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Abstract 

The popularity of Semantic Web has given rise to the development of Semantic Web databases with 

improved performance. Benchmarks are being performed to validate performance claim made by 

developers of Semantic Web databases.  However, detailed information regarding the strengths and 

shortcomings of these databases is limited due to the fact that the existing benchmarks provide little depth 

in scalability analysis. They measure the Semantic Web databases’ performance in terms of time and do 

not cover resource utilization during data manipulation operations. The research literature available on 

Semantic Web databases does not provide details of their internal architecture. In this research, we aim to 

evaluate the existing Semantic Web databases to discover their comparative behavior and scalability 

trends for a newly proposed evaluation methodology, and to analyze their architectures particularly with 

respect to their storage schemas and access methods.  

To cope with the deficiencies of existing evaluation methodologies, we have proposed a new evaluation 

methodology to perform comparative analysis and scalability performance study of Semantic Web 

databases. Our evaluation methodology comprises test cases for the data access methods and query 

optimization techniques to analyze the performance of Semantic Web databases. We defined new metrics 

for query cost estimation. As a part of this work, we also evaluated the performance of seven prominent 

open-source Semantic Web databases. These Semantic Web databases were evaluated on our proposed 

evaluation methodology using Barton Library dataset.  

Based upon our experiments and proposed methodology, we highlighted the key strengths and 

weaknesses of these Semantic Web databases, and discovered their scalability behavior. Storage schemas 

and access mechanism of the Semantic Web databases are identified in this thesis. We conclude that 

overall native Semantic Web databases perform better than others i.e. in-memory and non-memory non 

native Semantic Web databases. We also conclude that the requirements of in-memory stores for time and 

resource usage do not increase as rapidly as in other two categories of Semantic Web databases. The 

evaluation results show that the proposed evaluation methodology provides better scalability behavior and 

performance estimation of Semantic Web database than the existing evaluation studies.  
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INTRODUCTION 

This chapter introduces the research work that has been taken in this thesis. First it describes the 

motivation for research then it goes on describing our research contribution that includes 

problem definition, goals and objectives and the approach to achieve these goals. 

1.1. Motivation 

Semantic Web provides interoperability in integrating information from multiple resources and 

makes computers intelligent to work on their own behalf for unseen situations [1]. Semantic Web 

databases are designed to hold massive Semantic Web data in such a manner that the information 

they encode can be retrieved efficiently. Many stores have been introduced with the popularity 

and increased used of Semantic Web applications.  

The main challenge of Semantic Web databases is to execute different data management tasks in 

a user interactive time by utilizing few system resources. Moreover, scalability of these 

databases is a major issue because when procuring or designing a Semantic Web database, users 

and designers are often requires that it must be scalable because of number of triples increases 

rapidly to model a piece of information in Semantic Web. In view of vast research on efficient 

storage and retrieval of Semantic Web data, it is important to survey and evaluate the existing 

Semantic Web databases as developers of each one claims to perform the best. While a 

performance evaluation of Semantic Web databases facilitates the community in verifying 

developers’ performance claim of Semantic Web databases and in assessing the performance of a 

newly created or updated Semantic Web database against existing once, more importantly they 

should reveal the strengths and shortcomings of each existing Semantic Web database.  

CHAPTER CHAPTER CHAPTER CHAPTER 1111    
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While comparative evaluation facilitates the users to select from a library of Semantic Web 

databases, it is important for the developers of new Semantic Web database to know about the 

architectural details of existing Semantic Web databases. The Semantic Web database developers 

provide the API’s along with the user documentation but they do not provide their internal 

architecture and/or working. It is worth describing the storage layouts and data retrieval 

mechanism used by existing Semantic Web databases.  

1.2. Research Contributions 

In this research we aim to evaluate the existing Semantic Web databases to learn about their 

comparative behavior and scalability trends for our proposed evaluation methodology and to 

analyze their storage schemas. 

Research objectives set to follow above stated problem statement are given below. After that we 

present a summary of our contribution to achieve these objects. 

• To design a new evaluation methodology for Semantic Web databases in order to overcome 

the limitations of existing methodologies. 

• To provide detailed analysis of a dataset that best represents the Semantic Web data in order 

to make it understandable for testing Semantic Web databases. 

• To quantify and compare the performance of some of the prominent Semantic Web databases 

in order to provide better understanding of their key strengths and weaknesses. 

• To investigate the scalability trends of these Semantic Web databases for analyzing their 

scalability (time scalability & space-time scalability).   

• To document the Semantic Web databases storage layouts for helping the designers of new 

Semantic Web database   
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In light of these objectives we initially propose a new evaluation methodology that comprises of 

(1) test cases and (2) performance and scalability metrics. Our test cases are classified on the 

basis of CRUD operations (i.e. Create, Read, Update and Delete). Read test cases check different 

parameters that affect the performance of a Semantic Web database; it includes selectivity 

estimation, result size, query complexity, indexing mechanism and storage organization. 

Moreover, we propose the potential performance and scalability metrics that capture different 

aspects of evaluation process and provide better insight of the Semantic Web data by providing 

detailed results than present literature about Semantic Web databases’ benchmarks. We introduce 

two core performance metrics i.e. “Resource Utilization” and “Success Ratio”, and one derived 

metric i.e. “Cumulative Query Performance”.  

In order to provide detailed analysis of any real Semantic Web dataset, we made tradeoff on 

dataset size and dataset structure and selected Barton Library dataset for our evaluation. We 

performed detailed analysis of Barton dataset and designed a data model for its better 

understanding, because it is frequently used in Semantic Web analysis. Secondly we provided 

the Barton datasets characteristics i.e. its number of triples, number of nodes, type of instances, 

total unique properties, single-valued properties and multi-valued properties. In addition to this, 

we cleaned this dataset to remove illegal URIs.  

For quantifying and comparing the performance of prominent Semantic Web databases, we 

selected several popular Semantic Web databases. Semantic Web databases compared in this 

work are JenaM [57], SesameM [60], TDB [59], SDB [58], SesameN [60], SesameRDB [60], and 

AllegroGraph [37]. These Semantic Web databases are selected because all these are open source 

java APIs and they all together represent all three categories of Semantic Web databases. 

Moreover, most of these are frequently used in performance benchmarking in the Semantic Web 
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database research literature [19], [22], and [24]-[28]. We compared all these Semantic Web 

databases and on the basis of which we provide the strengths and weakness of each store. The 

comparative analysis of the Semantic Web database concludes read and write optimized store of 

each category (i.e. in-memory, native, and non-memory non-native) with respect to time and 

resource utilization.  

Based upon results obtained from our experiments for comparative evaluation, we performed 

scalability analysis to check the scalability behavior of each store. Scalability analysis presents a 

clear idea that how the time and resource utilization of each store increases with the increase 

number of triples to manage. We concluded our scalability analysis by presenting the 

comparative scalability behavior of these stores.   

For describing the Semantic Web databases’ storage layouts we surveyed the past approaches 

used by selected Semantic Web databases and presented their common approaches to store and 

retrieve the data e.g. id-based vs. value-bases approach, schema oblivious vs. schema aware 

approach, prefix compression, type and number of indexes, value-to-Id and Id-to-value mapping 

techniques. This survey helps the designers of new Semantic Web databases and clarifies the 

performance level of each particular storage layout.  

1.3. Thesis Organization 

This thesis is organized as follows: 

 

• Chapter 2 provides pre-requisite knowledge required to understand the research, presented in 

this thesis. It describes Semantic Web and its languages followed by Semantic Web 

databases. A brief comparative analysis between other database systems and Semantic Web 
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databases is presented to establish understanding why Semantic Web databases are 

necessary. By the end of this chapter, some eminent benchmarks are discussed and analyzed 

critically to rationalize the research work. 

• Chapter 3 gives the detail of Semantic Web databases architecture that we have evaluated in 

our research. It describes the storage schemas used for storage and management of the triples 

of each Semantic Web database. It goes on to describe the storage layouts of In-memory, 

native and non-memory non-native categories of Semantic Web databases. 

• Chapter 4 details the Semantic Web databases evaluation framework in detail along with 

introduction to some prevalent Semantic Web databases that are being evaluated. Moreover, 

it presents the logical schema of Barton dataset in detail to evaluate previously mentioned 

Semantic Web databases. The last section provides details of our proposed evaluation 

methodology that includes test cases description and proposed performance and scalability 

metrics. 

• Chapter 5 presents the detailed results and analysis obtained during research. It describes the 

test configurations, both for machine and Semantic Web databases. It then provides a 

detailed Comparative Evaluation of tested Semantic Web databases, on the basis of which 

strengths or weaknesses of each store are discussed. In addition to this, Scalability Analysis 

for these stores is provided. 

• Chapter 6 concludes with the summary of points made and describes the directions that have 

been decided upon for future research with justification and references to a set of work 

packages that would be required to complete the research. 
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BACK GROUND AND RESEARCH MOTIVATION 

This chapter is divided into two parts. The first part focuses on background literature to facilitate 

the understanding of the context of this research while the second part presents literature survey 

of related work to rationalize the research work being done. 

2.1. Semantic Web 

The Semantic Web (Web3.0) is aimed at providing a common framework for data sharing and 

reuse across Semantic Web applications, enterprises and communities [1][5][39][40]. The 

current web (Web2.0) is the web of documents where the information has been tailored for 

human understanding and not for computers. As shown in Figure 1, the documents are related by 

unlabeled links. Computers can realize that a document is related to another document, but 

cannot exactly understand the nature of the relation that exists between documents and their 

contents. All these resources are missing semantic information and homogenous for computers 

[40]. 

Figure 1: World Wide Web 

CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2    
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Semantic Web is defined as an extension of the current web where information is presented with 

well defined meanings. It enables computers and people to work in cooperation [1][39][41]. 

Semantic Web augments but do not replace the current web.  Its design goal is to enable 

computers to behave or think like humans in order to make the World Wide Web (WWW) data 

machine-processable. In Semantic Web resources are named and links between them are labeled 

as shown in Figure 2. Semantic Web is the web of things rather than being the web of 

documents. It defines the relationship among things and properties of these things. So that 

computers can easily identify the nature and relationships of things through their properties.  

Consequently Semantic Web helps in retrieval of knowledge rather than data from web [41]. 

 

Figure 2: Semantic Web 

The difference between Semantic Web and current web can be explained with an example of 

cooking analogy as shown in Figure 3. Assume a website or web page is a big cooking pot where 

a user puts his information contents. A cook can put rice in one pot and tag it RICE and put 

chicken in another pot and tag it CHICKEN. Similarly web users put their information contents 

on web pages in the form of documents and tag them. In the current web, computers understand 
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only these tags and cannot figure out that the rice is a grain and full of carbohydrates. They also 

do not know that the cook has another pot containing chicken and is cooking chicken rice. This 

type of judgment necessitates context analysis and the capability to glance the whole scenario, 

i.e. to identify what is in each pot and to develop the understanding that the cook is making 

foodstuff. In the context of web, computers must know that what types of contents are on each 

page and how they are related to each other. This is the objective of the Semantic Web. Semantic 

Web can be visualized as "the web of meaning" or  " the contextual web" [1].  

 

Figure 3: Semantic Web vs. Current Web 

The key idea behind Semantic Web is to provide sufficient structure around the data to transform 

it into information, so that it can be worked upon to extract knowledge [40][41]. There are 

universal information formats to provide structure to data as well as metadata on Semantic Web. 

These formats are known as Semantic Web languages e.g. Resource Description Framework 

(RDF), Resource Description Framework Schema (RDFS) and Web Ontology Language (OWL). 

Semantic Web languages are further explained in section 2.2. 
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Semantic Web data must be stored in some repository for knowledge extraction. Specialized 

databases are available to work with Semantic Web data because of its specialized structure.  

These databases are known as Semantic Web databases that are further explained in section 2.3.  

Different query languages are supported by different Semantic Web databases. One of the most 

common and evolved query languages is SPARQL [35]. Semantic query languages are further 

explained in section 2.4. 

2.2. Semantic Web Languages 

Semantic Web has its own special languages to introduce semantics into data. These are also 

named Semantic Web standards. These standards make data integration and interoperability 

possible on Semantic Web. The current Semantic Web standards consist of two layers data layer 

and ontology layer. Both these layers are built on top of URI, XML and XML namespaces that 

provide the foundations for these Semantic Web layers. An overview of these layers is given in 

Figure 4. 

• Ontology Layer: Ontology is the representation of application domain information 

modeled though some Semantic Web language [42]. Ontology layer of Semantic Web 

standards contains those Semantic Web languages that are used to model the application 

domain semantics through ontology. RDFS and OWL are ontology layer modeling 

languages.  

• Data Layer:  Data layer of Semantic Web standards contains those languages that are 

used to define the resources (data) of a particular application domain that has been 

modeled through ontology layer. Most widely used data layer standard/language is RDF.  
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In the subsequent subsections we will explain these standards in detail. 

 

 

 

 

 

Figure 4: Semantic Web Standards 

2.2.1. RDF: A Data Modeling Language  

Resource Description Framework (RDF) is an underpinning language for information 

representation in Semantic Web [49][3][4][5]. Its three fundamental concepts are: 

1. Resources  

2. Properties 

3. Statements  

Resources are the ‘things’ that are being described by the RDF expressions. A resource may be a 

part of web page e.g. an HTML element within a document, a whole web page e.g. an HTML 

document or a collection of web pages e.g. a complete website. Each resource is assigned a 

unique identifier that is called Universal Resource Identifier (URI).  

Properties are special kind of resources. A property describes the relationship between two 

resources.  

Statement is composed of a resource along with its associated property and value for that 

property as shown in figure below.  

Foundations:  URI, XML, XML namespaces  

Data Layer  

 

Ontology Layer 

 

 

 

RDFS 

OWL-Full 

OWL-DL 

OWL-Lite 

RDF 
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Figure 5: RDF Statement 

An RDF statement is represented in a triple format also called ‘Triple’. Triples are composed of 

three different parts that are called subject, predicate and object respectively.  In an RDF 

statement, subjects and predicates are guaranteed to be resources but object or value part may be 

a resource or a literal, where literals are atomic values i.e. without URIs. A detail study of RDF 

can be found at [49][3][4]. Consider an example of a simple sentence “Anila Sahar is a member 

of DELSA”. This sentence in terms of RDF statement has three parts.  

 

Subject: Anila Sahar (Resource) 

Predicate: memberOf (Property) 

Object: DELSA (Resource) 

 

Pictorial representation of this example is shown in Figure 6. 

 

 

(a) 

 

 

 

 

(b) 

Figure 6: Triple Concept 

 

DELSA Anila Sahar                                                                                                                  
memberOf 

 

 

 

 

Resource/ 

Literal  

Resource 
Property 

http://seecs.edu.pk/rese

arch_group/DELSA 

http://seecs.edu.pk/peo

ple/student/Anila_Saha

r 

http://seecs.edu.pk/member
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Each resource is represented with its URI. These URIs can be replaced with prefixes as shown 

below  

 

 

 

So above triple pattern replaced with prefix can be as shown in Figure 7  

 

 

 

Figure 7: Triple with Replaced URIs 

 

A set of RDF triples is known as an RDF model as shown in Figure 8. An RDF model is 

basically a directed graph of information that offers great deal of power and flexibility. There is 

no limit to extend this graph structure. It tenders the ability to represent different concepts and 

their relationships semantically into an unlimited large graph of information. 

 

 

 

Prefix URIs 

Seecs http://seecs.edu.pk/ 

Table 1: URI with Prefix 

seecs:researchGroup/

DELSA 

seecs:people/student/

Anila_Sahar 

seecs:memberOf 
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Figure 8: RDF Graph Model 

 

2.2.2. RDFS & OWL: Domain Modeling Languages  

Resource Description Framework Schema (RDFS) and Web Ontology Language (OWL) are the 

Semantic Web languages that model an application domain to offer the facility to perform 

interoperability and reasoning on the Semantic Web.  

RDFS basically augments the RDF by adding some basis constructs [49]. These constructs 

include classes, properties, class hierarchies, property hierarchies, domain and range. Vocabulary 

used to model these extended constructs are rdfs:Class, rdfs:Property, rdfs:subClassOf, 

rdfs:subPropertyOf, rdfs:domain and rdfs:range. A set of individuals that share same properties 

belong to a single class e.g., “Student” and “Research group”.  All those individuals that belong 

to a particular class are referred as instances of that class e.g. “Anila Sahar” is an instance of 

class “Student”. These constructs allow statements about something’s type by making new 

statements from existing statements such as ‘Anila Sahar is a type of student’ and with an 

additional statement that ‘Student is a subclass of people’, one can infer that Anila Sahar is a 

“Anila Sahar” 

seecs:superviseBy 
seecs:supervises 

seecs:fullName 

seecs:memberOf 
seecs:researchG

roup/DELSA 

seecs:people/sta

ff/DrSharifullah 

seecs:people/Stu

dent/Anila_Sahar 

seecs:hasMember 
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type of people as shown in Figure 7. Domain and range of a property describe the class of things 

that can be declared as a subject or an object part of a property e.g., Property hasMemeber can 

have an instance of class research group as a subject and an instance of class people as an object 

in an RDF statement as shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9: RDF layer vs. RDFS layer 

 

As mentioned above, RDFS defines semantics of the application domain but Web Ontology 

Working Group of W3C identified a number of characteristics for ontology on the web which 

would require much more expressiveness than that provided by RDF and RDF Schema [6]. 

Some of the identified limitations of RDFS by W3C are given below. 

rdfs:Class 

RDF 

RDFS 

rdfs:type 

rdfs:subClassOf 

seecs:Student seecs:Staff 

seecs:People 

seecs:research_

group/ DELSA 

seecs:people/stu

dent/Anila_Saha

seecs:hasMember 

seecs:hasMember rdfs:subClassOf 

seecs:Research 

Groups 

rdfs:domain 

seecs:involve 

rdfs:rang

rdfs:subProperty
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a. Local scope of a class: In RDFS rdfs:range defines that a class is a range of a property. 

We cannot declare range restrictions that apply to some subclasses only and not to all the 

subclasses of a class e.g. using rdfs:range we can define a property “hasMember” for 

research groups as “Research groups have only people as its members” but we cannot say 

that DELSA (a subclass of research group) can have only staff as its members while other 

research groups may have student members as well. 

b. Disjointness of classes: Some application domains necessitate the declaration that 

classes are disjoint, e.g. undergraduates and postgraduates are two disjoint classes in 

university domain. RDFS is unable to define disjointness of classes. 

c. Boolean combination of classes: Some application domains are required to built new 

classes by combining existing classes using union, intersection and complement e.g. class 

students is a union of two disjoint classes, undergraduate class and postgraduate class. 

RDFS does not provide the facility of creating new classes from existing once.  

d. Cardinality restrictions:  An ontology developer may want to restrict the number of 

instances that a particular property can have as its range e.g. There should be five 

members at minimum and twenty members at maximum in a research group. This is 

called cardinality restriction. RDFS do not provide the feature of cardinality restriction. 

e. Special characteristics of properties: Some special characteristics of properties may 

require to model an application domain, e.g. transitive property (like ‘older than’), unique 

property (like ‘supervisedBy’) and inverse property (like ‘supervisedBy’ and 

‘supervises’) while modeling a domain. This feature is also missing in RDFS. 
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Web Ontology Language (OWL) extends the RDF schema in the sense that OWL uses RDFS 

vocabulary like rdfs:Class, rdfs:subClassOf and add some language primitives that support more 

expressiveness as highlighted above. Extended constructs of OWL includes owl class, property 

(object property and data type properties), property restrictions, special properties, boolean 

combinations, enumerations, instance, data type and versioning information (For further detail 

see [7]). As we have seen that OWL provides a higher level of expressiveness than RDFS but the 

richer the language is, the more inefficient reasoning support becomes. We need tradeoff on the 

selection of a language supported by reasonably efficient reasoners and a language that can 

express large classes of ontologies and knowledge. Depending upon a tradeoff between language 

expressiveness and efficient reasoning, OWL has three variants i.e. OWL Full, OWL Lite and 

OWL DL. All these variants use RDF for their syntax. 

a. OWL Full: The complete OWL language is called OWL Full. It includes all OWL 

constructs and combination of these constructs in arbitrary way with RDF and RDFS. It 

is meant for users who want maximum expressiveness and the syntactic freedom of RDF 

with no reasoning guarantee.  

b. OWL Lite: A sublanguage of OWL which provides constructs to users for classification 

hierarchy and simple constraints. The advantage of OWL Lite is both easier to grasp for 

users and easier to implement for tool builders. The disadvantage is of course a restricted 

expressivity. 

c. OWL DL:  OWL DL, is a subset of OWL Full. It supports maximum expressiveness 

while retaining the efficient reasoning facility. It is less expressive than OWL full but 

more expressive than OWL Lite. 



17 

 

2.3. Semantic Web Databases 

Semantic Web databases are the databases of the Semantic Web world, designed to hold massive 

numbers of triples in such a manner that the information they encode can be simply retrieved. 

This section is further divided into two sections. Section 2.3.1 presents a brief introduction of 

Semantic Web databases and section 2.3.2 gives an overview of the role of the Semantic Web 

databases even in the presence of exiting XML stores and/or database systems i.e. relational 

DBMS, object oriented DBMS, and object relational DBMS. 

2.3.1. Semantic Databases1 

Semantic databases are RDF databases where semantic data can be conveniently stored, operated 

upon and retrieved [12]. A triple store can be defined as “A system to provide a mechanism for 

persistent storage and access of Semantic Web graphs.”  Its main functions include storing, 

reasoning and querying Semantic Web data. They employ index structures, algorithms for 

buffering, join, concurrency control for optimal query processing and reasoning. An intelligent 

query optimizer in a triple store strives to save resources in terms of time and memory space in 

query processing and reasoning.   

2.3.1.1.Design goals of Semantic Web databases:  

Some of the eminent design goals of Semantic Web databases are: 

a. Scalability: Resources are described on the Semantic Web in terms of triples. A resource 

may need many triples for its perfect description. It is therefore necessary for Semantic 

Web databases to deal with a large number of triples in an elegant manner. 

                                                             
1 Semantic storage systems also known as Triple Stores, RDF stores, Knowledge bases and Semantic Web databases 
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b. Dynamism and Network Distribution: Data on the Semantic Web is dynamic as it 

belongs to different sources because of network distribution. Semantic Web databases 

may be used as a server or a client to handle timeouts, network failure, bandwidth use and 

deal with denial-of-services (DoS). Semantic Web databases should be able to manage 

the network resources in both when a server or a client and deal with dynamic data in a 

graceful way. 

c. Unpredictability: Semantic data is highly unpredictable in its nature. A Large number of 

triples, dissimilar terms used to describe resources, rate of triples exchange over the 

network and effect of network provide a high degree of unpredictability to the data. 

Semantic Web databases need to handle this unpredictable nature of data in an efficient 

and accurate manner.  

d. Provenance: As described earlier, the Semantic Web data comes across different sources 

that may necessitate keeping track of original location or context of the data. This part of 

information is called provenance. Semantic Web databases may need to store the context, 

along with the original information.    

e. Data Processing: Data in the Semantic Web databases need to be processed2.  This 

necessitates Semantic Web databases to provide some mechanism for accessing the RDF 

graphs, identifying triples, storing triples in data stores, merging data from multiple 

sources into single store, and querying as well as administering the data stores.  These 

operations are performed by applications many times thus require Semantic Web 

databases to provide lightweight, fast, easy to use and understandable APIs to carry out 

                                                             
2 Triples addition, modification, removal and retrieval  
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these tasks. Many of the existing Semantic Web applications interact with human. So, 

they must perform as fast and accurate as possible in order to provide shield against 

frustration. Interactive level performance is one of the key requirements of these stores 

for human friendliness.  

f. Reasoning: A final clear issue is support for inference. Semantic Web databases support 

different degree of reasoning (RDF/RDFS/OWL) while RDFS support is common. 

Currently only a very few stores support OWL features, and they do not provide the 

performance measures while using these features whereas simpler systems do. 

2.3.1.2.Types of Semantic Web databases:  

Different Semantic Web databases have different architectures thus result in varying 

performance levels. Based on their storage structure and medium, Semantic Web databases can 

be divided into three broad categories, In-memory, Native, Non-native Non-memory. 

a. In Memory Stores: Triples are stored in main memory e.g. storing an RDF graph using 

BRAHM [9].  

b. Native Store: Persistent storage systems that are disk resident with their own 

implementation of databases e.g. Virtuoso [38] and AllegroGraph [37]. 

c. Non-memory non-native Stores:  Non-memory non-native stores are disk resident and 

employ the existing database management systems such as Microsoft SQL, MySQL, and 

Oracle for storing triples. 3Store [36] is an example of this type of Semantic Web 

databases. 
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Hybrid of three classes is also available, for example Jena [34] and Sesame [33]. Triple stores 

have their own query languages to query store’s data. List of existing large triple stores include 

[8] BigOWLIM, Bigdata(R), Garlik, 4store ,YARS2, Virtuoso, Jena TDB, AllegroGraph, Jena 

SDB, Mulgara, RDF gateway, Jena with PostgreSQL, Kowari, 3store with MySQL, Sesame. 

2.3.2. Need of Semantic Web databases 

RDF is characterized by a property centric, extremely flexible and dynamic data model. 

Resources can acquire properties and types at any time, regardless of the type of the resource or 

property. This flexibility makes RDF an attractive technology for the specification and exchange 

of arbitrary metadata. The challenge is thus how to provide persistent storage for the new RDF 

data model in an efficient and flexible manner.  

2.3.2.1.Semantic Web databases vs. Existing database systems:  

Purpose of the Semantic Web databases is somewhat similar to the existing database systems i.e. 

management of stored data. RDF documents’ storage necessitates special type of data stores 

because of two fundamental differences between RDF graph model and other data models e.g. 

relational data model [31] and object data model [32] that demand some special kind of data 

stores to manage RDF data. These two differences are:  

1. Unpredictable structure of the data stored in RDF graph model 

2. Unpredictable query patterns over this data in Semantic Web 

All existing database systems require that structure of data (i.e. schema) must be defined before 

inserting that data [10]. Predefined structure of data helps in data integrity by constraining the 

incorrect data to be used by any organization or application. However in Semantic Web, where 

the interoperation between heterogeneous data sources is permissible, structure of data is 
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unknown and changes continuously. Existing database systems are unable handle unstructured 

data. This gives rise to a data storage system that does not need any prior definition of the 

structure of data.  

Existing database management systems are used by known set of applications. Such databases 

can be optimized on the basis of metadata i.e. indexes and estimated statistical knowledge [10] 

for most anticipated query patterns for these applications. Access for all other patterns is 

comparatively slower than these anticipated patterns. But RDF data can be accessed and 

manipulated by any node on the Semantic Web that requires RDF data stores to handle queries of 

unpredictable patterns.  

Both the reasons concluded above necessitate the proposal of some new storage systems that can 

better handle the complexity of RDF data and query. 

2.3.2.2.Semantic Web databases vs. XML Stores: 

One approach for RDF storage might be to map the RDF data to XML and simply leverage prior 

work on the efficient storage of XML. However, the standard RDF/XML mapping is unsuitable 

for this since multiple XML serializations are possible for the same RDF graph, making retrieval 

complex [43]. Non-standard RDF-to-XML mappings are possible, and have been used in some 

implementations. However the simpler mappings are unable to support advanced features of 

RDF, such as the ability of RDF to treat both properties and statements as resources, which 

allows metadata describing these elements to be incorporated seamlessly into the data model and 

queried in an integrated fashion. 
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2.4. Data Extraction 

Given a standard set of data representation languages and data stores for their storage, it is 

obvious to have a standard mechanism for extracting subsets of information from these data 

stores. A Semantic Web query language is a language to retrieve and manipulate data stored in 

Semantic Web language format [46]. RDF data model is a semantic network model that has 

slightly different forms for data and knowledge representation. Semantic Web query needs to be 

more complex than SQL since the RDF data model is more complex than the relational data 

model. Specifically, while a relational query executes over one or more tables each containing 

tuples with the same structure, an RDF query executes over a RDF container that may contain 

resources of different types each with different properties. Values of properties, rather than being 

merely data, can be resources themselves [47].  

Until now several designs and implementations of Semantic Web query languages have been 

proposed [44][47]. Currently SPARQL is a W3C Candidate Recommendation [35][45]. In this 

research work we will briefly discuss SPARQL, the most eminent query language.  

SPARQL [35][36][48] is a graph-matching query language. Given a data source D, a query 

consists of a pattern which is matched against D, and the values obtained from this matching are 

processed to give the answer. The data source D to be queried can be composed of multiple 

sources.  
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SELECT ?name  

 

WHERE   

     

    {?name  <http://seecs.edu.pk/memberOf >  <http://seecs.edu.pk/research_group/DELSA>} 

 

ORDER BY ?name 

 

 

Figure 10 Specimen Query Structure 

 

The query shown in Figure 10 will select all unique values for ?name, where there is a triple that 

matches any subject ?name, and the specified predicate and object (in this case, anyone who is 

the member of DELSA group). The data is returned in a standard XML-based format that will be 

ordered on variable ?name.  

A SPARQL query consists of three parts  

1. Pattern matching part 

2. Solution modifier 

3. Output of query  

The pattern matching part includes several interesting features of pattern matching of graphs, 

e.g. optional parts, union of patterns, nesting, filtering (or restricting) values of possible matching 

and the possibility of choosing the data source to be matched by a pattern. The solution modifiers 

are the one that comes into place when output of the pattern has been computed (in the form of a 

table of values of variables), allows to modify these values applying classical operators like 

projection, distinct, order, limit, and offset. Finally, the output of a SPARQL query can be of 

Pattern 

matching part 

Solution 

Modifier 

Output 
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different types: yes/no queries, selections of values of the variables which match the patterns, 

construction of new triples from these values, and descriptions of resources.  

2.5. Semantic Web databases Performance Evaluation 

As mentioned in section 2.3.1 different open source and commercial Semantic Web databases 

are available. Many new stores are being introduced with the popularity and increased used of 

Semantic Web applications. Performance evaluation of Semantic Web databases is necessitated 

as: 

1. Each one claimed to perform best. It is evidently important to measure the performance 

of different Semantic Web databases to verify that they perform up to developer 

performance claim 

2. To assess the performance o f a newly created or updated Semantic Web databases 

against existing once 

3. To facilitate the user who needs to select from a library of Semantic Web databases 

according to their application requirement. 

In general, database community has two schools of thoughts while evaluating the performance of 

database management system. The most popular one is introduced by Transaction Processing 

Performance Council (TPC)3.  They generate some high level queries for a dataset, run these 

queries on data stores and produce some facts and figures that show the overall performance of 

the stores. While TPC-style benchmarks provide a sight of overall performance of the system, it 

does not mean to judge the subcomponents of that system [11]. They do not provide the 

                                                             
3 http://www.tpc.org/ 
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guidelines for the researchers or future developers of data stores. The second philosophy of 

generating benchmarks presents the Wisconsin-style benchmarks. Such benchmarks test the 

performance of subcomponents by running a large number of transactions on data stores, such as 

join mechanism, query optimizers, and storage layout etc. This type of benchmark provides a 

diagnostic measure of the weak subcomponents of any data store, so it also opens the future 

directions for the developers and researchers to put their efforts on right track [12]. Wisconsin-

style benchmarks do not give a winner while evaluating two or more stores. Since most of the 

Semantic Web databases’ users are interested in making decisions about purchasing best suited 

Semantic Web database so Wisconsin family of benchmarks are less popular among the users of 

Semantic Web databases. Whilst Wisconsin-style benchmarks are not important from users’ 

perspective but they are highly considerable from research viewpoint [22] because these provide 

trivial facts of Semantic Web databases.   

Semantic Web databases have been a key aspect of the field of Semantic Web since its inception. 

Various studies have been conducted to analyze the semantic storage systems. Major 

contribution to this area is [13]-[28]. However, according to [17] “a benchmark is only a good 

tool for evaluating a system if evaluated dataset and the tested capabilities of system are similar 

to the once expected in the target use case”.  Therefore, different benchmarks are suitable for 

testing different capabilities of the stores. Depending upon their scope, we can broadly divide 

these Semantic Web databases’ performance evaluation benchmarks into three categories that 

are: 

1. Query performance evaluation benchmarks  

2. Inferencing performance evaluation benchmarks 

3. Federated Query Performance evaluation benchmarks 
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These three types of benchmarks check the Semantic Web database performance depending upon 

their querying, inferencing and federated querying performance evaluation, as shown by the 

name of category.  Depending upon the type and their scope, existing eminent benchmarks are 

categorized in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: A classification of eminent Semantic Web databases benchmarks 

2.5.1. Lehigh university benchmark  

Lehigh university benchmark (LUBM) [17] is the one of the most popular performance 

evaluation so far for testing the OWL inference performance. LUBM is supposed to offer a 
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convenient standard for comparing the performance of Semantic Web databases at a high level, 

and has been used in many tests of both RDF and OWL stores [17]-[19], [23]. LUBM query set 

is designed on the basis of some factors that include input size, selectivity, complexity, hierarchy 

information and logical inference. Performance metrics include load time, repository size, query 

response time, query completeness and soundness and a combine metric that computes the 

tradeoff between query completeness and query soundness. 

Limitations: 

1. Whilst the benchmark has been designed for the purpose of testing OWL inference 

performance, so it is valuable as for as OWL inference performance is measured. But 

currently LUBM is used for testing the Semantic Web databases’ query performance. 

Results produced by LUBM for performance measurement of Semantic Web databases 

are not complete for query performance evaluation [22].  

2. LUBM evaluation methodology includes query response time as a sole performance 

measure, missing the computation of resource consumption. Resource consumption 

includes CPU time and main memory utilization provides the total cost that is incurred in 

processing a query. 

3. LUBM’s data set is created synthetically by iterating for a variable number over a simple 

OWL ontology by UBA (Univ-Bench Artificial data generator) tool developed by 

creators of LUBM. The data produced by UBA has a miniature, clumsily repeated 

ontology with few properties [20].  UBA’s generated datasets are quite different from 

Semantic Web data where data is usually comprises of semantically rich ontology. 
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4. LUBM’s method used for performance evaluation is not very authoritative for data 

stores, for example time of execution of each query is taken ten times, and the average of 

these ten values is considered the actual query response time. Query cache influences a 

lot over the final results in this practice [21].  

2.5.2. University Ontology Benchmark (UOBM)  

University Ontology Benchmark extends the LUBM with the addition of some axioms to make 

full use of OWL Lite and OWL DL constructs [23]. Rohloff et al. presented their work on 

evaluation of triple stores in [19]. They evaluated the triple store technologies for large data 

stores. LUMB was the underline evaluation framework for these benchmarks.  

Limitations: 

Both UOBM and Rohloff’s work inherit all limitations from their ancestor 

2.5.3. Berlin SPARQL Benchmark (BSBM)   

Berlin SPARQL Benchmark (BSBM) [23]-[25] is a language specific benchmark that uses 

Wisconsin benchmark techniques. BSBM measures the performance of the semantic storage 

systems that expose SPARQL endpoints and some SPARQL to SQL writer. This benchmark 

presents a more comprehensive query set than that of LUBM. The query set is design to test the 

SPARQL query language feature and to test the performance of stores under workload. Two 

different Query mixes, comprises of number of different queries, are introduced to test the 

anticipated user access patterns. Justification of each query is given along with the SPARQL 

construct that is being tested. BSBM provides following performance metrics. Query Mix per 

Hour (QMpH), the main performance metric of BSBM, measures the query mixes that are 

answered by any tested system in an hour. Query per Second (QpS) measures the number of a 
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typical type of query that is executed in a second by any tested system. Load time, that gives the 

cumulative time required to load a dataset from its source file into the tested system. BSBM has 

lot of advantages such as multiuser scenarios testing and two variations of query mix to check 

the performance of store under anticipated user access patterns but limitations are still there. 

Limitations: 

1. This benchmark presents comparison of stores in an e-commerce scenario so it lacks 

generality.  

2. Query execution time is the only considered dimensions for evaluation metric, while resource 

utilization is important to be considered due to limited resources. 

3. Queries are not defined to measure insertion (after the initial bulk insertion) and deletion 

performance of Semantic Web databases.  

4. BSBM analyzed the stores’ performance for different artificially generated dataset, largest of 

which comprises of 100M triples. Large semantic datasets are freely available such as Barton 

Library Dataset [29] (about 50M triples) and U.S. Census [30] (about 1B triples), as 

artificially generated dataset lack originality to some extent so it’s better to use genuine 

available datasets. 

2.5.4. SPARQL Performance Benchmark (SP
2
 Bench) 

SPARQL Performance Benchmark (SP
2
 Bench) [27][28] is a language specific 

benchmark framework particularly designed to test SPARQL engines for SPRAQL constructs 

and broader range of RDF data access patterns. SP
2
 Bench measures the performance of engine 

with regard to query optimization techniques. SP
2
 bench is the most comprehensive Wisconsin-



30 

 

style Semantic Web databases benchmark at the moment. It offers extensive query set that vary 

in general characteristics such as selectivity, query complexity and output size, and different 

types of joins. The benchmark proposes newer and comprehensive performance metrics that 

covers diverse aspects of evaluation process such as success rate, load time, per query 

performance, global performance and memory consumption. SP
2 

is the only benchmark; that 

provide limited information about the main memory utilization of various Semantic Web 

databases for query execution.  

Limitations: 

1. Whilst very appealing yet benchmark is well-suited only to identify the deficiencies in 

SPARQL engines.  

2. Secondly analysis are conducted on six different sizes of synthetically generated datasets, 

maximum of these data sizes is 25M triples.  Real datasets with greater number of triples are 

online available for testing purpose. 

3. Last but not the least, insertion and deletion test cases are not handled. 

2.5.5. Effective benchmarking for RDF store 

Effective benchmarking for RDF store [22] by Alisdair at al. is another Wisconsin-style 

benchmark. Although authors claim to have a detail analysis of Semantic Web databases, yet the 

results lack in detail evaluation and analysis. Time is the only considered performance metric. 

Store’s performance on assertion and deletion are provided with a little emphasis on its query 

performance. 
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Limitations: 

1. The benchmark presents the test cases that check some data management techniques and 

SPARQL query constructs but queries related to these test cases are neither presented nor 

tested.  

2. Performance metrics considered is response time only. For a database operation response 

time is not the sole performance metric for any system.  

3. The benchmark proposed a data generator to generate a test dataset. This synthetic data 

generator generates tree structure RDF data, but in reality Semantic Web data is always in 

graph format so results produced on this synthetic data will be somewhat different from 

results obtained from real graph based data. 

Apart from these benchmarks, numerous technical reports and surveys have been published to 

study the Semantic Web databases [13]-[16]. The most initial studies to these evaluations include 

the MIT Scalability Report [13]. Although they worked with standard datasets but due to 

specific study conducted for browser like applications, metrics are defined only according to 

simile application requirements and best store suited for such applications was suggested. Time 

was the major consideration to test Semantic Web databases. The Semantic Web Advanced 

Development for Europe (SWAD-E) project produced surveys to understand the Semantic Web 

databases features and storage structure [14][15][16]. These limited surveys provide an overview 

of a number of open source Semantic Web databases’ implementations that were available at that 

time but do not include a detail quantitative analysis of stores’ performance. Beside lack of 

performance measurement of Semantic Web databases, these surveys are out-dated as many 

newer Semantic Web databases with better performance and structure has been purposed.   
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2.6. Critical Analysis 

In a nutshell, we can say that existing benchmarks test the performance of Semantic Web 

databases, but their main limitations that we overcome in this research are: 

• Most of the existing benchmarks, reports and surveys follow the TPC-style techniques for 

performance evaluation, so they do not provide a detail subsystems level analysis to 

identify the key strengths and weakness.  

• Almost all benchmarks used synthetically generated data sets. All synthetic data 

generators have some limitations that prevent them to produce data similar to Semantic 

Web data. So performance results produced over synthetic data generators cannot 

reliable.  

• Query response time cannot be a sole performance measurement for any database system. 

A database operation utilizes system resources that are important to consider. A good 

Semantic Web database utilizes all resources efficiently. Resource utilization of the 

Semantic Web databases is not computed by any existing benchmark. 

• Database operations can be broadly divided into four major operations i.e. CRUD 

operations (Create, Read, Delete and Update). No benchmark has presented the detail 

study of all database operations. 

• All these benchmarks provide a comparative study, but none of them provide any 

information regarding the scalability behavior shown by tested Semantic Web databases. 
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• All the studies made about Semantic Web databases are done in performance evaluation 

perspective; none of the surveys provide an insight to a particular storage schema with 

which a level of performance is attained. 

Summary of Chapter: 

In this chapter we discussed the pre-requisite knowledge required to understand the research, 

presented in this thesis. We described Semantic Web and its languages followed by Semantic 

Web databases. A brief comparative analysis between other database systems and Semantic Web 

databases is presented to establish understanding why Semantic Web stores are necessary. By the 

end of this chapter, some eminent benchmarks are discussed and analyzed critically.  
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OVERVIEW OF EXISTING SEMANTIC WEB DATABASES  

This chapter provides the detail of evaluated Semantic Web databases’ storage architecture and 

access methods. It first describes the database architecture and then storage schemas and type of 

indexes used for storage and retrieval of the triples in a particular Semantic Web database. We 

start with the native stores by stating the storage architecture of TDB, SesameN and 

AllegroGraph. Then we present the storage architecture of SDB and SesameRDB to show how 

RDF triples are stored in RDBMS. Last but not the least section describes the in-memory 

Semantic Web databases storage architecture. 

3.1. Database Architecture 

This section provides a brief description of existing Semantic Web databases’ system 

architecture. A feature comparison of considered Semantic Web databases is presented in Table 

2. 

3.1.1. Jena 

The software producers of Jena [57] are the HP Labs4, which are a part of the Hewlett-Packard 

Development Company. Jena was developed in the terms of the HP Labs Semantic Web 

Research. The associated license of the Jena project is completely open source. This implies that 

redistribution and use in source and binary forms with or without modification are permitted5 . 

The Jena download package includes the source files of the entire Jena project implemented in 

Java. This provides a basis for implementations extending the framework, for instance with new 

indices.  

                                                             
4 http://www.hpl.hp.com/ 
5 http://jena.sourceforge.net/license.html 
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An architectural overview of Jena is presented in Figure 12. This framework offers methods to 

load RDF data into a memory based Semantic Web database, a native storage or into a persistent 

triple store.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Architectural Overview of Jena [63] 

 

In order to build a persistent triple store a variety of relational databases, can be used. Jena 

supports Microsoft SQL Server 2005 including SQL Server Express, Oracle 10gR2 including 

Oracle Express, IBM DB2 including DB2 Express, PostgreSQL v8, MySQL 5.0 (>=5.0.22), 

HSQLDB 1.8, H2 1.0.73 and Apache Derby 10.2. The stored data may be retrieved through 

SPARQL queries. A standard implementation of the SPARQL query language is encapsulated in 

the ARQ package of Jena. SPARQL queries can be executed using Java applications or by the 
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use of the graphical frontend Joseki. The Ontology API provides methods to work on ontologies 

of different formats, like OWL and RDFS. Jena's Core RDF Model API offers methods to create, 

manipulate, navigate, read, write or query RDF data. The remaining major components are on 

the one hand the Inference API, which allows the integration of inference engines or reasoners 

into the system. On the other hand the Reification API is a proposal to optimize the 

representation of reification.  

OWL support is given in form of the Ontology API. The inference subsystem6 enables the use of 

inference engines or reasoners in Jena. Besides SPARQL, RDQL is a supported query language. 

In a tutorial about RDQL, it is recommended that new users of Jena should use SPARQL instead. 

Jena uses readers and writers for RDF/XML, N-Triples and N3, which are commonly known 

RDF data formats. 

3.1.2. Sesame 

The Sesame system is a web-based architecture that allows the persistent storage of RDF data 

and schema as well as online querying of the information [64]. The software producer of Sesame 

[60] is Aduna 7 . This company sets the focus of their work in revealing the meaning of 

information. Like Jena, Sesames associated license is open source underlying the BSD-style 

license.  In order to use Sesame, Apache Tomcat is recommended. The Sesame package also 

contains two web applications, the Sesame server which stores the RDF data and the OpenRDF 

Workbench as a graphical frontend for the server. This workbench can manage repositories, load 

RDF data and execute queries. Sesame is able to handle RDF/XML, N-Triples, N3 and Turtle 

format of RDF data. It supports in memory, native and relational database storage. Alternatively 

                                                             
6 http://jena.sourceforge.net/inference/ 
7  http://www.aduna-software.com/ 
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to SPARQL Sesame is able to interpret the Sesame RDF Query Language (SeRQL) [1] 

integrated for enhancing the functionality of RQL and RDQL. Sesame offers parsers for various 

well known RDF formats N3, N-Triples, RDF/XML, Turtle and two new formats TriG8 and 

TriX. 

 

Figure 13: Architectural Overview of Sesame 

Figure 13 illustrates an architectural overview of Sesame. The Repository Abstraction Layer 

(RAL) is an interface that offers RDF-specific methods to its clients and translates these methods 

to calls to its specific repository [64]. It contains all repository specific code, in order to keep 

                                                             
8 http://www4.wiwiss.fu-berlin.de/bizer/TriG/ 
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Sesame repository independent, making it possible to implement Sesame on top of a wide variety 

of repositories without changing any other component. 

The RDF Model implements basic concepts about RDF data. The component RDF I/O (Rio) 

consists of a set of parser and writer for the handling of RDF data. This is for instance used by 

the Storage And Inference Layer (Sail) API for initializing, querying, modifying and the 

shutdown of RDF stores. On the topmost layer constitutes the Repository API the main entrance 

to address repositories. Compared to Sail, which is rather a low level API, the Repository API is 

the associated high level API with a larger amount of methods for managing RDF data. The 

HTTP Repository is an implementation that acts like a proxy in order to connect to a remote 

Sesame server via the HTTP protocol.  

Admin module, query module and export module are three functional modules of Sesame. These 

are the clients of the RAL. Query module evaluates queries posed by the users, administration 

module allow RDF data and schema information to be inserted into as well as deleted from a 

repository and export module allows for the extraction of the complete schema and /or data from 

a model in RDF format.  

3.1.3. AllegroGraph 

The software producer of AllegroGraph RDF Store is Franz Inc.9. The company has been 

founded in 1984 and is well known for its Lisp programming language expertise. Recently, they 

also started developing semantic tools, like AllegroGraph. The associated licenses of 

AllegroGraph come in two different flavors. The version evaluated in this research is the free 

edition, which is limited to 50 million triples maximum. In contrast to that, the enterprise version 

                                                             
9 http://franz.com/ 
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has no limits regarding to the number of stored triples but underlies a commercial license. 

AllegroGraph is not extensible. It is closed source and stores data as well as the database indices 

inside its particular storage stack. An architectural overview is not possible because of its closed 

source. Figure 14 shows client server architecture of AllegroGraph.  

The software is developed especially for 64 Bit systems and runs out of the box, as it does not 

need any other databases or software. Storage, indexing and query processing is performed 

inside AllegroGraph. The software can be accessed using Java, C#, Python or Lisp. There are 

bindings for Sesame or Jena integration available and also an option to access AllegroGraph via 

HTTP. 

 

 

 

 

 

 

Figure 14: Client Server Architecture of AllegroGraph [63] 

Franz Inc. suggests using TopBraid Composer10 by TopQuadrant Inc. for OWL support. The 

available query language of the software is SPARQL, but it also supports low level API calls for 

direct access to triples by subject, predicate and object. With those API calls, it is possible to 

retrieve all datasets matching a certain triple. The API calls provide functionality, which can be 

                                                             
10 http://www.topquadrant.com/topbraid/composer/index.html 
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compared to SQL SELECT statements. The interpretable RDF data formats of AllegroGraph are 

RDF/XML and N-Triples. Other formats are planned to be supported in future versions. 

 

Table 2: Overview of Evaluated Semantic Web databases 

Name Supported 

Storage 

Supported 

RDF format 

Supported 

Query 

Language 

Programming 

Language 

License 

Jena In-memory, 

native disk 

storage, 

relational 

backend 

RDF/XML, 

N3 and N-

Triples 

SPARQL, 

RDQL 

Java  Open source 

Sesame  In-memory, 

native disk 

storage, 

relational 

backend 

RDF/XML, 

N3, Turtle 

and N-

Triples 

SPARQL, 

SeRQL 

Java Open source 

AllegroGraph Native disk 

storage 

RDF/XML 

and N-

Triples 

SPARQL Java Commercial 

and free edition  

 

3.2. Storage Layouts and Access Mechanisms 

3.2.1. Native Stores  

Native stores provide persistent storage for Semantic Web data. These databases create disk 

based files to store Semantic Web data. Native stores implement different data structures, a detail 

study of few triple stores is provided here. 
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3.2.1.1.TDB 

Jena TDB stores RDF triples in a directory on the disk in filing system. Whenever a TDB store is 

created, it creates some files for the storage and retrieval of triples, that can be broadly divided 

into three categories that are Nodes, Prefixes, Triples & Quads 

Nodes:  

TDB files ‘nodes’ and ‘node2id’ provide two types of mappings from node to nodeId and from 

nodeId to node. The ‘Node to NodeId mapping’ is used during data loading and when converting 

constant terms in queries from their Jena Node representation to the TDB-specific internal ids. 

The ‘NodeId to Node mapping’ is used to turn query results expressed as TDB nodeIds into the Jena 

node representation and also during query processing when filters are applied if the whole node 

representation is needed for testing e.g. regex.  

 

 

 

                                8 bits                                             56 bits 

 

 

 

Type Disk address of Node lexical value 

External 

NodeId 

Disk address of Node 

Type Inline values 

xsd:integer “22” 

Figure 15: Structure and Example of NodeId Types 

 

A nodeId can be of two types in Jena TDB i.e. External nodeId or the Value space as shown in 

Figure 15. First byte of the nodeId stores the type of the nodeId. If type is external nodeId then 

next 7 bytes contain the physical address of the node as describe above. If the type of nodeId is 
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value space then the values of data types, which are considered in value space, are stored as a 

part of nodeId in lower 7 bytes. Data types that are considered in value space are xsd:decimal, 

xsd:integer, xsd:dateTime, xsd:date and xsd:Boolean. 

The node file stores the actual Jena node representation. The node to nodeId mapping is based on 

the hash of the lexical value of the node and is stored in node2id file that is implemented as a B+ 

tree. The size of an entry in this file is of 24 bytes. The first 16 bytes are the hash value of node 

and next 8 bytes are the disk address of the node lexical value (except for the inline values) in the 

node file.  

Whenever a node is asserted into a TDB store MD5 hash of the node is computed and enters into 

the first 16 bytes. Then a unique id is assigned against this hash value, this id represents the 

physical address in node file. Actual lexical value of that node is stored at the address which is 

represented by the nodeId. The storage process of node is represented in the Figure 16. 

 

 

                          Nodes 
 

 

  

Node to Node ID Mapping 

Hash 

(16byte MD5) 

NodeId 

(8byte) 

hash (http://seecs.edu.pk/Delsa) [External NodeId| Disk address] 

hash (“22”^^xsd:integer) [xsd:Integer|22] 

…. …. 

Figure 16: TDB Node storage architecture 

 

Prefixes 

This category contains three files that are prefixes, prefix2id and prefixidx. These provide 

supports for TDB Prefix Mappings. Just like nodes and node2id, prefixes and prefix2id provide 

http://seecs.edu.pk/Delsa 
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two types of mapping for prefixes and prefixIds. Prefixidx is another implementation of B+ tree 

that is ordered on GPU (Graph, Prefix, URI). 

Triple and Quads 

Remaining files are categorized under this category. These are SPO, POS, OSP, GSPO, GPOS, 

GOSP, SPOG, POSG, and OSPG.  

24 bytes 

 

 

8 bytes                  8 bytes                       8 bytes 

SPO 

Subject NodeId Predicate NodeId Object NodeId 

Figure 17: Triple entry in SPO file 

32 bytes 

 

 

8 bytes                  8 bytes                       8 bytes                     8 bytes 

GSPO 

Graph NodeId Subject NodeId Predicate NodeId Object NodeId 

 

Figure 18: Quad entry in GSPO file 

There is no distinguishing triple file and then indexes on this file. SPO, POS and OSP are triple 

index files that have B+ tree implementation. These are populated when no provenance 

information is stored about the triples. Each entry of these files is of 24 bytes and has all the 

information about a triple. Triples in these files are represented as a combination of three nodeIds 

in different orders, one for subject second for predicate and third for object. Name of each file 

represents the order of triple in terms of subject, predicate and object as shown in Figure 17.  
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Whenever a triple is asserted into Jena TDB store three entries are made in three different files, 

one entry in each of SPO, POS and OSP files. 

Quads index files are used to represent the named graphs. Default storage of these files in Jena 

TDB is B+ tree. These are populated when provenance information is stored about the triples. 

Each entry in quad index files is of 32 byte representing subject, predicate, object and graph for a 

triple as shown in  

Figure 18. Whenever a quad is asserted into Jena TDB store six entries are made in six quad 

index files, one entry in each file. 

3.2.1.2.SesameN 

SesameN stores triples permanently on disk for inferencing and querying of Semantic Web data. 

SesameN schema in the disk directory can broadly be divided into three logical blocks. (1) 

Namespaces (2) Values (3) Triples.  

Values 

This logical part is composed of three disk based files that are named as value.dat, value.id and 

value.hash. These three files provide two types of mapping i.e. “value to value-Id” and “value-

Id to value”.  The ‘value to value-Id mapping’ is used during data loading and when converting 

constant terms in queries from their node representation to the Sesame specific internal value-

Ids. The ‘value-Id to value’ is used to turn query results expressed as Sesame value-Id into the 

RDF node representation and also during query processing when filters are applied if the whole 

node representation is needed for testing e.g. regex.  
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valueId(http://seecs.edu.pk/Delsa) = 123 

valueId(http://seecs.edu.pk/Anila) = 2 

valueId(“22”^^xsd: integer) = 3 

Figure 19: value-Id to value mapping in SesameN 

 

The actual values of URIs, blank nodes and literals are stored sequentially in the values.dat file. 

Value-Id to value mapping is maintained in value.id file. It is a B-tree disk based implemented 

file. The values.dat offset for value X is stored in values.id at offset 8 * X, where X is a positive 

32 bit integer and offsets are 64 bit longs. So, to look up the lexical value for id 123, the native 

store fetches the long stored at offset 8 * 123 = 984 from values.id. The value of this long is, for 

example, 654321. The lexical value can then be read from values.dat at offset 654321 as shown 

in Figure 19. 

The value to value-Id mapping is based on the value.hash file that is a disk based hash table. It 

stores value identifiers using a hash code derived from the actual value. Hash of any RDF node’s 

lexical value (i.e. resource, literal or blank node) returns the physical address of the value-Id for 

that node, within the address space of value.hash as shown in 
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Figure 20: value to valueId mapping 

Triples 

Triple-sopc, triple-posc and triple-cosp fall under this category. These are on-disk indexes to 

speed up querying. These uses B-trees for indexing statements, where the index key consists of 

four fields: subject (s), predicate (p), object (o) and context (c). These file only store identifiers 

(integer ids) instead of actual URIs, blank nodes and literals as shown in Figure 21. The order in 

which each of these fields is used in the key determines the usability of an index on a specify 

statement query pattern. Searching statements with a specific subject in an index that has the 

subject as the first field is significantly faster than searching these same statements in an index 

where the subject field is second or third. In the worst case, the 'wrong' statement pattern will 

result in a sequential scan over the entire set of statements.  

 

SOPC 

Subject valueId Object valueId Predicate valueId Context valueId 

Figure 21: Triple in SesameN 
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By default, the native repository only uses two indexes, one with a subject-predicate-object-

context (spoc) key pattern and one with a predicate-object-subject-context (posc) key pattern. 

However, it is possible to define more or other indexes for the native repository, using the Triple 

indexes parameter. This can be used to optimize performance for query patterns that occur 

frequently. Creating more indexes potentially speeds up querying, but also adds overhead for 

maintaining the indexes. Also, every added index takes up additional disk space. 

Namespaces 

A single file contains the namespaces of the dataset. 

3.2.1.3.AllegroGraph 

Allegrograph store’s structure can logically be divided into five major blocks, which are 

assertions, indices, strings, Freetext indices and deletion records as shown in Figure 22. 

. 

 

 

 

 

 

 

 

Figure 22: Logical Schema of an AllegroGraph Store 
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In Semantic Web world, triples are RDF statements comprise subject, predicate and object value 

in the context of graph. AllegroGraph stores triples that are composed of five fields; subject, 

predicate, object, graph and triple-id. Where graph encodes the context of the triple to save the 

provenance information and triple-id is a unique identifier assigned to each unique triple.  Main 

purpose of triple id is to make reification supper efficient in AllegroGraph. 

All of subject, predicate, object, and graph are strings of arbitrary size. It is very inefficient to 

store all of the duplicated strings directly as a part of a triple. On the basis of this argument in 

AllegroGraph a special number, called a Unique Part Identifier (UPI) is assigned to each unique 

RDF node value.  

 

There are two types of UPIs in AllegroGraph as shown in Figure 23. A UPI size is twelve byte. 

First byte of UPI denotes the type code of its corresponding RDF node. If value of first byte is 

ranging from 0-3 i.e. it node type is either a resource, a literal, a literal datatype and a literal 

language, then next eleven bytes are used to store the hash of the lexical value of the node and 

actual lexical value is store in “String Dictionary” that keeps the mappings between UPI and 

nodes string values. This allows the prevention of duplicate values. However if first byte has a 

1
st
 byte 11 bytes 

Type (0-3) Hash of String value of Node 

 

 

 

1
st
 byte 11 bytes 

Type (4-44) Encoding of UPI contents 

 

 

 

Figure 23: Type of UPIs in AllegroGraph 
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type code from any other supported types then next eleven bytes store  the nodes actual contents. 

Table 3 shows the currently supported node types in AllegroGraph. Its ability to encode values 

directly into its UPIs provide the facility to bypass the String Dictionary completely thus 

allowing both more efficient data retrieval and extremely efficient range queries. 

 

60 bytes 

 

 

                   12 bytes              12 bytes            12 bytes            12 bytes           12 bytes 

Triple 

Subject UPI Predicate UPI Object UPI Graph UPI Triple-id UPI 

 

Figure 24: Triple Structure in AllegroGraph 

 

Whenever a triple is store in AllegroGraph store. All its parts i.e. subject, predicate, object and 

graph are either assigned the corresponding URIs (hashed /encoded) and complete triple is 

assigned a unique identifier called triple-id and an entry of 60 bytes is made in “Triple 

Directory” as shown in Figure 24.  

AllegroGraph provides the facility to create up to six B-tree indices for efficient data retrieval.  

These indices are named as spogi, posgi, ospgi, gspoi, gposi, and gospi. Each index is named by 

the order in which triple is sorted. Apart from these six indices AllegroGraph provides the 

facility of “Freetext Indices” to perform free text searching in the Triple Directory. Final block 

of AllegroGraph keep track of deleted records in “Deletion Record Directory”. 
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Table 3: Node types in AllegroGraph 

 

3.2.2. Non-memory non-native Stores 

Non-memory non-native stores also provide persistent storage for Semantic Web data. They use 

the storage and querying techniques provided by existing RDBMS. Detailed study of different 

storage layouts deployed by Semantic Web databases is presented in this study. 

3.2.2.1.SDB 

SDB is a subsystem of Jena that is design to support the scalable storage and query of RDF and 

OWL data using conventional SQL databases [58]. SDB is designed specifically to support 

SPARQL.  

Type 

code 

Type name Type 

code 

Type name Type 

code 

Type name Type 

code 

Type name 

0 Node/ resource 1 Literal 2 literal-typed 3 literal-language 

7 literal-short 8 blank-node 11 single-float 12 double-float 

14 unsigned-byte 15 unsigned-short 16 unsigned-int 17 unsigned-long 

18 Byte 19 Short 20 Int 21 Long 

23 Date 24 Time 25 date-time 26 gyear 

27 telephone-umber 28 latitude 29 Longitude 30 triple-id 

31 default-graph 36 geospatial 41 Subscript 42 long-88 

43 unsigned-long-88 44 Plain     
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Figure 25: SDB Layout in MySQL 

SDB follows the ‘schema oblivious’ approach as storage schema does not change even if the 

schema of the data to be stored changes [64]. SDB always creates four tables in database with 

table name; Prefixes, Nodes, Triples, and Quads.  The storage schema factors out the common 

prefixes of URI to reduce the storage space. It creates a separate table named as “Prefixes” to 

store the association of unique identifiers with each distinct prefix as shown in Table 4.  SDB 

uses an id-based approach for triple storage that requires an additional table “Nodes” for storing 

one to one mapping between lexical values and corresponding identifiers as shown in Table 5. 

SDB supports two types of node tables depending upon the layout choice. In case of Index 

layout, a separate id is used beside hash values of the node. In hash layout, hash of the node is 

used as a node identifier. Figure 25 is presenting the hash layout. In hash layout, “Triple” table 

stores the hash value as an id for all nodes of the triples as shown in  

Table 6 and lexical values for these triples are stored in nodes table. “Quads” table store the ids 

of dataset quads for maintaining the provenance information as shown in Table 7.  
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Table 4: Prefixes table Design 

Prefixes 

Column Type Description 

Prefix varchar (50) Prefix for the corresponding asserted uri 

Uri varchar (500) Asserted URI 

Primary key: prefix 

 

Table 5: Nodes Table Design 

 

 

Table 6: Triples Table Design 

Triples 

Column Type Description 

S bigint(20) Hash value for the subject of asserted statement  

P bigint(20) Hash value for the predicate of asserted statement 

O bigint(20) Hash value for the object of asserted statement 

Primary key: s,p,o 

Node 

Field Type Description 

hash bigint(20) CRC32 hash value for the asserted node  

Lax Longtext Actual value of the asserted node 

lang varchar (10) Language Identifier for the nodes if literals 

datatype varchar (200) Data type for the nodes if literals 

type int(10) unsigned Type of asserted node to differentiate blank nodes, 

literals and URIs. Type will be 1 for blank nodes, 2 for 

URIs and 3 for Literals. 

Primary key: hash 
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Table 7: Quads Table Design 

 

SDB creates one index on both of Prefixes and Nodes table, three indices for Triples table and 

six indices for Quads table. Detailed Description of each index is shown in Table 8. 

Table 8: Detail of Indices on SDB tables 

Index on Prefixes Table 

Key_name Column_name Non/unique Index type 

Primary prefix Unique Btree 

Index on Node table 

Key_name Column_name Non-unique Index type 

Primary Hash unique Btree 

Indexes on Triple Table 

Key_name Column_name Non/unique Index type 

Primary s,p,o Unique Btree 

ObjSubj o,s Non-unique Btree 

PredObj p,o Non-unique Btree 

Indexes on Quads table 

Quads 

Column Type Description 

G bigint(20) Hash value for the graph of asserted statement 

S bigint(20) Hash value for the subject of asserted statement 

P bigint(20) Hash value for the predicate of asserted statement 

O bigint(20) Hash value for the object of asserted statement 

Primary key: g,s,p,o 
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Key_name Column_name Non-unique Index type 

Primary g,s,p,o Unique Btree 

SubjPredObj s,p,o Non-unique Btree 

PredObjSubj p,o,s Non-unique Btree 

ObjSubjPred o,s,p Non-unique Btree 

GraPredObj g,p,o Non-unique Btree 

GraObjSubj g,o,s Non-unique Btree 

 

3.2.2.2.SesameRDB 

SesameRDB store stores its data in a relational database.  SesameRDB supports ‘schema-aware’, 

‘schema-oblivious’, and ‘hybrid’ as storage layouts for RDF data. The database's table layout can 

be tweaked using the “Max number of triple tables” parameter. Schema-oblivious approach creates a 

“monolithic layout” with a single table that stores all statements, by setting maximum number of 

tables’ parameter equal to one. Schema- aware approach creates a “vertical layout” that stores 

statements in a per-predicate table, by setting maximum number of tables’ parameter equal to 

zero or a negative value. Hybrid approach creates predicate tables as well as a single triple table 

that are collectively equal to desired max number of tables. The Schema-aware layout has better 

query evaluation performance on most data sets, but potentially leads to huge amounts of tables, 

depending on the number of unique predicates in dataset. If the number of tables becomes too 

large, the database's performance can start to decrease or it can even fail completely. Vertical 

layout in Sesame RDB is shown in Figure 26. 
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Figure 26: SesameRDB Layout in MySQL 

 

As shown in Figure 26 SesameRDB always creates twelve fixed tables with table names; 

bnode_values, uri_values, label_values, long_label_values, long_uri_values, datatype_values, 

datetime_values, numeric_values, language_values, hash_values, namespace_prefixes, and 

locked. Along with these twelve tables it creates per-property tables in case of schema-aware 

approach or a single triples table in case of schema-oblivious approach. Each table along with 

fields and their data type is described in Table 9, Table 10, Table 11, Table 12 and Table 13. 

Table 9: Property table description 

Property_table 

Column Type Description 

Ctx int(11) Context of the data  

Subj int(11) Id of the subject node for the triple with predicate of corresponding 
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table 

Obj int(11) Id of the object node for the triple with predicate of corresponding 

table 

Expl tinyint(1) Value is zero if the triple is explicit and one if triple is implicit  

Primary key: id 

Table 10: {bnode, label, uri, long_uri, long_lable, datetime, datatype, numeric, language}_values  

tables description 

Table 11: Hash_values table 

hash_values 

Column Type Description 

Id int (11) Ids of the {bnode/ label/ uri/ long-uri/ long-label/ 

datetime/ datatype/ numeric/ languages}, asserted into 

store as a part of statements 

Value bigint(20) Hash of the {bnode/ label/ uri/ long-uri/ long-label/ 

datetime/ datatype/ numeric/ languages}, asserted into 

store as a part of statements 

Primary key: id 

{bnode_values/label_values/uri_values/long_uri_values/long_label_values 

/datetime_values/datatype_values/numeric_values/language_values} 

Column Type Description 

Id int (11) Ids of the {bnode/ label/ uri/ long-uri/ long-label/ datetime/ 

datatype/ numeric/ languages}, asserted into store as a part of 

statements 

Value varchar (127)
1 

longtext
2 

bigint(20)
3 

double
4 

Values of the {bnode
1
/ label

1
/ uri

1
/ long-uri

2
/ long-label

2
/ 

datetime
3
/ datatype

1
/ numeric

4
/ language

1
}, asserted into store 

as a part of statements 

Primary key: id 
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Table 12: Namespace_prefixes table description 

Namespace_prefixes 

Column Type Description 

Prefix varchar (127) Prefix of the dataset  

namespace Text Corresponding namespace of dataset 

Table 13: Locked table description 

Locked 

Column Type Description 

process varchar(128) Process that has locked the database 

 

SesameRDB an id-based approach for triple storage that requires some additional tables i.e. 

uri_values, label_values, bnode_values, long_uri_values, and long_label_values,  for storing one 

to one mapping between lexical values and corresponding identifiers. Whenever a triple is 

inserted into SesameRDB each node of the triple is assigned an id on the basis of its corresponding 

category i.e. uri, label, bnode, long_uri, and long_label; and the nodes are inserted into that 

corresponding table and triple is inserted into corresponding property table or in triples table in 

case of schema-aware or schema-oblivious approach respectively. Hash of each asserted node is 

computed and inserted into hash table along with its corresponding id. Hash values are used 

when looking up internal Ids from known terms. The uri_values, label_values, bnode_values, 

long_uri_values, and long_label_values tables store the URIs or literal text in value column, 

these cannot be indexed (in many databases), and so another index-able column is 

needed to lookup the internal ids for the text of URIs or literals. The hash value maps a globally 

unique 64 bit hash of the term to a local internal 32 bit id. 
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Literal values of ‘label_values’ may have some rdf/xml properties such as datatype, datetime, 

numeric and language. These literals along with their corresponding ids and values are also 

inserted into the corresponding tables that are datatype_values, datetime_values, numeric_values 

and language_values, created as a part of schema design of the SesameRDB database. 

Namespace_prefixes table contains the namespace of the dataset and locked table contains the 

entry for each process that has currently locked the sesame database. 

SesameRDB creates four indices on each property table, two indices on hash table and one index 

on each remaining table (other than locked and namespace_prefixes). Detailed Description of 

each index is shown in Table 14. 

Table 14: Indices on tables in SesameRDB Layout 

index on property_table 

Key_name Column_name Non-unique Index type 

Primary  ctx,subj,obj,expl Unique Btree 

tableName_subj_idx subj Non-unique Btree 

tableName _ctx_idx ctx Non-unique Btree 

tableName _expl_idx expl  Non-unique Btree 

Index on corresponding table 

Key_name Column_name Non-unique Index type 

Primary  id Unique Btree 

Index on hash_values table 

Key_name Column_name Non-unique Index type 

Primary  hash Unique Btree 

HASH_VALUES_value_idx value Non-unique Btree 
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3.2.3. In-Memory Stores 

In-memory Semantic Web databases store and manage data in main memory they deploy 

different in memory data structures for efficient retrieval and storage of triples. A brief 

description of two in-memory Semantic Web databases is given in this section. 

3.2.3.1.SesameM 

SesameM stores and manipulates Semantic Web data in in-memory. It uses a bipartite graph 

representation for triples in main memory. Vertices of this bipartite graph representation are 

divided into two parts. First part is a combination of statement nodes, representing the number of 

triples in the dataset. Second part is a combination of resource nodes, representing all resources, 

literals and blank nodes. Each statement node references four resource nodes, one reference for 

each resource role: subject, predicate, object or context. Each resource node also has, for each 

role it plays, a reference to a list of statement objects in which it plays that particular role. An 

overview of storage model is shown in Figure 27.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statements Subject Predicate Object 

1 Anila_Sahar supervisedBy Sharifullah 

2 Sharifullah supervises Anila_Sahar 

3 DELSA hasMember Sharifullah 

4 Anila_Sahar memberOf DELSA 

Figure 27: SesameM Storage Layout 
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3.2.3.2.JenaM 

JenaM is another prominent Semantic Web database that stores and manipulates Semantic Web 

data in main memory. It uses a HashBunchMap for triples storage and retrieval in main memory. 

At the heart it creates three indexes one for subjects to triples, second for predicates to triples 

and third for object to triples. These three indexes map RDF term (subjects, predicates, objects) 

to triple using a HashBunchMap. 

Jena uses its own hash maps which are more compact and faster than the standard Java ones 

although they provide fewer facilities, just what is needed for RDF indexing in Jena. 

In fact, the indexes map terms to "bunches" (triples with common indexing term) e.g. a subject 

index takes all the resources, that appears as a subject in triples, as hash-keys and stores all the 

triples as value for that key that contains that resource as its subject as shown in Figure 28. This 

complete set of triples against any key is called a bunch and the bunch is stored as an array if 

small and a set (using the same code as Jena's hash maps) if larger. Similarly predicate and 

object indexes store triples with predicates and objects values as keys and store triples with 

having these keys as shown in Figure 29 & Figure 30. 
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Figure 28: Jena Subject Index Structure 

 

 

 

 

 

 

 

Figure 29: Jena Predicate Index Structure 

 

 

 

 

 

 

 

Figure 30: Jena Object Index Structure 
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Summary of Chapter 

This chapter documents the architectural study and features comparisons of these stores. 

Following this, we presented storage architecture and access mechanism of different open source 

Semantic Web databases. For describing the Semantic Web databases’ storage layouts we 

surveyed the past approaches used by selected Semantic Web databases and presented their 

common approaches to store the data e.g. id-based vs. value-bases approach, schema oblivious 

vs. schema aware approach, and prefix compression. We also described the access mechanism of 

these databases i.e. we detailed type and number of indexes, value-to-Id, and Id-to-value 

mapping techniques 
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SEMANTIC WEB DATABASES EVALUATION FRAMEWORK 

This chapter provides the detail of evaluation framework for our research. It starts with the 

introduction of Semantic Web databases that we evaluated followed by logical schema of dataset 

used for evaluation. Last but not the least section describes the detailed methodology for the 

comparative and scalability analysis of Semantic Web databases.   

4.1. Semantic Web databases 

We have analyzed and evaluated all three types of Semantic Web databases as given in Figure 

31. Semantic Web databases evaluated in this research includes JenaM [57], SesameM [60], TDB 

[59], SDB [58], SesameN [60], SesameRDB [60], and AllegroGraph [37]. 

 

Figure 31: Evaluated Semantic Web databases 
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All these Semantic Web databases are quite popular and frequently used for performance 

evaluation and benchmarking of RDF storage architecture in Semantic Web research community. 

Figure 31 presents the category and version of each store.  

4.2. Evaluation Dataset 

The objective of this research is performance evaluation of scalable Semantic Web databases. A 

real dataset allows realistic and accurate quantification of Semantic Web databases. Therefore, 

we are interested in using a real and public data set to evaluate the performance of Semantic Web 

databases. Different RDF datasets are available online for testing purpose, such as, Barton 

libraries [29], DBpedia [52] and DBLP [51]. They are amongst the most commonly used RDF 

datasets for Semantic Web databases evaluation. 

The Barton Libraries dataset [29] is used for the performance evaluation. This data is provided 

by the Simile Project [53], which develops tools for library data management and 

interoperability. The data contains records that compose an RDF-formatted dump of the MIT 

Libraries Barton catalog. This dataset has been used as a standard data set for Semantic Web 

analysis. Semantic Web data has two basic characteristics (a) large size of data and (b) irregular 

structure of data. The presence of both the characteristics at the same time makes a dataset true 

representation of Semantic Web data that affects the performance of Semantic Web databases. 

The analysis performed only on a large dataset, does not present true picture of the performance 

of Semantic Web databases. While selecting the dataset, we made tradeoff on dataset size and 

dataset structure and selected it for our evaluation. The Barton Library dataset was derived from 

multiple sources and it follows a semantically rich ontology. It preserves the irregular structure 

of data and it is one of the large size data currently available online.  
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4.2.1.  Barton Libraries Dataset 

The dataset is analyzed using longwell [54], a faceted browser that combines the flexibility of 

RDF data model with user interface paradigm.  Data is categorized on the basis of the types of 

resources present in the dataset. The index page of longwell is shown in Figure 32. The right 

panel shows Barton dataset types arranged in alphabetical order. The integer number with each 

type gives instance count of that particular type. 
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Figure 32: Longwell Screenshot 

 

By clicking on any type, facets are shown to further drill down the data. The facets of each class 

represent the predicates that are associated with resources of class type. Figure 33 shows the 

facets for Date type resources.  
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Figure 33: Longwell screen shot of facets for Date type resources 

 

An overview of the Barton data model, analyzed through longwell, is presented for the better 

understanding of dataset in Figure 34.  
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Figure 34: Overview of Barton Data Model 

 

In Figure 34 classes represent the types of resources in dataset, attributes of each class presents 

all those predicates whose domain is this class. The relationship of a class with other classes 
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shows the range of the predicates of that class. A brief description of classes is given in Table 15. 

A detailed description of attributes and their associated object type are given in [58]. 

Table 15: Barton Dataset Classes Description 

CLASSES DESCRIPTION 

Class Name Definition 

Record Record present information about the metadata record 

Item: Item is a resource that is being described 

TitleInfo TitleInfo is an abstract class represents all those words, phrases, characters, 

or group of characters, that constitutes the chief title, abbreviated title, 

translated title, alternative title and uniform title of a resource. 

Topic Topic class models all those subjects of resources that are not appropriate 

under title class 

Date Date class represents the information about date on which a record is 

created, changed, issued, and copyrighted or any other date that needs to be 

specified 

Description Description may be used to give a textual description for a resource when 

necessary 

Form Forms provides the information about the designation of physical 

presentation of the resource 

Publisher Publisher is the entity that published, printed, distributed, released, issued, 

or produced the resource 

Place Place describes the all those places that are associated with the issuing, 

publication, release, distribution, manufacture, production, or origin of a 

resource 

Entity Entity class represents all those persons, corporations and events (e.g. 

conference) who can be related to a resource in some way 

Language language class provides all those languages in which contents of the 

resources of dataset is expressed 
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Audience Audience class provides a description of the intellectual level of the 

audience for which the resource is intended 

TypeOfResource Type of resource defines the term that specifies the characteristics and 

general type of content of the resource. Type of resource may be from one 

of text, cartographic, notated music, sound recording musical, sound 

recording nonmusical, still images, moving images, software and 

multimedia, and manuscripts 

Classification Classification class indicates all those categories in which resources can be 

organized according to subject area 

 

4.2.1.1.Statistics of Barton Dataset: 

A detail analysis of Barton dataset provides us the characteristics of evaluated data that are 

presented in Table 16.   There are slightly more than 25 million triples in dataset, previously it 

was claimed that this dataset contains 50 million triples [62]. 

Table 16: Summary Statistics of Barton Dataset 

Dataset Characteristics 

Total Number of Triples 25176626 

Total Nodes 9716253 

Total types of Instances 30 

Total Unique Properties 199 

Multi-valued Properties11 72 

Single-valued Properties12 127 

  

                                                             
11 Multi-valued properties means these properties appear more than once for a given subject 

12 Single-valued properties means these appear only once for a given subject 
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4.2.1.2.Namespaces 

Similar string at the start of properties of dataset belongs to some predefined schemas, such as 

RDF, OWL or some other schemas. These are declared as namespaces in the document.  URIs or 

namespaces for the Barton dataset are given in Table 17. 

Table 17: Prefix to URI mapping 

Prefix URI 

modsrdf: http://simile.mit.edu/2006/01/ontologies/mods 

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# 

role: http://simile.mit.edu/2006/01/role/ 

owl: http://www.w3.org/2002/07/owl# 

 
 

4.2.1.3.Dataset Scaling and population 

We performed our evaluation on four different sizes of Barton dataset. Dataset 1, dataset 2, 

dataset 3 and dataset 4 contains 0.2M, 1 Million, 5 Million and 25 Million triples respectively. 

As we sampled our datasets from a large dataset, we tried to make our sampling fair and realistic. 

For fair sampling, we selected ten different samples of each dataset 1, dataset 2 and dataset 3. 

Average of ten samples for each dataset represents its population. Detail of each dataset is given 

in Table 18. 
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Table 18: Dataset Scaling and Population 

 

Class Name 

Scaling Factor 

Dataset 1 

(200K) 

Dataset 2 

(1Million) 

Dataset 3 

(5Million) 

Dataset 4 

(25Million) 

Number of Date 15697 78382 391951 1959758 

Number of Title 6453 32706 163502 817508 

Number of Text 5499 30400 152230 760564 

Number of Description 4421 21760 108802 544011 

Number of Record 4430 20569 102813 514067 

Number of Classification 3219 15538 77588 387942 

Number of Person 2856 14198 90561 353635 

Number of Item 2516 12511 62671 312270 

Number of Alternative Title 780 3810 19098 95489 

Number of Publisher 746 3852 23698 89589 

Number of Corporation 485 2345 15838 58639 

Number of Topic 459 2100 22804 52681 

Number of Uniform Title 286 1162 5736 28679 

Number of Conference 237 1125 5702 28139 

Number of Place 189 853 5103 15542 

Number of Notated Music 126 716 3008 15016 

Number of Sound Recording Musical 91 449 2208 11022 

Number of Abbreviated Title 87 498 2167 10835 

Number of Cartographic  28 103 477 2353 

Number of Manuscript  15 79 351 1753 

Number of Moving Image 26 44 222 1109 

Number of Language 35 58 178 399 

Number of Genre 9 28 111 352 

Number of Sound Recording Nonmusical  5 17 57 286 
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Number of Software and Multimedia 10 15 52 260 

Number of Form 6 17 65 242 

Number of Translated Title 5 7 16 82 

Number of Audience 0 5 17 66 

Number of Still Image 0 2 4 18 

Others     3653947 

Total 48716 243349 1257030 6062306 

 

4.2.1.4.Dataset Cleaner 

Publically available dump of Barton libraries dataset contains illegal URIs. Some Semantic Web 

databases such as AllegroGraph and Mulgara do not allow loading datasets that contains illegal 

URIs. To load Barton dataset, illegal URIs are identified and transform into legal URIs before 

testing different stores using this dataset. 

4.3. Evaluation Methodology 

As we concern with the performance and scalability evaluation of Semantic Web databases. 

According to the Bondi [49] scalability can be divided into four major categories: load 

scalability, space scalability, space-time scalability and structural scalability as shown in Figure 

35. Our research scope covers the performance evaluation of Semantic Web databases with 

respect to their space scalability and space time scalability. 
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Figure 35: Types of Scalability 

 

We divide our proposed evaluation methodology for the analysis of Semantic Web databases 

into two parts. The first part describes the test cases designed to check the performance of stores 

while the second part highlights the proposed performance and scalability metrics for evaluation.   

4.3.1. Test Cases 

Database community broadly divides all database operations into four major Database 

communities broadly divides all database operations into four major categories [69], as given 

below; 

 

SCALABILITY 

System performs gracefully without undue delays and 

unproductive resource consumption as the traffic increases  

Load Scalability 

System’s resources utilization does not grow to intolerable 

levels as the data set size increases. 

Space Scalability 

System continues to function gracefully as the number of 

objects it encompasses increases by order of magnitudes. 

Space-time Scalability 

System expands in chosen dimension without major 

modifications to its architecture. 

Structural Scalability 
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1. Load data to a data store (Create) 

2. Get existing data from a data store (Read) 

3. Modify existing data in a data store (Update)  

4. Delete data from a data store (Delete) 

These operations are collectively known as CRUD operations. Optimizing a data store for some 

operations of a category can result in performance degradation of another category’s operations. 

For example multiple indexes can reduce the data access time considerably; but, can degrade the 

performance of create, delete and update operations. Each addition or deletion requires updating 

all the indexes so does each update operation also requires changing an index key of indexes 

[55]. Therefore performance testing results of a data store, for single category, are not reliable. 

All these operations need to be tested for any data storage system in order to get a clear vision of 

data store performance.  On the basis of this argument, we have divided our test cases into four 

different categories representing the CRUD operations.  

4.3.1.1.Create  

Most of the Semantic Web databases support two types of RDF data loading, bulk load and 

incremental load; therefore, test cases are designed to test stores’ performance for both data 

loading types.  

• Bulk Load: This test case measures a Semantic Web database’s performance while 

operating in bulk load. Cost i.e. execution time and system resources utilization, of bulk 

load is an additive cost of creating new store, their appropriate indexes and data set load 

cost. 
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CBulkLoad = CRepositoryCreation + CIndexCreation + CDataLoading 

• Incremental Load: This test case evaluates a Semantic Web database’s performance 

when loading some statements into an existing store at the cost of updating the indexes. 

CIncrementalLoad = CDataLoading + CIndexUpdation 

4.3.1.2.Read 

As mentioned before, RDF data query patterns are unpredictable, so we cannot define the test 

cases for the most anticipated query patterns. Some general query patterns are defined in [27] 

also giving rise to inspiration to design some test cases. Our test cases for read operations 

measure the Semantic Web databases performance for their data access patterns and query 

optimization techniques. 

Moreover, we have designed queries for all test cases and strive best to evaluate each test case 

independently, out of the effect of all other test cases.  

• Simple query performance: This test case returns a result set against some specified 

subject, predicate or objects value. The test case evaluates the storage and indexing 

mechanism of the store. A store that is indexed or stored on the basis of anyone within 

subject, object and predicate, will show comparatively decreased performance on other 

two.  See Appendix (SimpleQuery) 

• Complex query performance:  This test case has been designed to evaluate the effect of 

query complexity on the performance of Semantic Web database. It is hard to define 

discrete difference between a simple and a complex query, but a query that involves more 

number of triple patterns is considered to be a complex query [27]. Two patterns for 
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complex queries we considered are Long pattern and bushy patter. In Long Pattern, RDF 

resources are related to each other through a long path and whereas in bushy pattern, a 

single resource is linked to many other resources. See Appendix (ComplexQuery) 

• Queries with different result sizes: It has been observed that time and resource utilization 

increases with the increase in the result size; a query returns. Therefore a separate test 

case is designed especially to analyze the effect on store’s performance with the increase 

in result size. Queries for this test case will return different result sizes to check the 

performance. A store where hash or node ids are used to store triples and actual node 

values are stored somewhere else. It would require more time while retrieving the final 

results while mapping node ids to node values. See Appendix (ResultSize) 

• Query with different join selectivity: A good query optimizer executes join first that has 

highest selectivity as compared to other joins in the query. This test case determines the 

query optimizer’s intelligence to create an optimal query plan. Therefore, a query to test 

this test case has different selectivity for each join. Selectivity of each join is considered 

as high or low with respect to other joins selectivity of query. See Appendix 

(SelectivityEstimation) 

• Queries having irregular access patterns:  This test case is designed to assess the 

irregular access patterns for the data access. This is the characteristics of Semantic Web 

query, where data is mostly accessed irregularly. See Appendix (IrregularAccessPatterns)  

4.3.1.3.Update 

We employ a simple test case to determine the update performance of a Semantic Web database. 

Updating a triple would also result in updating the index entry for that particular triple. 
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• Update some statements in the existing store: This test case examines the performance of 

triple stores while updating the existing triples in the store. This test case also determines 

the triple store’s criteria of maintaining its versioning information and updating the triple 

at the cost of updating its indexes.  

CUpdate = CTripleUpdate + CIndexUpdate 

4.3.1.4.Delete 

Semantic Web databases usually provide two types of deletion i.e. deletion of entire store and 

deletion of some statements from store. Two test cases are designed to check the deletion 

performance of the Semantic Web databases.  

• Deletion of entire store: The test case evaluates the deletion performance for single 

model Semantic Web databases. Deletion of an entire store is simple if Semantic Web 

database supports only a single model or it does not support the cross model inferences. 

• Deletion of some statements from a store: Deletion of individual statements is relatively 

simple if a Semantic Web database supports RDF-only stores. In case of RDFS and 

OWL, if a store supports forward chained entailments, it becomes very complex because 

deletion of single statement needs to alter the inferred statement. 

4.3.2. Performance & Scalability Metrics 

In this thesis, a set of performance and scalability metrics are proposed that captures various 

aspects of the space scalability and space time scalability evaluation of Semantic Web databases. 

While evaluating the performance of a Semantic Web database, we consider two important 

parameters as a measure of its execution cost for each proposed test case, i.e. execution time and 
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resource usage.  Depending upon the scenarios we will consider secondary disk space, main 

memory, and CPU time as cost primitives of resource usage to have an in-depth study of 

performance.  The execution cost of operation on a Semantic Web database is influenced by a 

number of factors, including number of nodes in dataset, number of triples in dataset and type of 

operation [68]. Therefore we record the execution cost for different operations and dataset sizes. 

Table 19 presents corresponding cost primitives for each type of operation and for all datasets. 

Table 19: Test case categories with their corresponding performance metrics 

       Metric 

 

 

Test Cases 

Load 

Time 

Query 

Execution 

Time 

Repository 

Size 

Main 

Memory 
CPU 

Success 

Ratio 

Cumulative 

Query 

Response 

Create √ × √ √ √ √ × 

Read × √ × √ √ √ √ 

Update  × √ × √ √ × × 

Delete × √ × √ √ × × 

 

4.3.2.1.Load Time:  

The load time metric reports the loading time for datasets of different sizes. Load time is 

measured as a commutative time to build a repository structure, build initial index structures and 

generate statistics about the dataset for query optimization.  

TLoad = TRepositoryCreation + TloadDataset + TIndexCreation + TStatisticsGenration 

4.3.2.2.Query Execution Time 

This metric provides the query execution time for each test on datasets of varying sizes. In order 

to eliminate the query cache effect, query execution time is computed at three different instances 

followed by their mean and uses this mean value as a measure of query execution time. Query 
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execution time includes the time to connect the repository, execute query, print result set and 

then close connection. 

TQueryExecution = TOpenConnection + TExecuteQuery + TPrintResultSet + TCloseConnection 

4.3.2.3.Repository Size 

This metric presents the detail of the storage size occupied by a dataset after loading it into a 

persistent storage.  Repository size is a composite figure of total size of all files present in the 

repository including data files and index files. For main memory systems we also compute the 

largest dataset size handled by each system on fixed memory platforms. The main memory 

Semantic Web database that handles the largest dataset size, consumes memory more efficiently. 

SRepository = SDataFiles + SIndexFiles 

4.3.2.4. Main Memory 

This metric computes the memory requirement for the execution of a particular test case. This 

memory is the amount of memory needed to hold the working buffers. Size of main memory, 

hardly few GBs, is a limit on the size of the semantic data that can reside or process in main 

memory [56]. A Semantic Web database consuming memory more efficiently is supposed to be 

more scalable and efficient. 

4.3.2.5. CPU time 

This metric shows the CPU time consumed for processing a particular test case. Whenever a test 

case is executed by a user, it engages some of the system resources among which CPU time 

utilization is the most critical. CPU time utilization is important because the higher the 



81 

 

percentage of the CPU used by a Semantic Web database the less power the CPU can devote to 

other tasks. User CPU Time and System CPU Time is computed for in-depth analysis. 

4.3.2.6. Success Ratio 

Success ratio describes the fraction of successfully executed test cases either for a semantic store 

or for a dataset. For success ratio computation, we considered only bulk load test case and six 

read test cases (i.e. total seven test cases on a dataset) to develop a clear effect of failed tests. For 

each store and dataset size, success ratio is calculated using formulae given in Equation 1. 

SRstore �  

∑ ST�
���

store

dataset�i�

∑ TT�
���

store

dataset�i�

 SRdataset �  

∑ ST�
���

dataset

store�i�

∑ TT�
���

dataset

store�i�

 

(a) (b) 

Equation 1: Success Ration Computation Formula for (a) Semantic Store (b) Dataset 

Where 

SRstore = Success Ratio of store 

 

ST
store

dataset�i�
 

= Number of successful test cases on dataset(i) for this store 

 

 

TT
store

dataset�i�
 

= Number of total test cases on dataset(i) for this store 

 

 

SRdataset = Success Ratio of dataset 

 

ST
dataset

store�i�
 

= Number of successful test cases on store(i) for this dataset 

 

 

TT
dataset

store�i�
 

= Number of total test cases on store(i) for this dataset 
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4.3.2.7. Cumulative Query Response Time 

Cumulative performance metric describes three averages i.e. mean query response time, mean 

main memory usage and mean CPU time for read test cases. Computations results have huge 

variations that necessitate the selection of geometric means over arithmetic means. As our 

cumulative performance metrics preserve the performance behavior of each store, so they show 

that our choice for computing geometric mean is quite appropriate. For all failed test cases we 

considered large values for response time as 86400sec, main memory as 6144 MB and CPU time 

as 60 sec to penalize the respective store. 

Summary of Chapter 

In this chapter we discussed the Semantic Web databases evaluation framework in detail along 

with introduction to some prevalent Semantic Web databases that are being evaluated. We 

describe the logical schema of Barton dataset in detail to evaluate previously mentioned 

Semantic Web databases. Dataset description provides an insight to the Barton data model and 

dataset statistics along with description of its important classes. The last section provides details 

of our proposed evaluation methodology that includes evaluation framework, test cases 

description and proposed performance and scalability metrics. 

In next chapter, we will present an overview of the Semantic Web databases architecture. 

 

 

 

 



83 

 

PERFORMANCE EVALUATION RESULTS 

This chapter documents the outcomes of our research. The chapter is divided into three parts. 

The first part describes the configuration setting of evaluation both for machine and Semantic 

Web databases. The second part presents the comparative performance evaluation results of 

tested Semantic Web databases while the third part presents their scalability analysis. 

5.1.  Evaluation Configuration 

This section describes experimentation set up including hardware and software where all the test 

cases were executed followed by the configuration set up for each Semantic Web database. All 

the results for comparative evaluation and scalability analysis are dependent upon these 

configuration settings. 

5.1.1. Test Environment 

All experiments were performed on a single machine under 64bit Enterprise edition of Microsoft 

Windows Server 2003 on the top of ACPI Multiprocessor (16 processors) X5550@ 2.67GHz 

CPU. We used 8 GB RAM and 120 GB PERC 6/I SCSI Disk Device with 8GB virtual memory. 

All Java engines were executed with Netbeans IDE 6.8 that run on the top of JRE 1.6.0_18 64-bit 

version. RAM Rush 1.0.5.817 was used as a RAM cleaner. 

5.1.2. Semantic Web Databases Configuration 

All of tested stores were run using its available Java APIs. We configured these stores to perform 

up to our known best performance level of each stores.  Detailed configuration of each store 

along with its tested version is given below. 

CHAPTER CHAPTER CHAPTER CHAPTER 5555    
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TDB Version 0.8.4  

The statistics-based BGP optimizer was used by generating the stats.opt file and copying it to the 

database location. All three indexes for triple graph i.e. SPO, POS, OSP were created. Java 

options of Tomcat were set to -Xmx6144m. 

SesameN Version 2.3.1 

Store type was set to “Native”. Indexes created include SPOC, POSC, and OSPC. Java options 

of Tomcat were set to -Xmx6144m. 

AllegroGraph Version 3.3 

Open source copy of AllegroGraph was used. All six index flavors (spogi, gspoi, gposi, gopsi, 

ospgi, posgi) provided by AllegroGraph were created. It offers two optimization parameters i.e. 

“Default Expected Resources” that was set according to dataset size and “Chuck size” was 

configured to 4 GB. Java options of Tomcat were set to -Xmx6144m. 

SDB Version 1.3.1 

SDB was configured with MySQL version 5.1.44 with hash layout. In MySQL, 

“innodb_buffer_pool_size” was tuned to 4096M for performance improvements. Java options of 

Tomcat were set to –Xmx3072m.  

SesameRDB Version 2.3.1 

Store type was set to “RDB”. It was configured with MySQL version 5.1.44. In MySQL, 

“innodb_buffer_pool_size” was tuned to 4096M for performance improvements. Java options of 

Tomcat were set to –Xmx3072m. 

SesameM Version 2.3.1 

Store type was set to “Memory”. Java options of Tomcat were set to –Xmx6144m. 
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JenaM Version 2.5.6 

 Jena memory model was created. Java options of Tomcat were set to –Xmx6144m. 

5.2. Comparative Evaluation Results 

This section provides detailed analysis of test results performed for comparative evaluation. To 

record the results for a test case against its complement performance metrics, we run that test 

cases on ten different samples for each dataset and considered the average. After executing each 

single test, we restarted our machine and cleared the RAM using RAM Rush 1.0.5.817.  

5.2.1. Success Ratio Results 

Table 20: Semantic Web databases and datasets success ratio 

 

Stores 

Datasets  

SR Store 
Dataset1 

(0.2M) 

Dataset2 

(1M) 

Dataset3 

(5M) 

Dataset4 

(25M) 

 S F S F S F S F  

SesameM 7 0 7 0 7 0 0 7 0.75 

JenaM 7 0 7 0 6 1 0 7 0.71 

AllegroGraph 7 0 7 0 6 1 4 3 0.86 

SesameN 7 0 7 0 6 1 5 2 0.89 

TDB 7 0 7 0 7 0 5 2 0.93 

SDB 7 0 7 0 6 1 5 2 0.89 

SesameRDB 7 0 7 0 6 1 5 2 0.89 

SRDataset 1.0 1.0 0.89 0.49  

 

Table 20 enlists the success ratio for each store and each dataset.  Success ratio of both in-

memory stores SSesameM = 0.75 and SJenaM = 0.71 shows that they are less successful than the 

other stores, because the 25 Million triples dataset fails to load in main memory for both these 
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stores. RDB backed stores success ratio i.e. SSDB = 0.89 and SsesameRDB = 0.89 showed the same 

success rate. From native stores TDB with success ratio STDB = 0.93 is the most successful store. 

On the other hand success ratio for Dataset1 and Dataset2 was 100%, but success ratio decreases 

tremendously for the Dataset3 and especially for Dataset4. 

5.2.2. Time and Resource Utilization Results 

5.2.2.1. Load Results 

Load test cases show interesting results regarding load time and resource utilization. Both of load 

test cases described are ventured. The datasets are asserted into single model by all Semantic 

Web databases. 

Bulk Load: Figure 36 shows the comparative performance of Semantic Web databases on bulk 

load. Experimental results showed that SesameM had better load time and resource utilization 

than JenaM during bulk load. Both these stores failed to load twenty five million dataset. 

AllegroGraph showed better performance for bulk load over other native Semantic Web 

databases. It required less load time, memory usage and CPU time than SesameN and TDB. 

SesameN proved to be faster than TDB in terms of its load time and CPU time, but its main 

memory requirement for loading was greater than TDB. AllegroGraph, with least consumption 

of main memory and CPU utilization, occupied lots of disk space. Since physical disk is neither 

an expensive nor a limited resource, so its better load time, less memory consumption and CPU 

time make it a better native RDF data loading API. From non-memory non-native category, SDB 

required less load and CPU time but more memory and disk space than SesameRDB. 
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(d) 

Figure 36: Bulk Load Comparative Evaluation Results 

 

Table 21 presents the summary of Bulk Load results. Comparatively good store of each category 

against its corresponding metrics is shown here. 

Table 21: Summary of Bulk Load Results 

Metrics 

Semantic Web Databases 

In-memory Native 
Non-memory 

non-native 

Load Time SesameM AllegroGraph SDB 

CPU Time SesameM AllegroGraph SDB 

Main Memory SesameM AllegroGraph SesameRDB 

Repository Size � SesameN SesameRDB 

 

Incremental Load: We loaded ten triples in already created stores. Tests results showed almost 

constant time and resources utilization during incremental load for in memory and native stores 

of all datasets except for AllegroGraph. AllegroGraph is expensive in terms of its load time for 

Incremental Load. SesameRDB incremental load time was much greater than SDB.  Load time 

results for Incremental Load test case are shown in Table 22. 
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Table 22: Load Time for Incremental Load 

Semantic Web 

Databases 

Load Time (sec) 

Dataset1 

(0.2M) 

Dataset2 

(1M) 

Dataset3 

(5M) 

Dataset4 

(25M) 

SesameM 1 1 1 1 

JenaM 1 1 1 1 

AllegroGraph 2 3 13 38 

SesameN 1 1 1 1 

TDB 2 2 2 2 

SDB 1 2 3 5 

SesameRDB 12 41 122 347 

 

5.2.2.2. Read Results 

Test results for read operations were more complex to analyze. Due to the large number of 

results retrieved from these tests against different performance parameters, we have only shown 

results for query response time in detail and described resource usage briefly. 

Simple Query: Figure 37 (a)(b)(c) describe the store performance on searching for a single triple 

pattern for a specific predicate, object and subject value respectively. SesameM query response 

was much better for all three queries than JenaM. 

SesameN showed better query response time in its category for predicate search on all datasets. 

But while searching on Object and/or Subject TDB performs even better than sesame on large 

dataset. From RDB backed stores SesameRDB showed better results while searching on a 

predicate but for other two searches SDB showed better response time over SesameRDB. 
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(a) 

 

(b) 

 

(c) 

Figure 37: Simple Query Results for Query Response Time 
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Table 23 presents the summary of Simple Query results. Comparatively good store of each 

category against its corresponding test case for Query Response Time (QRT) are shown here. 

Table 23: Summary of Simple Query Results (QRT) 

 

 

 

 

 

Complex Query: Complex query results are shown in Figure 38. Query results implementing 

the Bushy Patterns revealed that all stores failed to retrieve the results for a large dataset size. 

SesameM showed better response time and scaled well for memory and CPU utilization than 

JenaM. 

SesameN and TDB showed less query response time than AllegroGraph. SesameRDB executed 

bushy pattern with less response time than SDB. Figure 38 (b) shows the results for long chain 

pattern. JenaM displayed better results for long chain pattern queries than SesameM. TDB has 

better results for Long Chain Pattern identification than SesameN. SesameRDB performed better 

than SDB from non-memory non-native category. For Long Chain Patterns identification 

SesameRDB performed even better than the native and memory stores. 

Test Cases Semantic Web Databases 

In-memory Native Non-memory 

non-native 

SQ(A-Predicate search) Sesame
M

 Sesame
N
 Sesame

RDB
 

SQ(B-Object search) Sesame
M

 TBD (DS-4) SDB 

SQ(C-Subject search) Sesame
M

 TDB (DS-4) SDB 
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(a) 

 

(b) 

Figure 38: Complex Query Results for Query Response Time 

 

Table 24 presents the summary of Complex Query results. Comparatively good store of each 

category against its corresponding test case for Query Response Time (QRT) are shown here. 
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Table 24: Summary of Complex Query Results (QRT) 

 

 

 

 

 

 

Result Size: Result Size (A), Result Size (B), Result Size(C) queries returns large, medium and 

small result sizes respectively. For all result set sizes SesameM exhibited better results than 

JenaM. SesameN and SesameRDB performed extremely faster than other native stores for all result 

set sizes. However while retrieving for large results set on large datasets; AllegroGraph exhibited 

better results than other native stores. ResultSize results are shown in Figure 39. 

Table 25 presents the summary of ResultSize results. Comparatively good store of each category 

against its corresponding test case for Query Response Time (QRT) are shown here. 

Table 25: Summary of ResultSize Results (QRT) 

 

Test Cases Semantic Web Databases 

In-memory Native Non-memory 

non-native 

Bushy Pattern  Sesame
M

  Sesame
N
 Sesame

RDB 
 

Long Chain Patterns  Jena
M

  TBD  Sesame
RDB 

 

Test Cases Semantic Web Databases 

In-memory Native Non-memory 

non-native 

Result-Size(A)  Sesame
M

  Sesame
N
 Sesame

RDB 
 

Result-Size(B) Sesame
M

  Sesame
N
  Sesame

RDB 
 

Result-Size(C) Sesame
M

  Sesame
N
 Sesame

RDB 
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(c) 

Figure 39: ResultSize results for Query Response Time 
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Selectivity Estimation: We run the same query of having different triple selectivity and join 

selectivity in all possible orders for all stores. Each time they produced the same results. This 

showed that they have optimized the query on the basis of their selectivity. For selectivity 

estimation results SesameM, Sesame N and SesameRDB performed best from their respective 

category as shown in Figure 40. 

 

 

Figure 40: Selectivity Estimation Results for Query Response Time 

 

Irregular Access Pattern:  For irregular access pattern all the stores fail to retrieve results on 

large dataset. SesameM, TDB and SesameRDB performed the best from their respective category 

for this test case. But a very strange behavior of SesameN was observed. Despite of its better 

query execution cost SesameN fails drastically while retrieving triples for irregular pattern as 

shown in Figure 41. 
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Figure 41: Irregular Access Pattern Results for Query Response Time 

 

Resource utilization of In-memory, Native and Non-memory Non-native stores for all Read test 

cases is shown in Figure 42, Figure 43, and Figure 44.  From In-memory category results we 

concluded that SesameM is better resource utilizer than JenaM as shown in Figure 42 (a) (b). 

Figure 43 (a) models the main memory usage whereas Figure 43 (b) models the CPU time for 

each store. It is clearly observed that from native category AllegroGraph utilizes resources more 

efficiently than SesameN and TDB.  From remaining two SesameN is better than TDB for its 

resource utilization. From Non-memory non-native category SesameRDB exhibited better 

resource utilization than SDB as shown in Figure 44 (a) (b). 
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Figure 42: Resource Utilization of In-Memory Stores for Read Test Cases 
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Figure 43: Resource Utilization of Native Stores for Read Test Cases 
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Figure 44: Resource Utilization of Native Stores for Read Test Cases 
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5.2.2.3. Delete Results 

While all datasets were loaded into single store and reasoning was not considered in our tests, 

deleting an entire store is relatively a simple matter. For other delete test case i.e. “Deleting some 

statements from the store”, we deleted ten statements from data stores. All in memory and native 

stores showed constant time and resource usage for different datasets. TDB took almost double 

time than other native stores. SDB took much more time than all other stores as shown in Table 

26. 

Table 26: Delete Results 

Semantic Web 

Databases 

Delete Time (sec) 

Dataset1 

(0.2M) 

Dataset2 

(1M) 

Dataset3 

(5M) 

Dataset4 

(25M) 

SesameM  1 1 1 1 

JenaM  1 1 1 1 

AllegroGraph  1 1 1 1 

SesameN  1 1 1 1 

TDB  2 2 2 2 

SDB  15 117 239 356 

SesameRDB  1 12 40 125 

 

5.2.2.4. Update Results 

All these Semantic Web databases do not provide facility for update operations. Updating a triple 

in a Semantic Web database is done by deleting the original triple and loading the new triple. 

Therefore, cost of updating a triple is equal to cost of deleting a triple from the store and then 

loading a new triple into it. 
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5.2.3. Cumulative Query Performance Results 

Cumulative performance results are shown in Table 27, Table 28, and Table 29. These results 

clearly present an overall query cost estimation for each Semantic Web database. Overall results 

revealed that SesameM exhibited less response time and less resource utilization than JenaM, 

therefore query cost is less for SesameM than JenaM. Since SesameM also exhibited better load 

performance both in terms of time and resource utilization, therefore SesameM clearly dominate 

the JenaM. 

Non-memory non-native stores exhibited greater query cost than other two types of stores. 

SesameRDB demonstrated better read performance both for query response time and resource 

utilization. However SDB exhibited better load performance both in terms of bulk load and 

incremental load.  Therefore SDB is “write optimized” and SesameRDB is “read optimized”. 

SesameN and TDB both showed better response time than AllegroGraph, but resource utilization 

of SesameN and TDB is much higher than AllegroGraph. AllegroGraph also presented better load 

performance than the other two in terms of load time, memory usage and CPU time. On the basis 

of these analyses we believe that SesameN and TDB can exhibit better query performance for a 

system having high computing resources, but with low resources, AllegroGraph would be better 

option. Results showed that AllegroGraph is “write optimized” and SesameN and TDB are “read 

optimized”. 
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Table 27: Geometric Mean of Query Response Time for Read Query Set 

Datasets Read Execution Time (sec) 

SesameM JenaM Allegro 

Graph 

SesameN TDB SDB SesameRDB 

Dataset1 2.24 7.31 3.21 2.01 2.93 8.18 5.28 

Dataset2 3.31 9.34 11.76 5.73 8.4 26.25 18.34 

Dataset3 7.81 36.71 45.98 22.55 22.35 137.09 128.55 

Dataset4 Α α 398.48 139.75 173.43 928.283 825.62 

 

 

Table 28: Geometric Mean of Main Memory Usage for Read Query Set 

Datasets Read Main Memory Usage (MB) 

SesameM JenaM Allegro 

Graph 

SesameN TDB SDB SesameRDB 

Dataset1 646.75 643.23 128.45 171.87 140.87 216.54 190.66 

Dataset2 1930.28 2046.98 128.4 172.57 194.36 398.27 284.7 

Dataset3 3158.94 3572.66 189.1 252.93 367.48 1042.26 559.15 

Dataset4 Α α 409.98 415.05 693.6 1506.09 1005.77 

 

 

Table 29: Geometric Mean of CPU time for Read Query Set 

 Read CPU Time (sec) 

SesameM JenaM Allegro 

Graph 

SesameN TDB SDB SesameRDB 

Dataset1 2.19 4.86 0.2 0.6 2.26 3.34 1.48 

Dataset2 3.09 8.32 0.98 1.43 7.5 5.67 2.36 

Dataset3 5.26 28.6 2.6 5.66 19.4 39.4 15.94 

Dataset4 Α α 4.55 25.7 89.1 187.8 56.33 
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 Conclusion of Comparative Analysis: 

Comparative evaluation results are summarized in Table 30. In this table we concluded the read 

and write optimized stores of each category (i.e. in-memory, native, non-memory & non-native) 

with respect to time and resource utilization. From the in-memory category SesameM is read & 

write optimized both in terms of time and resource usage. It also have higher success ratio than 

JenaM.  SesameN and TDB are read optimized in terms of time and AllegroGraph is read 

optimized in terms of resource usage from the native category. However AllegroGraph is also 

write optimized in terms of both time and resource usage. Success ratio of TDB is better than the 

other two. From non-memory non-native category SesameRDB is read optimized and SDB is 

write optimized, both stores exhibited equal success ratio.  

Table 30 : Summary of Comparative Evaluation 

 Summary Table for Comparative Evaluation 

Sesame

M 

JenaM Allegro 

Graph 

Sesame

N 

TDB SDB SesameR

DB 

Read optimized  �
TR

 � �
R
 �

T
  �

T
  �  �

TR
 

Write Optimized  �
TR

 � �
TR

 � � �
TR

 � 

Successful  � � � � � = = 

 

In Table 30  

�TR = Optimized in terms of Time and Resources 

�
T
 = optimized in terms of Time 

�R = Optimized in terms of Resources 

Overall native stores performed better in terms of their success ratio, time and resource usage. 
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5.3.  Scalability Analysis Results 

This section provides detailed scalability analysis of tested data stores on the basis of results 

obtained from our tests for comparative evaluation.   

5.3.1. Load Analysis 

5.3.1.1.Bulk Load 

Load Time:   Load time analysis revealed that Load time for in-memory stores increases in 

polynomial time, but for all native and non-memory non-native stores, it increases exponentially 

as shown in Figure 45. Here x-axis shows the time in seconds and y-axis is representing our 

linearly increasing datasets from 1 to 4. 
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Figure 45: Load Time Scalability Behavior 

 

Main Memory:  Usage of main memory during bulk load increased almost linearly for in-

memory & native stores expect for AllegroGraph for which it remained constant. However for 

non-memory non-native stores, it increases in polynomial times as shown in Figure 46.  Here x-

axis and y-axis are representing main memory in MBs and our linearly increasing datasets from 

1 to 4 respectively. 
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 Figure 46: Main Memory Usage Scalability Trends during Bulk Load 

 

CPU Time: CPU time for main memory stores increases in polynomial time, however for native 

and non-memory non-native stores it increases exponentially during bulk load tests as shown in 

Figure 47. Here x-axis is representing the CPU time in seconds and y-axis is representing our 

linearly increasing datasets from 1 to 4. 
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Figure 47: CPU Time Scalability Trends during Bulk Load 

 

Disk Space:  During Bulk Load disk space is not used by in-memory stores as they keep and 

manage data in main memory and do not stores data permanently. However, for all other stores 
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disk space usage increases exponentially for linearly increasing dataset as shown in Figure 48. In 

this diagram x-axis and y-axis are representing physical disk size in MBs and our linearly 

increasing datasets from 1 to 4 respectively. 

  

  

 

Figure 48: Disk Space Scalability Trends during Bulk Load 
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5.3.1.2. Incremental Load 

Test results for incremental load revealed that both of in-memory stores have a constant time and 

resource utilization for all datasets. SesameN and TDB of native stores category also have a 

constant time and resource utilization for all datasets. However, AllegroGraph exhibited linear 

increase in load time and resource usage for linearly increasing datasets for this test case. From 

non-memory non-native category of Semantic Web databases SDB and SesameRDB requirements, 

for time and resource usage, increases in polynomial times and exponentially respectively as 

shown in Figure 49.  In this diagram x-axis and y-axis are representing load time in seconds and 

our linearly increasing datasets from 1 to 4 respectively. 

 

  

Figure 49: Incremental Load Test results for SDB and SesameRDB 

 

5.3.2. Read Analysis 

Scalability analysis for read operations is presented for cumulative query performance results, 

rather than per query results in this section. 
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Query Response Time:   Read tests results revealed that query response time for in-memory 

stores increases in polynomial time, but for all native and non-memory non-native stores, it 

increases exponentially as shown in Figure 50. Here x-axis shows the time in seconds and y-axis 

is representing our linearly increasing datasets from 1 to 4. 
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Figure 50: Query Response Time Scalability Trends for Read Test Case 

 

Main Memory:  Usage of main memory during bulk load increased almost linearly for in-

memory stores. However for all native and non-memory non-native stores, it increases in 

polynomial times as shown in Figure 51.  Here x-axis and y-axis are representing main memory 

in MBs and our linearly increasing datasets from 1 to 4 respectively. 
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Figure 51: Main Memory Usage Scalability Trends during Read Tests 

 

CPU Time: CPU time for main memory stores increases in polynomial time, however for native 

and non-memory non-native stores it increases exponentially during read tests as shown in 
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Figure 52. Here x-axis is representing the CPU time in seconds and y-axis is representing our 

linearly increasing datasets from 1 to 4. 
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Figure 52: CPU Time Scalability Trends during Bulk Load 

 

5.3.3. Delete Analysis 

Test results for delete test case revealed that both of in-memory stores and all native stores 

needed a constant time and resource utilization for linearly increasing datasets for this test case. 

From non-memory non-native category of Semantic Web databases SDB and SesameRDB 

requirements, for time and resource usage, increases linearly and in polynomial times 

respectively as shown in Figure 53.  In this diagram x-axis and y-axis are representing deletion 

time in seconds and our linearly increasing datasets from 1 to 4 respectively. 

  

Figure 53: Delete Test results for SDB and SesameRDB 
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Conclusion of Scalability Analysis: 

Table 31 presents the summary of the scalability analysis. Results depicts that although in-

memory stores because of their characteristics to reside whole data in main memory are not able 

to handle large datasets but their time and resource usage does not increase as rapidly as in other 

two stores.  

Table 31: Summary of Scalability Analysis 

T
es

t 

C
a
se

s 

 

Metrics 

Scalability Behavior of Stores 

In-Memory 

Store 

Native Stores Non-memory 

non-native stores 

B
u

lk
 L

o
a
d

 

Load time  Polynomial Exponential Exponential 

Memory usage  Linear Linear/constant Polynomial 

CPU time  Polynomial Exponential Exponential 

Disk space  � Exponential Exponential 

R
ea

d
 

Query execution time  Polynomial Exponential Exponential 

Memory usage  Linear Polynomial Polynomial 

CPU time  Polynomial Exponential Exponential 

 

Summary of Chapter: 

In this chapter we presented the detailed results and analysis obtained during our research. We 

presented the test configurations, both for machine and Semantic Web databases. A detailed 

comparative evaluation of tested Semantic Web databases is presented and strengths or 

weaknesses of each store are discussed on the basis of these results. By the end of this chapter, 

scalability analysis for these stores is provided. 
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CONCLUSION AND FUTURE WORK 

This chapter concludes the research work carried in this thesis. It provides an analysis of the 

work done in this thesis. A bird’s eye-view of the future directions where this work can be 

extended is given at the end of this chapter. 

6.1.  Conclusion 

The Semantic Web offers the potential to vastly improve the manner in which we retrieve and 

interact with data. Semantic Web databases represent a critical requirement for the emergence of 

this vision (i.e. Semantic Web): the importance of high performance storage and query over 

unpredictable Semantic Web data is clear, and has been articulated during the course of this 

thesis. 

The main goal of this research was to develop a better understanding of Semantic Web 

databases, and to analyze their performance behavior and scalability. We initially propose an 

evaluation methodology with an aim to obtain insights into key strengths and short comings of 

existing popular Semantic Web databases. Our evaluation methodology provides a new 

categorization of Semantic Web databases’ operations, and proposes novel performance and 

scalability metrics especially the ‘Resource Utilization’, ‘Success Ration’ and ‘Cumulative 

Query Performance’.  

Moreover we evaluate and compare seven prominent Semantic Web databases on Barton Library 

dataset. These belong to three different categories of the Semantic Web databases and have been 

used frequently for performance evaluation in Semantic Web databases research literature. 

Results of comparative evaluation offers several contributions; results exhibit that a store 

CHAPTER 6CHAPTER 6CHAPTER 6CHAPTER 6    
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performed efficient in time using some resources, but in the meantime unavailability of these 

resources could result in system degradation.  

Strengths and weaknesses of stores under consideration have also been discovered as part of 

research by application of proposed framework, i.e. (a) searching for predicate is more efficient 

in SesameN, and for object and subject TDB showed better results than other persistent stores (b) 

for complex queries SesameRDB exhibited better results than all other tested databases (c) result 

size effects the query performance of each store, AllegroGraph clearly showed better 

performance than other databases while searching for a large result size on large datasets and (d) 

SesameN despite of its good performance exhibit degraded performance on irregular queries and 

long chain patterns identification, and TDB can nicely operate to retrieve long chain triple 

patterns. 

It is also concluded that TDB has highest success ratio than all other Semantic Web database 

under consideration. The experimental results explained the best suited scenarios for a Semantic 

Web database, as SesameM has a performance edge over JenaM; AllegroGraph is write optimized 

and less resource utilizer of its respective category. SesameN and TDB are read optimized in 

terms of their query response time. From non-memory non-native category, SesameRDB is read 

optimized for its time and resource usage, while SDB is write optimized in terms of its load and 

CPU time. Over all native category of Semantic Web databases performed better than other two. 

Other than these findings, we presented detailed scalability analysis and described the scalability 

trends on all test cases for each Semantic Web database. We concluded that in-memory stores’ 

requirement for time and resource usage does not increase as rapidly as in other two types of 
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Semantic Web databases. In addition, different storage and retrieval techniques and data 

structures used by existing Semantic Web databases are also discussed.  

6.2. Future Work 

 
The future work provides an avenue for significant new research that will benefit the Semantic 

Web community. As Semantic Web databases are getting better, therefore evaluating them 

becomes more important. We observed that there is recent work on query performance 

evaluation and lot of literature has been published in recent decade. However, there is no recent 

work on reasoning performance evaluation. Only inventive work on reasoning performance 

evaluation was presented by LUBM in 2002. Similarly the third category of Semantic Web 

database also lack in detailed and recent benchmarks. Therefore, future work on Semantic Web 

database evaluation that would complement the field includes (1) Federated query and (2)   

Reasoning performance evaluation.  Secondly there is no organized benchmark campaign for 

Semantic Web databases. It is evidently important to build an organized benchmark campaign 

for fair and realistic quantifications of Semantic Web databases’ performance. 
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APPENDIX 

A.1.  Barton Queries 

Here we present the SPARQL queries over Barton dataset which we have used for testing the 

Read performance of each Semantic Web database. The SPARQL queries are given below with 

query description.  

 SimpleQuery: (a) Select different types of data in store (b) Select all different subjects for object 

value “mods:Person” (c)  Return all predicate for a subject Id. 

 

a) PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

SELECT DISTINCT ?type   

Where   

{  

         ?instances rdf:type ?type  

} 

 

b) PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

            SELECT DISTINCT ?subject 

            Where 

           { 

                    ?subject ?someproperty mods:Person 

           } 

 

a) PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#> 

PREFIX info:<info:isbn/> 

SELECT DISTINCT ?properties  

Where  

{ 

         info:0525070893 ?properties ?object 

} 

 

ComplexQuery: (Bushy Pattern) Extract values for recordID, genre, classification, creator, 

publisher, language, title, subject, contents and optionally audience, format, version, and 

reference for all text type items. 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>   

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

PREFIX role:<http://simile.mit.edu/2006/01/role/>  
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SELECT ?recordID ?genre ?classification ?creator ?publisher ?language ?title ?subject ?contents 

?audience ?format ?version ?reference  

 

Where   

{  

 ?recordID mods:records ?item.  

 ?item rdf:type mods:Text. 

 ?item mods:genre ?genre.  

 ?item mods:classification ?classification.  

 ?item mods:publisher ?publisher.  

 ?item mods:subject ?subject.  

 ?item role:creator ?creator.  

 ?item mods:language ?language.  

 ?item mods:title ?title.  

 ?item mods:contents ?contents.  

 

OPTIONAL  

   {  

    ?item mods:audience ?audience. 

        ?item mods:otherFormat ?format. 

        ?item mods:otherVersion ?version. 

        ?item mods:isReferencedBy ?reference  

    }  

} 

 

ComplexQuery: (Long Chain) Return recordID and type of all that items that are published at 

more than one location. 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

 

SELECT DISTINCT ?recordID, ?type   

 

Where   

{  

 ?recordID mods:records ?item.  

            ?item rdf:type ?type. 

 ?item mods:publisher ?publisher1.  

 ?publisher1 mods:location ?location1.  

 ?location1 mods:name ?name1. 

 ?item mods:publisher ?publisher2.  

 ?publisher2 mods:location ?location2.  

 ?location2 mods:name ?name2. 

 FILTER(?name1 != ?name2) 
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} 

 

ResultSize: Return all items of type (a) Text (b) Notated Music (c) Still Image. 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>   

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

 

a) SELECT ?recordID   

Where   

{ 

?recordID mods:records ?item.  

?item rdf:type ?type.  

FILTER(?type = mods:Text) 

} 

b) SELECT ?recordID   

Where   

{ 

?recordID mods:records ?item.  

?item rdf:type ?type.  

FILTER(?type = mods:NotatedMusic) 

} 

c) SELECT ?recordID   

Where   

{ 

?recordID mods:records ?item.  

?item rdf:type ?type.  

FILTER(?type = mods:StillImage) 

} 

 

SelectivityEstimation: Return translated title of all text type records in the data store. 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>   

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

 

SELECT  ?translatedTitle   

 

Where   

{  

 ?recordID mods:records ?item. 

 ?item mods:title ?title.  

 ?title rdf:type mods:TranslatedTitle.  

 ?title mods:value ?translatedTitle 

 

} 
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IrregularAccessPatterns: Select all different properties that has text type item as its domain or 

range. 

 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>  

 

SELECT DISTINCT ?item ?property   

 

Where  

{  

 { 

  ?item rdf:type mods:Text. 

  ?item ?property ?object 

 }  

 UNION  

 { 

  ?item rdf:type mods:Text. 

  ?subject ?property ?item 

 } 

} 

 

 

 

 

 

 


