code with increase in blocking rules but this
increase is less in SQSDN as compared with NOX implementation. The factor
of decreasing ELOC’s will be very beneficial in larger networks, therefore
large networks can significantly benefit by deploying SQSDN instead of NOX.

Figure 4.3: ELOC Firewall Flow deployments by varying blocking rules.

In figure 4-4 the results from LSW applications are displayed. In this
scenario we increased the number of hosts from 2 to 50 and ran all pair
connectivity test. In this test we gathered statistics by measuring number
of deployed flows, in a process where all hosts checks the connectivity with
other hosts available in the network. For this ping command is used that is
using ICMP messages for testing connectivity.

In this figure 4-4 the results show that as the number of hosts increases
these is exponential increase in flows deployed and hence the number of
ELOCs are also increasing exponentially for POX application. From this it
can be concluded that the SQSDN implementation is performing much better
than POX implementation.

CHAPTER 4. EXPERIMENTAL RESULTS AND EVALUATION 28

For university campus network where thousands of nodes are commu-
nication with each other, this exponential increase in ELOCs become very
prominent and shows significant margin of decreasing ELOCs for SQSDN
implementation.

Figure 4.4: ELOC LSW Flow deployments by varying number of hosts.

4.3 Qualitative Analysis

As we built an abstraction layer of SQL over POX operating system. It
caused steeper learning curve and reduced the coding complexity. Most of
the programmers have knowledge of SQL as they learn it in databases course.
As the SQL is not limited to network applications, learning SQL will also
help programmers in developing other application.

Chapter 5

Conclusion and Future Work

5.1 Research Contributions

Our research shows that SQSDN framework that enables the use of SQL,
for writing network applications it gives significant advantage in terms of
reduction in lines of code and help in developing other better northbound
APIs. It can be used directly for network function virtualization [50]. It
provides ease for programmers to write run-time [39] environments for higher
level abstractions.

SQSDN controller also enabled programmers to use database features in
networks domain. As this controller parses the SQL query and identify errors
in writing code. It pinpoints the code errors to help programmer to correct
the coding errors. With this, programmers do not need to worry about
data types and include different types of files to get OpenFlow structures for
filling and sending messages to OpenFlow switches. The clean interface of
SQL facilitates programmers to write a single instruction to define matches
in the flow and action that is performed if the packets coming on a switch
match with the flow.

It gives the way to emerge a very mature and standardized language from
database domain to computer networks domain. It has provided a verified
code base that is evolving over years from database domain to SDN. If we
see on internet many open source projects are available from where database
implementations can be adopted that have varying features. Some DBMS’s
support distributed database, some are build for handling very large data
volumes and some do very secure transaction. For proof of concept we used
a DBMS for our implementation that is platform independent and create a file
based database on local disk. It has all the functionalities that a standard
database has. For having any special functionality like triggers, database

29

CHAPTER 5. CONCLUSION AND FUTURE WORK 30

distributed over a grid of computers, any other DBMS can be used.
We have enabled some functionality of databases that can be used in

SDN and all the code base of DBMS is available with our implementation.
Very little modification in verified code base can enable other functionalities
like ACID (Atomicity, Consistency, Isolation, Durability) properties that are
used for transaction handling DBMS’s.

SQDSN provides simplicity and ease in performing CRUD (create, read,
update, delete) operations on network switch flowtables. SQL also gives
a new programming paradigm in which it gives significant ease in writing
proactive network applications.

5.2 Problems

In developing our SQSDN framework we faced problems like DBMS imple-
mentation was in C language and we are building our controller in python
language in which POX is built. As SDN is a relatively new, there is less
support available from community to resolve any issues. The tools that we
have used are evolving and often get into wrong configuration if we install
non compatible versions.

5.3 Conclusion

In this study we investigated the suitability of SQL for efficient deployment
of network management policy, using database abstraction. The results gath-
ered from examples that were using SQSDN controller as well as the survey
from programmers show that the SQL is well suited for efficient deployment
of network management policy. The SQSDN controller has reduced the lines
of code for developing network application for about 10% to 25%. As a result
it has also reduced significant amount of executed line of code, because a flow
deployment instruction is repeatedly executed whenever a flow deployment
is requested or a change in flowtable is required.

Now SQL parsing, syntax and semantics checking facility of DBMS is
being used in SQSDN controller. The DBMS is generating friendly messages
in case of errors in SQL flow deployment instruction.

The use of SQL’s standers and clean interface brought easiness and caused
a steeper learning curve for programmers. It is very helpful for relatively new
programmers, as flow deployment with SQSDN is providing user friendly
errors to help them quickly pinpoint and fix these errors. It also helped
them in a way that they do not need to worry about data types of IP’s,

CHAPTER 5. CONCLUSION AND FUTURE WORK 31

MAC addresses and ports. They just have to write a string query and pass
it to the DBMS and flow would be deployed on the switch.

5.4 Future Work

Our framework make it possible to leverage ACID (Atomicity, Consistency,
Isolation, Durability) properties from DB domain that guarantee DB trans-
actions with reliably and robustness. For future work the ACID properties
of DBMSs would be enabled for network switches. It will introduce a new
paradigm where a DBMS will control a network transition from one state to
another. It will ensure network transactions’ reliability and durability. As
distributed database DBMSs are also being used in databases field, these
databases are used for managing data from database grids or clusters of
servers. The example of these DBMS is Oracle database grid [51]and Oracle
Clusterware [52]. In future the DBMSs as discussed above would be explored
for building distributed controller, where a controller can run on multiple,
physically separate locations and will manage its data (switches flowtables)
transparently from user.

Appendix A

Data used in constructing
graphs

In table A-1 and A-2 the executed lines of code are displayed in deployment
of flow rules using firewall. The value of blocking rules is incremented from
1 to 25 for taking statistics of ELOCs.

Table A.1: Executed Line of Code for Flow deployments using firewall
POX
ELOC’s

28 56 84 112 140 168 196 224 252 280 308 336 364

SQSDN
ELOC’s

8 16 24 32 40 48 56 64 72 80 88 96 104

of
Block-
ing
Rules

1 2 3 4 5 6 7 8 9 10 11 12 13

Table A.2: Executed Line of Code for Flow deployments using firewall
POX
ELOC’s

392 420 448 476 504 532 560 588 616 644 672 700

SQSDN
ELOC’s

112 120 128 136 144 152 160 168 176 184 192 200

of
Block-
ing
Rules

14 15 16 17 18 19 20 21 22 23 24 25

32

APPENDIX A. DATA USED IN CONSTRUCTING GRAPHS 33

The tables A-4, A-5, and A-6 show the values of flow deployed and the
executed number of lines of code in an all pairs connectivity check scenario.

Table A.3: Executed Line of Code for Flow deployments using LSW
POX
ELOC’s

14 98 210 392 630 924 1274 1680 2142 2660

SQSDN
ELOC’s

10 70 150 280 450 660 910 1200 1530 1900

of
Hosts

2 4 6 8 10 12 14 16 18 20

Table A.4: Executed Line of Code for Flow deployments using LSW
POX
ELOC’s

3262 4144 5488 7126 8708 10458 12586 14336

SQSDN
ELOC’s

2330 2960 3920 5090 6220 7470 8990 10240

of
Hosts

22 24 26 28 30 32 34 36

Table A.5: Executed Line of Code for Flow deployments using LSW
POX
ELOC’s

16548 18536 20888 23338 25886 28532 31346

SQSDN
ELOC’s

11820 13240 14920 16670 18490 20380 22390

of
Hosts

38 40 42 44 46 48 50

Appendix B

Survey Form

Figure B.1:

34

Bibliography

[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[2] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford,
and David Walker. Modular sdn programming with pyretic. Technical
Reprot of USENIX, 2013.

[3] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A network
programming language. ACM SIGPLAN Notices, 46(9):279–291, 2011.

[4] Douglas Crockford. The application/json media type for javascript object
notation (json). Internet Engineering Task Force (IETF), 2006.

[5] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın
Casado, Nick McKeown, and Scott Shenker. Nox: towards an operat-
ing system for networks. ACM SIGCOMM Computer Communication
Review, 38(3):105–110, 2008.

[6] Ryan Wallner and Robert Cannistra. An sdn approach: quality of ser-
vice using big switchs floodlight open-source controller. Proceedings of
the Asia-Pacific Advanced Network, 35:14–19, 2013.

[7] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a model-driven sdn controller architecture. In Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014, 2014.

[8] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles,
Techniques. Addison wesley, 1986.

35

BIBLIOGRAPHY 36

[9] Li Li and Wu Chou. Design and describe rest api without violating
rest: A petri net based approach. In Web Services (ICWS), 2011 IEEE
International Conference on, pages 508–515. IEEE, 2011.

[10] Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J Freed-
man, Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jen-
nifer Rexford, Cole Schlesinger, et al. Languages for software-defined
networks. IEEE Communications Magazine, 51(2):128–134, 2013.

[11] Tim Nelson, Andrew D Ferguson, Michael JG Scheer, and Shriram Kr-
ishnamurthi. Tierless programming and reasoning for software-defined
networks. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 519–531, 2014.

[12] Michael Hicks, Pankaj Kakkar, Jonathan T Moore, Carl A Gunter, and
Scott Nettles. Plan: A programming language for active networks. Sub-
mitted, November, 1997.

[13] Albert Greenberg, Gisli Hjalmtysson, David A Maltz, Andy Myers, Jen-
nifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.
A clean slate 4d approach to network control and management. ACM
SIGCOMM Computer Communication Review, 35(5):41–54, 2005.

[14] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scal-
able flow-based networking with difane. ACM SIGCOMM Computer
Communication Review, 40(4):351–362, 2010.

[15] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, et al. Onix: A distributed control platform for large-
scale production networks. In OSDI, volume 10, pages 1–6, 2010.

[16] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed con-
trol plane for openflow. In Proceedings of the 2010 internet network
management conference on Research on enterprise networking, pages
3–3, 2010.

[17] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. Devoflow: scaling flow man-
agement for high-performance networks. ACM SIGCOMM Computer
Communication Review, 41(4):254–265, 2011.

BIBLIOGRAPHY 37

[18] Andrew D Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and
Shriram Krishnamurthi. Hierarchical policies for software defined net-
works. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 37–42. ACM, 2012.

[19] Jeffrey C Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa,
Jeongkeun Lee, Jayaram Mudigonda, Puneet Sharma, and Yoshio
Turner. Corybantic: towards the modular composition of sdn control
programs. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, page 1. ACM, 2013.

[20] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Ra-
doslavov, William Snow, et al. Onos: towards an open, distributed
sdn os. In Proceedings of the third workshop on Hot topics in software
defined networking, pages 1–6. ACM, 2014.

[21] Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, and Kpatcha
Bayarou. Feature-based comparison and selection of software defined
networking (sdn) controllers. In Computer Applications and Information
Systems (WCCAIS), 2014 World Congress on, pages 1–7. IEEE, 2014.

[22] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: taking control of the enter-
prise. In ACM SIGCOMM Computer Communication Review, vol-
ume 37, pages 1–12. ACM, 2007.

[23] ONF Market Education Committee et al. Software-defined networking:
The new norm for networks. ONF White Paper, 2012.

[24] RajaRevanth Narisetty, Levent Dane, Anatoliy Malishevskiy, Deniz
Gurkan, Stuart Bailey, Sandhya Narayan, and Shivaram Mysore. Open-
flow configuration protocol: implementation for the of management
plane. In Research and Educational Experiment Workshop (GREE),
2013 Second GENI, pages 66–67. IEEE, 2013.

[25] Markus Vahlenkamp, Fabian Schneider, Dirk Kutscher, and Jan Seedorf.
Enabling information centric networking in ip networks using sdn. In
Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, pages
1–6. IEEE, 2013.

[26] Soudeh Ghorbani and Matthew Caesar. Walk the line: consistent net-
work updates with bandwidth guarantees. In Proceedings of the first

BIBLIOGRAPHY 38

workshop on Hot topics in software defined networks, pages 67–72. ACM,
2012.

[27] Ronald Fagin, Jeffrey D Ullman, and Moshe Y Vardi. On the semantics
of updates in databases. In Proceedings of the 2nd ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 352–365.
ACM, 1983.

[28] Umeshwar Dayal, Eric Hanson, and Jennifer Widom. Active database
systems. 1994.

[29] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis,
Gang Hu, and Guotong Xie. Sqlgraph: an efficient relational-based
property graph store. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1887–1901. ACM,
2015.

[30] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. Semantics pre-
serving sparql-to-sql translation. Data & Knowledge Engineering,
68(10):973–1000, 2009.

[31] Stephen Harris and Nigel Shadbolt. Sparql query processing with con-
ventional relational database systems. In International Conference on
Web Information Systems Engineering, pages 235–244. Springer, 2005.

[32] Mehdi Bezahaf, Abdul Alim, and Laurent Mathy. Flowos: a flow-based
platform for middleboxes. In Proceedings of the 2013 workshop on Hot
topics in middleboxes and network function virtualization, pages 19–24.
ACM, 2013.

[33] Open Networking Foundation (ONF). OpenFlow Switch Specification,
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf, 2011.

[34] Beacon: A java-based OpenFlow control platform. ,
http://www.beaconcontroller.net.

[35] Timothy L Hinrichs, Natasha S Gude, Martin Casado, John C Mitchell,
and Scott Shenker. Practical declarative network management. In Pro-
ceedings of the 1st ACM workshop on Research on enterprise networking,
pages 1–10. ACM, 2009.

[36] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Con-
sistent updates for software-defined networks: Change you can believe
in! In Proceedings of the 10th ACM Workshop on Hot Topics in Net-
works, page 7. ACM, 2011.

BIBLIOGRAPHY 39

[37] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for network update. In Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies, ar-
chitectures, and protocols for computer communication, pages 323–334.
ACM, 2012.

[38] Zheng Cai et al. The preliminary design and implementation of the
maestro network control platform. 2008.

[39] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In ACM SIGPLAN Notices, volume 47, pages 217–230. ACM, 2012.

[40] Hyojoon Kim and Nick Feamster. Improving network management
with software defined networking. IEEE Communications Magazine,
51(2):114–119, 2013.

[41] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing software defined networks. NSDI, Apr,
2013.

[42] Yuki Kawai, Yasuhiro Sato, Shingo Ata, Dijiang Huang, Deep Medhi,
and Ikuo Oka. A database oriented management for asynchronous and
consistent reconfiguration in software-defined networks. In 2014 IEEE
Network Operations and Management Symposium (NOMS), pages 1–5.
IEEE, 2014.

[43] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang,
and Ahsan Arefin. A network-state management service. ACM SIG-
COMM Computer Communication Review, 44(4):563–574, 2015.

[44] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick
Feamster, and Russ Clark. Kinetic: Verifiable dynamic network con-
trol. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 59–72, 2015.

[45] Michael Otey and Paul Conte. SQL Server 2000 Developer’s Guide.
McGraw-Hill Professional, 2000.

[46] Wireshark protocol Analyzer (was Ethereal), http://www.wireshark.org.

[47] iperf, TCP and UDP bandwidth performance measurement tool,
http://code.google.com/p/iperf.

BIBLIOGRAPHY 40

[48] Rogério Leão Santos de Oliveira, Christiane Marie Schweitzer, Ail-
ton Akira Shinoda, and Ligia Rodrigues Prete. Using mininet for emula-
tion and prototyping software-defined networks. In Communications and
Computing (COLCOM), 2014 IEEE Colombian Conference on, pages
1–6. IEEE, 2014.

[49] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The design and implementation of open vswitch. In 12th USENIX
symposium on networked systems design and implementation (NSDI 15),
pages 117–130, 2015.

[50] ETSI Industry Spec. Group,network function virtualisation,.

[51] Meikel Poess and Raghunath Othayoth Nambiar. Large scale data ware-
houses on grid: Oracle database 10 g and hp proliant servers. In Pro-
ceedings of the 31st international conference on Very large data bases,
pages 1055–1066. VLDB Endowment, 2005.

[52] Kandhasamy Gopalakrishnan. Oracle Database 10g Real Application
Clusters Handbook. McGraw-Hill, 2007.

