
1

AAnnaallyyssiiss ooff SSeemmaannttiicc WWeebb DDaattaabbaasseess

By

Anila Sahar Butt

2007-NUST-MS-PhD IT-22

Supervisor

Dr. Sharifullah Khan

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MSIT)

In

NUST School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST), Islamabad,

Pakistan

(September 2010)

I

APPROVAL

It is certified that the contents and form of thesis entitled “Analysis of Semantic Web

Databases” submitted by Anila Sahar Butt have been found satisfactory for the requirement of

the degree.

Advisor: ____ Dr. Sharifullah Khan______

Signature: __________________________

Date: __________________________

 Committee Member 1: _Dr. Khalid Latif___

 Signature____________________________

Date:_______________________________

Committee Member 2: _Dr. Zia ul Qayyum_

Signature ____________________________

Date: _______________________________

Committee Member 3: _ Mr. Owais Malik__

Signature ____________________________

Date: _______________________________

II

In the Name of Allah, the Most Gracious, the Most Merciful

Say: "And He has subjected to you the night and the day, the sun and the moon; and the stars are

subjected by His Command. Surely, in this are proofs for people who understand. And

whatsoever He has created for you on this earth of varying colors. Verily! In this is a sign for

people who remember”.

 -----------Holy Quran

III

To my Parents, for their love and support

IV

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it contains no

materials previously published or written by another person, nor material which to a substantial extent has

been accepted for the award of any degree or diploma at SEECS or at any other educational institute,

except where due acknowledgement has been made in the thesis. Any contribution made to the research

by others, with whom I have worked at SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for the

assistance from others in the project’s design and conception or in style, presentation and linguistics

which has been acknowledged.

Author Name: Anila Sahar Butt

 Signature: __________________

V

ACKNOWLEDGEMENTS

First and foremost, I am immensely thankful to Almighty Allah for letting me pursue and fulfill

my dreams. Nothing could have been possible without His blessings.

More than anything, I would like to thank my mom and dad who have endured me through this

period of research that has been extremely demanding and challenging. Thanks to my mom for

always being so motherly in everything she does. Especial thanks to my dad for not letting me

worry about anything but work. These last years of research could not have been possible

without the unending support from my parents. They have always supported and encouraged me

to do my best in all matters of life. To them I dedicate this thesis.

I would also like to thank my Grandmother, brothers and sister for all the care and love they

showered on me during all these years. I am immensely grateful to Ali Naqi for always being

appreciative of my hard work, for his unending support and for encouraging me during the

hardest of times.

Finally, this thesis would not have been possible without the expert guidance of my esteemed

advisor, Dr. Sharifullah Khan, who has been a great source of inspiration for me during these

years of research. Not only has he been readily available for me, as he so generously is for all of

his students, but he always responded to any queries that I might have, read through my draft

copies, listened to my moaning and complaining and supported me every step of the way.

My heartfelt thanks to everyone at DELSA Lab, my committee members and all others who

contributed in any way towards the successful completion of this thesis.

Anila Sahar Butt

VI

Table of Contents

INTRODUCTION ... 1

1.1. MOTIVATION .. 1

1.2. RESEARCH CONTRIBUTIONS .. 2

1.3. THESIS ORGANIZATION... 4

BACK GROUND AND RESEARCH MOTIVATION ... 6

2.1. SEMANTIC WEB.. 6

2.2. SEMANTIC WEB LANGUAGES .. 9

2.2.1. RDF: A DATA MODELING LANGUAGE .. 10

2.2.2. RDFS & OWL: DOMAIN MODELING LANGUAGES ... 13

2.3. SEMANTIC WEB DATABASES .. 17

2.3.1. SEMANTIC DATABASES .. 17

2.3.1.1. DESIGN GOALS OF SEMANTIC WEB DATABASES: .. 17

2.3.1.2. TYPES OF SEMANTIC WEB DATABASES:... 19

2.3.2. NEED OF SEMANTIC WEB DATABASES ... 20

2.3.2.1. SEMANTIC WEB DATABASES VS. EXISTING DATABASE SYSTEMS:.. 20

2.3.2.2. SEMANTIC WEB DATABASES VS. XML STORES: .. 21

2.4. DATA EXTRACTION .. 22

2.5. SEMANTIC WEB DATABASES PERFORMANCE EVALUATION .. 24

2.5.1. LEHIGH UNIVERSITY BENCHMARK ... 26

2.5.2. UNIVERSITY ONTOLOGY BENCHMARK (UOBM) ... 28

2.5.3. BERLIN SPARQL BENCHMARK (BSBM) .. 28

2.5.4. SPARQL PERFORMANCE BENCHMARK (SP2
 BENCH) .. 29

2.5.5. EFFECTIVE BENCHMARKING FOR RDF STORE .. 30

2.6. CRITICAL ANALYSIS ... 32

OVERVIEW OF EXISTING SEMANTIC WEB DATABASES ... 34

3.1. DATABASE ARCHITECTURE... 34

3.1.1. JENA .. 34

3.1.2. SESAME ... 36

3.1.3. ALLEGROGRAPH .. 38

3.2. STORAGE LAYOUTS AND ACCESS MECHANISMS .. 40

3.2.1. NATIVE STORES ... 40

3.2.1.1. TDB .. 41

3.2.1.2. SESAMEN ... 44

3.2.1.3. ALLEGROGRAPH .. 47

3.2.2. NON-MEMORY NON-NATIVE STORES ... 50

3.2.2.1. SDB .. 50

3.2.2.2. SESAMERDB .. 54

3.2.3. IN-MEMORY STORES .. 59

3.2.3.1. SESAMEM ... 59

3.2.3.2. JENAM.. 60

SEMANTIC WEB DATABASES EVALUATION FRAMEWORK .. 63

VII

4.1. SEMANTIC WEB DATABASES ... 63

4.2. EVALUATION DATASET .. 64

4.2.1. BARTON LIBRARIES DATASET... 65

4.2.1.1. STATISTICS OF BARTON DATASET: .. 70

4.2.1.2. NAMESPACES ... 71

4.2.1.3. DATASET SCALING AND POPULATION .. 71

4.2.1.4. DATASET CLEANER .. 73

4.3. EVALUATION METHODOLOGY .. 73

4.3.1. TEST CASES ... 74

4.3.1.1. CREATE ... 75

4.3.1.2. READ ... 76

4.3.1.3. UPDATE ... 77

4.3.1.4. DELETE ... 78

4.3.2. PERFORMANCE & SCALABILITY METRICS ... 78

4.3.2.1. LOAD TIME: ... 79

4.3.2.2. QUERY EXECUTION TIME ... 79

4.3.2.3. REPOSITORY SIZE ... 80

4.3.2.4. MAIN MEMORY .. 80

4.3.2.5. CPU TIME .. 80

4.3.2.6. SUCCESS RATIO ... 81

4.3.2.7. CUMULATIVE QUERY RESPONSE TIME .. 82

PERFORMANCE EVALUATION RESULTS .. 83

5.1. EVALUATION CONFIGURATION ... 83

5.1.1. TEST ENVIRONMENT .. 83

5.1.2. SEMANTIC WEB DATABASES CONFIGURATION .. 83

5.2. COMPARATIVE EVALUATION RESULTS .. 85

5.2.1. SUCCESS RATIO RESULTS ... 85

5.2.2. TIME AND RESOURCE UTILIZATION RESULTS .. 86

5.2.2.1. LOAD RESULTS .. 86

5.2.2.2. READ RESULTS .. 89

5.2.2.3. DELETE RESULTS ... 100

5.2.2.4. UPDATE RESULTS... 100

5.2.3. CUMULATIVE QUERY PERFORMANCE RESULTS ... 101

5.3. SCALABILITY ANALYSIS RESULTS ... 104

5.3.1. LOAD ANALYSIS .. 104

5.3.1.1. BULK LOAD ... 104

5.3.1.2. INCREMENTAL LOAD .. 110

5.3.2. READ ANALYSIS .. 110

5.3.3. DELETE ANALYSIS ... 115

CONCLUSION AND FUTURE WORK ... 117

6.1. CONCLUSION .. 117

6.2. FUTURE WORK ... 119

BIBLIOGRAPHY ... 120

VIII

LIST OF ABBREVIATIONS

API Application Programming Interface

CX Cost of X

JenaM Jena (In-Memory Store)

LT Load Time

MM Main Memory

OWL Ontology Web Language

OWL-DL Web Ontology Language – Description Logic

QRT Query Response Time

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RS Repository Size

SesameM Sesame (In-Memory Store)

SesameN Sesame (Native Store)

SesameRDB Sesame (RDBMS Store)

URI Uniform (Universal) Resource Identifier

URL Uniform (Universal) Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

IX

LIST OF FIGURES

Figure 1: World Wide Web.. 6

Figure 2: Semantic Web .. 7

Figure 3: Semantic Web vs. Current Web .. 8

Figure 4: Semantic Web Standards .. 10

Figure 5: RDF Statement ... 11

Figure 6: Triple Concept .. 11

Figure 7: Triple with Replaced URIs ... 12

Figure 8: RDF Graph Model .. 13

Figure 9: RDF layer vs. RDFS layer .. 14

Figure 10 Specimen Query Structure ... 23

Figure 11: A classification of eminent Semantic Web databases benchmarks ... 26

Figure 12: Evaluated Semantic Web databases ... 63

Figure 13: Longwell Screenshot .. 66

Figure 14: Longwell screen shot of facets for Date type resources ... 67

Figure 15: Overview of Barton Data Model ... 68

Figure 16: Types of Scalability .. 74

Figure 17: Architectural Overview of Jena [63] ... 35

Figure 18: Architectural Overview of Sesame .. 37

Figure 19: Client Server Architecture of AllegroGraph [63] ... 39

Figure 20: Structure and Example of NodeId Types ... 41

Figure 21: TDB Node storage architecture ... 42

Figure 22: Triple entry in SPO file ... 43

Figure 23: Quad entry in GSPO file ... 43

Figure 24: value-Id to value mapping in SesameN .. 45

Figure 25: value to valueId mapping .. 46

Figure 26: Triple in SesameN ... 46

Figure 27: Logical Schema of an AllegroGraph Store .. 47

Figure 28: Type of UPIs in AllegroGraph .. 48

Figure 29: Triple Structure in AllegroGraph .. 49

Figure 30: SDB Layout in MySQL .. 51

Figure 31: SesameRDB Layout in MySQL ... 55

Figure 32: SesameM Storage Layout... 59

Figure 33: Jena Subject Index Structure ... 61

Figure 34: Jena Predicate Index Structure .. 61

Figure 35: Jena Object Index Structure .. 61

Figure 36: Bulk Load Comparative Evaluation Results .. 88

Figure 37: Simple Query Results for Query Response Time ... 90

Figure 38: Complex Query Results for Query Response Time .. 92

Figure 39: ResultSize results for Query Response Time ... 94

Figure 40: Selectivity Estimation Results for Query Response Time .. 95

X

Figure 41: Irregular Access Pattern Results for Query Response Time ... 96

Figure 42: Resource Utilization of In-Memory Stores for Read Test Cases .. 97

Figure 43: Resource Utilization of Native Stores for Read Test Cases .. 98

Figure 44: Resource Utilization of Native Stores for Read Test Cases .. 99

Figure 45: Load Time Scalability Behavior .. 105

Figure 46: Main Memory Usage Scalability Trends during Bulk Load ... 107

Figure 47: CPU Time Scalability Trends during Bulk Load ... 108

Figure 48: Disk Space Scalability Trends during Bulk Load... 109

Figure 49: Incremental Load Test results for SDB and SesameRDB ... 110

Figure 50: Query Response Time Scalability Trends for Read Test Case .. 112

Figure 51: Main Memory Usage Scalability Trends during Read Tests... 113

Figure 52: CPU Time Scalability Trends during Bulk Load ... 115

Figure 53: Delete Test results for SDB and SesameRDB .. 115

XI

LIST OF TABLES

Table 1: URI with Prefix ... 12

Table 2: Barton Dataset Classes Description .. 69

Table 3: Summary Statistics of Barton Dataset .. 70

Table 4: Prefix to URI mapping ... 71

Table 5: Dataset Scaling and Population .. 72

Table 6: Test case categories with their corresponding performance metrics .. 79

Table 7: Overview of Evaluated Semantic Web databases .. 40

Table 8: Node types in AllegroGraph ... 50

Table 9: Prefixes table Design ... 52

Table 10: Nodes Table Design ... 52

Table 11: Triples Table Design .. 52

Table 12: Quads Table Design ... 53

Table 13: Detail of Indices on SDB tables .. 53

Table 14: Property table description ... 55

Table 15: {bnode, label, uri, long_uri, long_lable, datetime, datatype, numeric, language}_values tables

description... 56

Table 16: Hash_values table .. 56

Table 17: Namespace_prefixes table description .. 57

Table 18: Locked table description .. 57

Table 19: Indices on tables in SesameRDB Layout .. 58

Table 20: Semantic Web databases and datasets success ratio .. 85

Table 21: Summary of Bulk Load Results .. 88

Table 22: Load Time for Incremental Load .. 89

Table 23: Summary of Simple Query Results (QRT) ... 91

Table 24: Summary of Complex Query Results (QRT) .. 93

Table 25: Summary of ResultSize Results (QRT) .. 93

Table 26: Delete Results .. 100

Table 27: Geometric Mean of Query Response Time for Read Query Set... 102

Table 28: Geometric Mean of Main Memory Usage for Read Query Set .. 102

Table 29: Geometric Mean of CPU time for Read Query Set ... 102

Table 30 : Summary of Comparative Evaluation .. 103

Table 31: Summary of Scalability Analysis ... 116

1

Abstract

The popularity of Semantic Web has given rise to the development of Semantic Web databases with

improved performance. Benchmarks are being performed to validate performance claim made by

developers of Semantic Web databases. However, detailed information regarding the strengths and

shortcomings of these databases is limited due to the fact that the existing benchmarks provide little depth

in scalability analysis. They measure the Semantic Web databases’ performance in terms of time and do

not cover resource utilization during data manipulation operations. The research literature available on

Semantic Web databases does not provide details of their internal architecture. In this research, we aim to

evaluate the existing Semantic Web databases to discover their comparative behavior and scalability

trends for a newly proposed evaluation methodology, and to analyze their architectures particularly with

respect to their storage schemas and access methods.

To cope with the deficiencies of existing evaluation methodologies, we have proposed a new evaluation

methodology to perform comparative analysis and scalability performance study of Semantic Web

databases. Our evaluation methodology comprises test cases for the data access methods and query

optimization techniques to analyze the performance of Semantic Web databases. We defined new metrics

for query cost estimation. As a part of this work, we also evaluated the performance of seven prominent

open-source Semantic Web databases. These Semantic Web databases were evaluated on our proposed

evaluation methodology using Barton Library dataset.

Based upon our experiments and proposed methodology, we highlighted the key strengths and

weaknesses of these Semantic Web databases, and discovered their scalability behavior. Storage schemas

and access mechanism of the Semantic Web databases are identified in this thesis. We conclude that

overall native Semantic Web databases perform better than others i.e. in-memory and non-memory non

native Semantic Web databases. We also conclude that the requirements of in-memory stores for time and

resource usage do not increase as rapidly as in other two categories of Semantic Web databases. The

evaluation results show that the proposed evaluation methodology provides better scalability behavior and

performance estimation of Semantic Web database than the existing evaluation studies.

1

INTRODUCTION

This chapter introduces the research work that has been taken in this thesis. First it describes the

motivation for research then it goes on describing our research contribution that includes

problem definition, goals and objectives and the approach to achieve these goals.

1.1. Motivation

Semantic Web provides interoperability in integrating information from multiple resources and

makes computers intelligent to work on their own behalf for unseen situations [1]. Semantic Web

databases are designed to hold massive Semantic Web data in such a manner that the information

they encode can be retrieved efficiently. Many stores have been introduced with the popularity

and increased used of Semantic Web applications.

The main challenge of Semantic Web databases is to execute different data management tasks in

a user interactive time by utilizing few system resources. Moreover, scalability of these

databases is a major issue because when procuring or designing a Semantic Web database, users

and designers are often requires that it must be scalable because of number of triples increases

rapidly to model a piece of information in Semantic Web. In view of vast research on efficient

storage and retrieval of Semantic Web data, it is important to survey and evaluate the existing

Semantic Web databases as developers of each one claims to perform the best. While a

performance evaluation of Semantic Web databases facilitates the community in verifying

developers’ performance claim of Semantic Web databases and in assessing the performance of a

newly created or updated Semantic Web database against existing once, more importantly they

should reveal the strengths and shortcomings of each existing Semantic Web database.

CHAPTER CHAPTER CHAPTER CHAPTER 1111

2

While comparative evaluation facilitates the users to select from a library of Semantic Web

databases, it is important for the developers of new Semantic Web database to know about the

architectural details of existing Semantic Web databases. The Semantic Web database developers

provide the API’s along with the user documentation but they do not provide their internal

architecture and/or working. It is worth describing the storage layouts and data retrieval

mechanism used by existing Semantic Web databases.

1.2. Research Contributions

In this research we aim to evaluate the existing Semantic Web databases to learn about their

comparative behavior and scalability trends for our proposed evaluation methodology and to

analyze their storage schemas.

Research objectives set to follow above stated problem statement are given below. After that we

present a summary of our contribution to achieve these objects.

• To design a new evaluation methodology for Semantic Web databases in order to overcome

the limitations of existing methodologies.

• To provide detailed analysis of a dataset that best represents the Semantic Web data in order

to make it understandable for testing Semantic Web databases.

• To quantify and compare the performance of some of the prominent Semantic Web databases

in order to provide better understanding of their key strengths and weaknesses.

• To investigate the scalability trends of these Semantic Web databases for analyzing their

scalability (time scalability & space-time scalability).

• To document the Semantic Web databases storage layouts for helping the designers of new

Semantic Web database

3

In light of these objectives we initially propose a new evaluation methodology that comprises of

(1) test cases and (2) performance and scalability metrics. Our test cases are classified on the

basis of CRUD operations (i.e. Create, Read, Update and Delete). Read test cases check different

parameters that affect the performance of a Semantic Web database; it includes selectivity

estimation, result size, query complexity, indexing mechanism and storage organization.

Moreover, we propose the potential performance and scalability metrics that capture different

aspects of evaluation process and provide better insight of the Semantic Web data by providing

detailed results than present literature about Semantic Web databases’ benchmarks. We introduce

two core performance metrics i.e. “Resource Utilization” and “Success Ratio”, and one derived

metric i.e. “Cumulative Query Performance”.

In order to provide detailed analysis of any real Semantic Web dataset, we made tradeoff on

dataset size and dataset structure and selected Barton Library dataset for our evaluation. We

performed detailed analysis of Barton dataset and designed a data model for its better

understanding, because it is frequently used in Semantic Web analysis. Secondly we provided

the Barton datasets characteristics i.e. its number of triples, number of nodes, type of instances,

total unique properties, single-valued properties and multi-valued properties. In addition to this,

we cleaned this dataset to remove illegal URIs.

For quantifying and comparing the performance of prominent Semantic Web databases, we

selected several popular Semantic Web databases. Semantic Web databases compared in this

work are JenaM [57], SesameM [60], TDB [59], SDB [58], SesameN [60], SesameRDB [60], and

AllegroGraph [37]. These Semantic Web databases are selected because all these are open source

java APIs and they all together represent all three categories of Semantic Web databases.

Moreover, most of these are frequently used in performance benchmarking in the Semantic Web

4

database research literature [19], [22], and [24]-[28]. We compared all these Semantic Web

databases and on the basis of which we provide the strengths and weakness of each store. The

comparative analysis of the Semantic Web database concludes read and write optimized store of

each category (i.e. in-memory, native, and non-memory non-native) with respect to time and

resource utilization.

Based upon results obtained from our experiments for comparative evaluation, we performed

scalability analysis to check the scalability behavior of each store. Scalability analysis presents a

clear idea that how the time and resource utilization of each store increases with the increase

number of triples to manage. We concluded our scalability analysis by presenting the

comparative scalability behavior of these stores.

For describing the Semantic Web databases’ storage layouts we surveyed the past approaches

used by selected Semantic Web databases and presented their common approaches to store and

retrieve the data e.g. id-based vs. value-bases approach, schema oblivious vs. schema aware

approach, prefix compression, type and number of indexes, value-to-Id and Id-to-value mapping

techniques. This survey helps the designers of new Semantic Web databases and clarifies the

performance level of each particular storage layout.

1.3. Thesis Organization

This thesis is organized as follows:

• Chapter 2 provides pre-requisite knowledge required to understand the research, presented in

this thesis. It describes Semantic Web and its languages followed by Semantic Web

databases. A brief comparative analysis between other database systems and Semantic Web

5

databases is presented to establish understanding why Semantic Web databases are

necessary. By the end of this chapter, some eminent benchmarks are discussed and analyzed

critically to rationalize the research work.

• Chapter 3 gives the detail of Semantic Web databases architecture that we have evaluated in

our research. It describes the storage schemas used for storage and management of the triples

of each Semantic Web database. It goes on to describe the storage layouts of In-memory,

native and non-memory non-native categories of Semantic Web databases.

• Chapter 4 details the Semantic Web databases evaluation framework in detail along with

introduction to some prevalent Semantic Web databases that are being evaluated. Moreover,

it presents the logical schema of Barton dataset in detail to evaluate previously mentioned

Semantic Web databases. The last section provides details of our proposed evaluation

methodology that includes test cases description and proposed performance and scalability

metrics.

• Chapter 5 presents the detailed results and analysis obtained during research. It describes the

test configurations, both for machine and Semantic Web databases. It then provides a

detailed Comparative Evaluation of tested Semantic Web databases, on the basis of which

strengths or weaknesses of each store are discussed. In addition to this, Scalability Analysis

for these stores is provided.

• Chapter 6 concludes with the summary of points made and describes the directions that have

been decided upon for future research with justification and references to a set of work

packages that would be required to complete the research.

6

BACK GROUND AND RESEARCH MOTIVATION

This chapter is divided into two parts. The first part focuses on background literature to facilitate

the understanding of the context of this research while the second part presents literature survey

of related work to rationalize the research work being done.

2.1. Semantic Web

The Semantic Web (Web3.0) is aimed at providing a common framework for data sharing and

reuse across Semantic Web applications, enterprises and communities [1][5][39][40]. The

current web (Web2.0) is the web of documents where the information has been tailored for

human understanding and not for computers. As shown in Figure 1, the documents are related by

unlabeled links. Computers can realize that a document is related to another document, but

cannot exactly understand the nature of the relation that exists between documents and their

contents. All these resources are missing semantic information and homogenous for computers

[40].

Figure 1: World Wide Web

CHAPTER 2CHAPTER 2CHAPTER 2CHAPTER 2

7

Semantic Web is defined as an extension of the current web where information is presented with

well defined meanings. It enables computers and people to work in cooperation [1][39][41].

Semantic Web augments but do not replace the current web. Its design goal is to enable

computers to behave or think like humans in order to make the World Wide Web (WWW) data

machine-processable. In Semantic Web resources are named and links between them are labeled

as shown in Figure 2. Semantic Web is the web of things rather than being the web of

documents. It defines the relationship among things and properties of these things. So that

computers can easily identify the nature and relationships of things through their properties.

Consequently Semantic Web helps in retrieval of knowledge rather than data from web [41].

Figure 2: Semantic Web

The difference between Semantic Web and current web can be explained with an example of

cooking analogy as shown in Figure 3. Assume a website or web page is a big cooking pot where

a user puts his information contents. A cook can put rice in one pot and tag it RICE and put

chicken in another pot and tag it CHICKEN. Similarly web users put their information contents

on web pages in the form of documents and tag them. In the current web, computers understand

8

only these tags and cannot figure out that the rice is a grain and full of carbohydrates. They also

do not know that the cook has another pot containing chicken and is cooking chicken rice. This

type of judgment necessitates context analysis and the capability to glance the whole scenario,

i.e. to identify what is in each pot and to develop the understanding that the cook is making

foodstuff. In the context of web, computers must know that what types of contents are on each

page and how they are related to each other. This is the objective of the Semantic Web. Semantic

Web can be visualized as "the web of meaning" or " the contextual web" [1].

Figure 3: Semantic Web vs. Current Web

The key idea behind Semantic Web is to provide sufficient structure around the data to transform

it into information, so that it can be worked upon to extract knowledge [40][41]. There are

universal information formats to provide structure to data as well as metadata on Semantic Web.

These formats are known as Semantic Web languages e.g. Resource Description Framework

(RDF), Resource Description Framework Schema (RDFS) and Web Ontology Language (OWL).

Semantic Web languages are further explained in section 2.2.

9

Semantic Web data must be stored in some repository for knowledge extraction. Specialized

databases are available to work with Semantic Web data because of its specialized structure.

These databases are known as Semantic Web databases that are further explained in section 2.3.

Different query languages are supported by different Semantic Web databases. One of the most

common and evolved query languages is SPARQL [35]. Semantic query languages are further

explained in section 2.4.

2.2. Semantic Web Languages

Semantic Web has its own special languages to introduce semantics into data. These are also

named Semantic Web standards. These standards make data integration and interoperability

possible on Semantic Web. The current Semantic Web standards consist of two layers data layer

and ontology layer. Both these layers are built on top of URI, XML and XML namespaces that

provide the foundations for these Semantic Web layers. An overview of these layers is given in

Figure 4.

• Ontology Layer: Ontology is the representation of application domain information

modeled though some Semantic Web language [42]. Ontology layer of Semantic Web

standards contains those Semantic Web languages that are used to model the application

domain semantics through ontology. RDFS and OWL are ontology layer modeling

languages.

• Data Layer: Data layer of Semantic Web standards contains those languages that are

used to define the resources (data) of a particular application domain that has been

modeled through ontology layer. Most widely used data layer standard/language is RDF.

10

In the subsequent subsections we will explain these standards in detail.

Figure 4: Semantic Web Standards

2.2.1. RDF: A Data Modeling Language

Resource Description Framework (RDF) is an underpinning language for information

representation in Semantic Web [49][3][4][5]. Its three fundamental concepts are:

1. Resources

2. Properties

3. Statements

Resources are the ‘things’ that are being described by the RDF expressions. A resource may be a

part of web page e.g. an HTML element within a document, a whole web page e.g. an HTML

document or a collection of web pages e.g. a complete website. Each resource is assigned a

unique identifier that is called Universal Resource Identifier (URI).

Properties are special kind of resources. A property describes the relationship between two

resources.

Statement is composed of a resource along with its associated property and value for that

property as shown in figure below.

Foundations: URI, XML, XML namespaces

Data Layer

Ontology Layer

RDFS

OWL-Full

OWL-DL

OWL-Lite

RDF

11

Figure 5: RDF Statement

An RDF statement is represented in a triple format also called ‘Triple’. Triples are composed of

three different parts that are called subject, predicate and object respectively. In an RDF

statement, subjects and predicates are guaranteed to be resources but object or value part may be

a resource or a literal, where literals are atomic values i.e. without URIs. A detail study of RDF

can be found at [49][3][4]. Consider an example of a simple sentence “Anila Sahar is a member

of DELSA”. This sentence in terms of RDF statement has three parts.

Subject: Anila Sahar (Resource)

Predicate: memberOf (Property)

Object: DELSA (Resource)

Pictorial representation of this example is shown in Figure 6.

(a)

(b)

Figure 6: Triple Concept

DELSA Anila Sahar
memberOf

Resource/

Literal

Resource
Property

http://seecs.edu.pk/rese

arch_group/DELSA

http://seecs.edu.pk/peo

ple/student/Anila_Saha

r

http://seecs.edu.pk/member

12

Each resource is represented with its URI. These URIs can be replaced with prefixes as shown

below

So above triple pattern replaced with prefix can be as shown in Figure 7

Figure 7: Triple with Replaced URIs

A set of RDF triples is known as an RDF model as shown in Figure 8. An RDF model is

basically a directed graph of information that offers great deal of power and flexibility. There is

no limit to extend this graph structure. It tenders the ability to represent different concepts and

their relationships semantically into an unlimited large graph of information.

Prefix URIs

Seecs http://seecs.edu.pk/

Table 1: URI with Prefix

seecs:researchGroup/

DELSA

seecs:people/student/

Anila_Sahar

seecs:memberOf

13

Figure 8: RDF Graph Model

2.2.2. RDFS & OWL: Domain Modeling Languages

Resource Description Framework Schema (RDFS) and Web Ontology Language (OWL) are the

Semantic Web languages that model an application domain to offer the facility to perform

interoperability and reasoning on the Semantic Web.

RDFS basically augments the RDF by adding some basis constructs [49]. These constructs

include classes, properties, class hierarchies, property hierarchies, domain and range. Vocabulary

used to model these extended constructs are rdfs:Class, rdfs:Property, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:domain and rdfs:range. A set of individuals that share same properties

belong to a single class e.g., “Student” and “Research group”. All those individuals that belong

to a particular class are referred as instances of that class e.g. “Anila Sahar” is an instance of

class “Student”. These constructs allow statements about something’s type by making new

statements from existing statements such as ‘Anila Sahar is a type of student’ and with an

additional statement that ‘Student is a subclass of people’, one can infer that Anila Sahar is a

“Anila Sahar”

seecs:superviseBy
seecs:supervises

seecs:fullName

seecs:memberOf
seecs:researchG

roup/DELSA

seecs:people/sta

ff/DrSharifullah

seecs:people/Stu

dent/Anila_Sahar

seecs:hasMember

14

type of people as shown in Figure 7. Domain and range of a property describe the class of things

that can be declared as a subject or an object part of a property e.g., Property hasMemeber can

have an instance of class research group as a subject and an instance of class people as an object

in an RDF statement as shown in Figure 9.

Figure 9: RDF layer vs. RDFS layer

As mentioned above, RDFS defines semantics of the application domain but Web Ontology

Working Group of W3C identified a number of characteristics for ontology on the web which

would require much more expressiveness than that provided by RDF and RDF Schema [6].

Some of the identified limitations of RDFS by W3C are given below.

rdfs:Class

RDF

RDFS

rdfs:type

rdfs:subClassOf

seecs:Student seecs:Staff

seecs:People

seecs:research_

group/ DELSA

seecs:people/stu

dent/Anila_Saha

seecs:hasMember

seecs:hasMember rdfs:subClassOf

seecs:Research

Groups

rdfs:domain

seecs:involve

rdfs:rang

rdfs:subProperty

15

a. Local scope of a class: In RDFS rdfs:range defines that a class is a range of a property.

We cannot declare range restrictions that apply to some subclasses only and not to all the

subclasses of a class e.g. using rdfs:range we can define a property “hasMember” for

research groups as “Research groups have only people as its members” but we cannot say

that DELSA (a subclass of research group) can have only staff as its members while other

research groups may have student members as well.

b. Disjointness of classes: Some application domains necessitate the declaration that

classes are disjoint, e.g. undergraduates and postgraduates are two disjoint classes in

university domain. RDFS is unable to define disjointness of classes.

c. Boolean combination of classes: Some application domains are required to built new

classes by combining existing classes using union, intersection and complement e.g. class

students is a union of two disjoint classes, undergraduate class and postgraduate class.

RDFS does not provide the facility of creating new classes from existing once.

d. Cardinality restrictions: An ontology developer may want to restrict the number of

instances that a particular property can have as its range e.g. There should be five

members at minimum and twenty members at maximum in a research group. This is

called cardinality restriction. RDFS do not provide the feature of cardinality restriction.

e. Special characteristics of properties: Some special characteristics of properties may

require to model an application domain, e.g. transitive property (like ‘older than’), unique

property (like ‘supervisedBy’) and inverse property (like ‘supervisedBy’ and

‘supervises’) while modeling a domain. This feature is also missing in RDFS.

16

Web Ontology Language (OWL) extends the RDF schema in the sense that OWL uses RDFS

vocabulary like rdfs:Class, rdfs:subClassOf and add some language primitives that support more

expressiveness as highlighted above. Extended constructs of OWL includes owl class, property

(object property and data type properties), property restrictions, special properties, boolean

combinations, enumerations, instance, data type and versioning information (For further detail

see [7]). As we have seen that OWL provides a higher level of expressiveness than RDFS but the

richer the language is, the more inefficient reasoning support becomes. We need tradeoff on the

selection of a language supported by reasonably efficient reasoners and a language that can

express large classes of ontologies and knowledge. Depending upon a tradeoff between language

expressiveness and efficient reasoning, OWL has three variants i.e. OWL Full, OWL Lite and

OWL DL. All these variants use RDF for their syntax.

a. OWL Full: The complete OWL language is called OWL Full. It includes all OWL

constructs and combination of these constructs in arbitrary way with RDF and RDFS. It

is meant for users who want maximum expressiveness and the syntactic freedom of RDF

with no reasoning guarantee.

b. OWL Lite: A sublanguage of OWL which provides constructs to users for classification

hierarchy and simple constraints. The advantage of OWL Lite is both easier to grasp for

users and easier to implement for tool builders. The disadvantage is of course a restricted

expressivity.

c. OWL DL: OWL DL, is a subset of OWL Full. It supports maximum expressiveness

while retaining the efficient reasoning facility. It is less expressive than OWL full but

more expressive than OWL Lite.

17

2.3. Semantic Web Databases

Semantic Web databases are the databases of the Semantic Web world, designed to hold massive

numbers of triples in such a manner that the information they encode can be simply retrieved.

This section is further divided into two sections. Section 2.3.1 presents a brief introduction of

Semantic Web databases and section 2.3.2 gives an overview of the role of the Semantic Web

databases even in the presence of exiting XML stores and/or database systems i.e. relational

DBMS, object oriented DBMS, and object relational DBMS.

2.3.1. Semantic Databases1

Semantic databases are RDF databases where semantic data can be conveniently stored, operated

upon and retrieved [12]. A triple store can be defined as “A system to provide a mechanism for

persistent storage and access of Semantic Web graphs.” Its main functions include storing,

reasoning and querying Semantic Web data. They employ index structures, algorithms for

buffering, join, concurrency control for optimal query processing and reasoning. An intelligent

query optimizer in a triple store strives to save resources in terms of time and memory space in

query processing and reasoning.

2.3.1.1.Design goals of Semantic Web databases:

Some of the eminent design goals of Semantic Web databases are:

a. Scalability: Resources are described on the Semantic Web in terms of triples. A resource

may need many triples for its perfect description. It is therefore necessary for Semantic

Web databases to deal with a large number of triples in an elegant manner.

1 Semantic storage systems also known as Triple Stores, RDF stores, Knowledge bases and Semantic Web databases

18

b. Dynamism and Network Distribution: Data on the Semantic Web is dynamic as it

belongs to different sources because of network distribution. Semantic Web databases

may be used as a server or a client to handle timeouts, network failure, bandwidth use and

deal with denial-of-services (DoS). Semantic Web databases should be able to manage

the network resources in both when a server or a client and deal with dynamic data in a

graceful way.

c. Unpredictability: Semantic data is highly unpredictable in its nature. A Large number of

triples, dissimilar terms used to describe resources, rate of triples exchange over the

network and effect of network provide a high degree of unpredictability to the data.

Semantic Web databases need to handle this unpredictable nature of data in an efficient

and accurate manner.

d. Provenance: As described earlier, the Semantic Web data comes across different sources

that may necessitate keeping track of original location or context of the data. This part of

information is called provenance. Semantic Web databases may need to store the context,

along with the original information.

e. Data Processing: Data in the Semantic Web databases need to be processed2. This

necessitates Semantic Web databases to provide some mechanism for accessing the RDF

graphs, identifying triples, storing triples in data stores, merging data from multiple

sources into single store, and querying as well as administering the data stores. These

operations are performed by applications many times thus require Semantic Web

databases to provide lightweight, fast, easy to use and understandable APIs to carry out

2 Triples addition, modification, removal and retrieval

19

these tasks. Many of the existing Semantic Web applications interact with human. So,

they must perform as fast and accurate as possible in order to provide shield against

frustration. Interactive level performance is one of the key requirements of these stores

for human friendliness.

f. Reasoning: A final clear issue is support for inference. Semantic Web databases support

different degree of reasoning (RDF/RDFS/OWL) while RDFS support is common.

Currently only a very few stores support OWL features, and they do not provide the

performance measures while using these features whereas simpler systems do.

2.3.1.2.Types of Semantic Web databases:

Different Semantic Web databases have different architectures thus result in varying

performance levels. Based on their storage structure and medium, Semantic Web databases can

be divided into three broad categories, In-memory, Native, Non-native Non-memory.

a. In Memory Stores: Triples are stored in main memory e.g. storing an RDF graph using

BRAHM [9].

b. Native Store: Persistent storage systems that are disk resident with their own

implementation of databases e.g. Virtuoso [38] and AllegroGraph [37].

c. Non-memory non-native Stores: Non-memory non-native stores are disk resident and

employ the existing database management systems such as Microsoft SQL, MySQL, and

Oracle for storing triples. 3Store [36] is an example of this type of Semantic Web

databases.

20

Hybrid of three classes is also available, for example Jena [34] and Sesame [33]. Triple stores

have their own query languages to query store’s data. List of existing large triple stores include

[8] BigOWLIM, Bigdata(R), Garlik, 4store ,YARS2, Virtuoso, Jena TDB, AllegroGraph, Jena

SDB, Mulgara, RDF gateway, Jena with PostgreSQL, Kowari, 3store with MySQL, Sesame.

2.3.2. Need of Semantic Web databases

RDF is characterized by a property centric, extremely flexible and dynamic data model.

Resources can acquire properties and types at any time, regardless of the type of the resource or

property. This flexibility makes RDF an attractive technology for the specification and exchange

of arbitrary metadata. The challenge is thus how to provide persistent storage for the new RDF

data model in an efficient and flexible manner.

2.3.2.1.Semantic Web databases vs. Existing database systems:

Purpose of the Semantic Web databases is somewhat similar to the existing database systems i.e.

management of stored data. RDF documents’ storage necessitates special type of data stores

because of two fundamental differences between RDF graph model and other data models e.g.

relational data model [31] and object data model [32] that demand some special kind of data

stores to manage RDF data. These two differences are:

1. Unpredictable structure of the data stored in RDF graph model

2. Unpredictable query patterns over this data in Semantic Web

All existing database systems require that structure of data (i.e. schema) must be defined before

inserting that data [10]. Predefined structure of data helps in data integrity by constraining the

incorrect data to be used by any organization or application. However in Semantic Web, where

the interoperation between heterogeneous data sources is permissible, structure of data is

21

unknown and changes continuously. Existing database systems are unable handle unstructured

data. This gives rise to a data storage system that does not need any prior definition of the

structure of data.

Existing database management systems are used by known set of applications. Such databases

can be optimized on the basis of metadata i.e. indexes and estimated statistical knowledge [10]

for most anticipated query patterns for these applications. Access for all other patterns is

comparatively slower than these anticipated patterns. But RDF data can be accessed and

manipulated by any node on the Semantic Web that requires RDF data stores to handle queries of

unpredictable patterns.

Both the reasons concluded above necessitate the proposal of some new storage systems that can

better handle the complexity of RDF data and query.

2.3.2.2.Semantic Web databases vs. XML Stores:

One approach for RDF storage might be to map the RDF data to XML and simply leverage prior

work on the efficient storage of XML. However, the standard RDF/XML mapping is unsuitable

for this since multiple XML serializations are possible for the same RDF graph, making retrieval

complex [43]. Non-standard RDF-to-XML mappings are possible, and have been used in some

implementations. However the simpler mappings are unable to support advanced features of

RDF, such as the ability of RDF to treat both properties and statements as resources, which

allows metadata describing these elements to be incorporated seamlessly into the data model and

queried in an integrated fashion.

22

2.4. Data Extraction

Given a standard set of data representation languages and data stores for their storage, it is

obvious to have a standard mechanism for extracting subsets of information from these data

stores. A Semantic Web query language is a language to retrieve and manipulate data stored in

Semantic Web language format [46]. RDF data model is a semantic network model that has

slightly different forms for data and knowledge representation. Semantic Web query needs to be

more complex than SQL since the RDF data model is more complex than the relational data

model. Specifically, while a relational query executes over one or more tables each containing

tuples with the same structure, an RDF query executes over a RDF container that may contain

resources of different types each with different properties. Values of properties, rather than being

merely data, can be resources themselves [47].

Until now several designs and implementations of Semantic Web query languages have been

proposed [44][47]. Currently SPARQL is a W3C Candidate Recommendation [35][45]. In this

research work we will briefly discuss SPARQL, the most eminent query language.

SPARQL [35][36][48] is a graph-matching query language. Given a data source D, a query

consists of a pattern which is matched against D, and the values obtained from this matching are

processed to give the answer. The data source D to be queried can be composed of multiple

sources.

23

SELECT ?name

WHERE

 {?name <http://seecs.edu.pk/memberOf > <http://seecs.edu.pk/research_group/DELSA>}

ORDER BY ?name

Figure 10 Specimen Query Structure

The query shown in Figure 10 will select all unique values for ?name, where there is a triple that

matches any subject ?name, and the specified predicate and object (in this case, anyone who is

the member of DELSA group). The data is returned in a standard XML-based format that will be

ordered on variable ?name.

A SPARQL query consists of three parts

1. Pattern matching part

2. Solution modifier

3. Output of query

The pattern matching part includes several interesting features of pattern matching of graphs,

e.g. optional parts, union of patterns, nesting, filtering (or restricting) values of possible matching

and the possibility of choosing the data source to be matched by a pattern. The solution modifiers

are the one that comes into place when output of the pattern has been computed (in the form of a

table of values of variables), allows to modify these values applying classical operators like

projection, distinct, order, limit, and offset. Finally, the output of a SPARQL query can be of

Pattern

matching part

Solution

Modifier

Output

24

different types: yes/no queries, selections of values of the variables which match the patterns,

construction of new triples from these values, and descriptions of resources.

2.5. Semantic Web databases Performance Evaluation

As mentioned in section 2.3.1 different open source and commercial Semantic Web databases

are available. Many new stores are being introduced with the popularity and increased used of

Semantic Web applications. Performance evaluation of Semantic Web databases is necessitated

as:

1. Each one claimed to perform best. It is evidently important to measure the performance

of different Semantic Web databases to verify that they perform up to developer

performance claim

2. To assess the performance o f a newly created or updated Semantic Web databases

against existing once

3. To facilitate the user who needs to select from a library of Semantic Web databases

according to their application requirement.

In general, database community has two schools of thoughts while evaluating the performance of

database management system. The most popular one is introduced by Transaction Processing

Performance Council (TPC)3. They generate some high level queries for a dataset, run these

queries on data stores and produce some facts and figures that show the overall performance of

the stores. While TPC-style benchmarks provide a sight of overall performance of the system, it

does not mean to judge the subcomponents of that system [11]. They do not provide the

3 http://www.tpc.org/

25

guidelines for the researchers or future developers of data stores. The second philosophy of

generating benchmarks presents the Wisconsin-style benchmarks. Such benchmarks test the

performance of subcomponents by running a large number of transactions on data stores, such as

join mechanism, query optimizers, and storage layout etc. This type of benchmark provides a

diagnostic measure of the weak subcomponents of any data store, so it also opens the future

directions for the developers and researchers to put their efforts on right track [12]. Wisconsin-

style benchmarks do not give a winner while evaluating two or more stores. Since most of the

Semantic Web databases’ users are interested in making decisions about purchasing best suited

Semantic Web database so Wisconsin family of benchmarks are less popular among the users of

Semantic Web databases. Whilst Wisconsin-style benchmarks are not important from users’

perspective but they are highly considerable from research viewpoint [22] because these provide

trivial facts of Semantic Web databases.

Semantic Web databases have been a key aspect of the field of Semantic Web since its inception.

Various studies have been conducted to analyze the semantic storage systems. Major

contribution to this area is [13]-[28]. However, according to [17] “a benchmark is only a good

tool for evaluating a system if evaluated dataset and the tested capabilities of system are similar

to the once expected in the target use case”. Therefore, different benchmarks are suitable for

testing different capabilities of the stores. Depending upon their scope, we can broadly divide

these Semantic Web databases’ performance evaluation benchmarks into three categories that

are:

1. Query performance evaluation benchmarks

2. Inferencing performance evaluation benchmarks

3. Federated Query Performance evaluation benchmarks

26

These three types of benchmarks check the Semantic Web database performance depending upon

their querying, inferencing and federated querying performance evaluation, as shown by the

name of category. Depending upon the type and their scope, existing eminent benchmarks are

categorized in Figure 11.

Figure 11: A classification of eminent Semantic Web databases benchmarks

2.5.1. Lehigh university benchmark

Lehigh university benchmark (LUBM) [17] is the one of the most popular performance

evaluation so far for testing the OWL inference performance. LUBM is supposed to offer a

Scope of benchmark

Berlin

SPARQL

Benchmark

(BSBM)

Categories of performance

benchmarks

Semantic Web

databases Benchmarks

Wisconsin-Style

Benchmarks

TPC-Style

Benchmarks

Inference Evaluation

Benchmarks

Query Evaluation

Benchmarks

SPARQL

Performance

Benchmark

(SP
2
)

Effective

Benchmarki

ng for RDF

stores

Evaluation

of Triple

Stores

University

Ontology

Benchmark

(UOBM)

Lehigh

University

Benchmark

(LUBM)

Semantic Web

databases Benchmarks

Federated Query

Benchmarks

27

convenient standard for comparing the performance of Semantic Web databases at a high level,

and has been used in many tests of both RDF and OWL stores [17]-[19], [23]. LUBM query set

is designed on the basis of some factors that include input size, selectivity, complexity, hierarchy

information and logical inference. Performance metrics include load time, repository size, query

response time, query completeness and soundness and a combine metric that computes the

tradeoff between query completeness and query soundness.

Limitations:

1. Whilst the benchmark has been designed for the purpose of testing OWL inference

performance, so it is valuable as for as OWL inference performance is measured. But

currently LUBM is used for testing the Semantic Web databases’ query performance.

Results produced by LUBM for performance measurement of Semantic Web databases

are not complete for query performance evaluation [22].

2. LUBM evaluation methodology includes query response time as a sole performance

measure, missing the computation of resource consumption. Resource consumption

includes CPU time and main memory utilization provides the total cost that is incurred in

processing a query.

3. LUBM’s data set is created synthetically by iterating for a variable number over a simple

OWL ontology by UBA (Univ-Bench Artificial data generator) tool developed by

creators of LUBM. The data produced by UBA has a miniature, clumsily repeated

ontology with few properties [20]. UBA’s generated datasets are quite different from

Semantic Web data where data is usually comprises of semantically rich ontology.

28

4. LUBM’s method used for performance evaluation is not very authoritative for data

stores, for example time of execution of each query is taken ten times, and the average of

these ten values is considered the actual query response time. Query cache influences a

lot over the final results in this practice [21].

2.5.2. University Ontology Benchmark (UOBM)

University Ontology Benchmark extends the LUBM with the addition of some axioms to make

full use of OWL Lite and OWL DL constructs [23]. Rohloff et al. presented their work on

evaluation of triple stores in [19]. They evaluated the triple store technologies for large data

stores. LUMB was the underline evaluation framework for these benchmarks.

Limitations:

Both UOBM and Rohloff’s work inherit all limitations from their ancestor

2.5.3. Berlin SPARQL Benchmark (BSBM)

Berlin SPARQL Benchmark (BSBM) [23]-[25] is a language specific benchmark that uses

Wisconsin benchmark techniques. BSBM measures the performance of the semantic storage

systems that expose SPARQL endpoints and some SPARQL to SQL writer. This benchmark

presents a more comprehensive query set than that of LUBM. The query set is design to test the

SPARQL query language feature and to test the performance of stores under workload. Two

different Query mixes, comprises of number of different queries, are introduced to test the

anticipated user access patterns. Justification of each query is given along with the SPARQL

construct that is being tested. BSBM provides following performance metrics. Query Mix per

Hour (QMpH), the main performance metric of BSBM, measures the query mixes that are

answered by any tested system in an hour. Query per Second (QpS) measures the number of a

29

typical type of query that is executed in a second by any tested system. Load time, that gives the

cumulative time required to load a dataset from its source file into the tested system. BSBM has

lot of advantages such as multiuser scenarios testing and two variations of query mix to check

the performance of store under anticipated user access patterns but limitations are still there.

Limitations:

1. This benchmark presents comparison of stores in an e-commerce scenario so it lacks

generality.

2. Query execution time is the only considered dimensions for evaluation metric, while resource

utilization is important to be considered due to limited resources.

3. Queries are not defined to measure insertion (after the initial bulk insertion) and deletion

performance of Semantic Web databases.

4. BSBM analyzed the stores’ performance for different artificially generated dataset, largest of

which comprises of 100M triples. Large semantic datasets are freely available such as Barton

Library Dataset [29] (about 50M triples) and U.S. Census [30] (about 1B triples), as

artificially generated dataset lack originality to some extent so it’s better to use genuine

available datasets.

2.5.4. SPARQL Performance Benchmark (SP
2
 Bench)

SPARQL Performance Benchmark (SP
2
 Bench) [27][28] is a language specific

benchmark framework particularly designed to test SPARQL engines for SPRAQL constructs

and broader range of RDF data access patterns. SP
2
 Bench measures the performance of engine

with regard to query optimization techniques. SP
2
 bench is the most comprehensive Wisconsin-

30

style Semantic Web databases benchmark at the moment. It offers extensive query set that vary

in general characteristics such as selectivity, query complexity and output size, and different

types of joins. The benchmark proposes newer and comprehensive performance metrics that

covers diverse aspects of evaluation process such as success rate, load time, per query

performance, global performance and memory consumption. SP
2

is the only benchmark; that

provide limited information about the main memory utilization of various Semantic Web

databases for query execution.

Limitations:

1. Whilst very appealing yet benchmark is well-suited only to identify the deficiencies in

SPARQL engines.

2. Secondly analysis are conducted on six different sizes of synthetically generated datasets,

maximum of these data sizes is 25M triples. Real datasets with greater number of triples are

online available for testing purpose.

3. Last but not the least, insertion and deletion test cases are not handled.

2.5.5. Effective benchmarking for RDF store

Effective benchmarking for RDF store [22] by Alisdair at al. is another Wisconsin-style

benchmark. Although authors claim to have a detail analysis of Semantic Web databases, yet the

results lack in detail evaluation and analysis. Time is the only considered performance metric.

Store’s performance on assertion and deletion are provided with a little emphasis on its query

performance.

31

Limitations:

1. The benchmark presents the test cases that check some data management techniques and

SPARQL query constructs but queries related to these test cases are neither presented nor

tested.

2. Performance metrics considered is response time only. For a database operation response

time is not the sole performance metric for any system.

3. The benchmark proposed a data generator to generate a test dataset. This synthetic data

generator generates tree structure RDF data, but in reality Semantic Web data is always in

graph format so results produced on this synthetic data will be somewhat different from

results obtained from real graph based data.

Apart from these benchmarks, numerous technical reports and surveys have been published to

study the Semantic Web databases [13]-[16]. The most initial studies to these evaluations include

the MIT Scalability Report [13]. Although they worked with standard datasets but due to

specific study conducted for browser like applications, metrics are defined only according to

simile application requirements and best store suited for such applications was suggested. Time

was the major consideration to test Semantic Web databases. The Semantic Web Advanced

Development for Europe (SWAD-E) project produced surveys to understand the Semantic Web

databases features and storage structure [14][15][16]. These limited surveys provide an overview

of a number of open source Semantic Web databases’ implementations that were available at that

time but do not include a detail quantitative analysis of stores’ performance. Beside lack of

performance measurement of Semantic Web databases, these surveys are out-dated as many

newer Semantic Web databases with better performance and structure has been purposed.

32

2.6. Critical Analysis

In a nutshell, we can say that existing benchmarks test the performance of Semantic Web

databases, but their main limitations that we overcome in this research are:

• Most of the existing benchmarks, reports and surveys follow the TPC-style techniques for

performance evaluation, so they do not provide a detail subsystems level analysis to

identify the key strengths and weakness.

• Almost all benchmarks used synthetically generated data sets. All synthetic data

generators have some limitations that prevent them to produce data similar to Semantic

Web data. So performance results produced over synthetic data generators cannot

reliable.

• Query response time cannot be a sole performance measurement for any database system.

A database operation utilizes system resources that are important to consider. A good

Semantic Web database utilizes all resources efficiently. Resource utilization of the

Semantic Web databases is not computed by any existing benchmark.

• Database operations can be broadly divided into four major operations i.e. CRUD

operations (Create, Read, Delete and Update). No benchmark has presented the detail

study of all database operations.

• All these benchmarks provide a comparative study, but none of them provide any

information regarding the scalability behavior shown by tested Semantic Web databases.

33

• All the studies made about Semantic Web databases are done in performance evaluation

perspective; none of the surveys provide an insight to a particular storage schema with

which a level of performance is attained.

Summary of Chapter:

In this chapter we discussed the pre-requisite knowledge required to understand the research,

presented in this thesis. We described Semantic Web and its languages followed by Semantic

Web databases. A brief comparative analysis between other database systems and Semantic Web

databases is presented to establish understanding why Semantic Web stores are necessary. By the

end of this chapter, some eminent benchmarks are discussed and analyzed critically.

34

OVERVIEW OF EXISTING SEMANTIC WEB DATABASES

This chapter provides the detail of evaluated Semantic Web databases’ storage architecture and

access methods. It first describes the database architecture and then storage schemas and type of

indexes used for storage and retrieval of the triples in a particular Semantic Web database. We

start with the native stores by stating the storage architecture of TDB, SesameN and

AllegroGraph. Then we present the storage architecture of SDB and SesameRDB to show how

RDF triples are stored in RDBMS. Last but not the least section describes the in-memory

Semantic Web databases storage architecture.

3.1. Database Architecture

This section provides a brief description of existing Semantic Web databases’ system

architecture. A feature comparison of considered Semantic Web databases is presented in Table

2.

3.1.1. Jena

The software producers of Jena [57] are the HP Labs4, which are a part of the Hewlett-Packard

Development Company. Jena was developed in the terms of the HP Labs Semantic Web

Research. The associated license of the Jena project is completely open source. This implies that

redistribution and use in source and binary forms with or without modification are permitted5 .

The Jena download package includes the source files of the entire Jena project implemented in

Java. This provides a basis for implementations extending the framework, for instance with new

indices.

4 http://www.hpl.hp.com/
5 http://jena.sourceforge.net/license.html

CCCCHAPTER 3HAPTER 3HAPTER 3HAPTER 3

35

An architectural overview of Jena is presented in Figure 12. This framework offers methods to

load RDF data into a memory based Semantic Web database, a native storage or into a persistent

triple store.

Figure 12: Architectural Overview of Jena [63]

In order to build a persistent triple store a variety of relational databases, can be used. Jena

supports Microsoft SQL Server 2005 including SQL Server Express, Oracle 10gR2 including

Oracle Express, IBM DB2 including DB2 Express, PostgreSQL v8, MySQL 5.0 (>=5.0.22),

HSQLDB 1.8, H2 1.0.73 and Apache Derby 10.2. The stored data may be retrieved through

SPARQL queries. A standard implementation of the SPARQL query language is encapsulated in

the ARQ package of Jena. SPARQL queries can be executed using Java applications or by the

Query Engine

Reader Core RDF Model API

Ontology API
OWL/DML+OIL/RDFS

Inference API

Reification API

Semantic Web databases

In-memory Native RDBMS

RDF/XML

N-Triples

N3

SPARQL RDQL

Java Application Joseki

Writer

RDF/XML

N-Triples

N3

36

use of the graphical frontend Joseki. The Ontology API provides methods to work on ontologies

of different formats, like OWL and RDFS. Jena's Core RDF Model API offers methods to create,

manipulate, navigate, read, write or query RDF data. The remaining major components are on

the one hand the Inference API, which allows the integration of inference engines or reasoners

into the system. On the other hand the Reification API is a proposal to optimize the

representation of reification.

OWL support is given in form of the Ontology API. The inference subsystem6 enables the use of

inference engines or reasoners in Jena. Besides SPARQL, RDQL is a supported query language.

In a tutorial about RDQL, it is recommended that new users of Jena should use SPARQL instead.

Jena uses readers and writers for RDF/XML, N-Triples and N3, which are commonly known

RDF data formats.

3.1.2. Sesame

The Sesame system is a web-based architecture that allows the persistent storage of RDF data

and schema as well as online querying of the information [64]. The software producer of Sesame

[60] is Aduna 7 . This company sets the focus of their work in revealing the meaning of

information. Like Jena, Sesames associated license is open source underlying the BSD-style

license. In order to use Sesame, Apache Tomcat is recommended. The Sesame package also

contains two web applications, the Sesame server which stores the RDF data and the OpenRDF

Workbench as a graphical frontend for the server. This workbench can manage repositories, load

RDF data and execute queries. Sesame is able to handle RDF/XML, N-Triples, N3 and Turtle

format of RDF data. It supports in memory, native and relational database storage. Alternatively

6 http://jena.sourceforge.net/inference/
7 http://www.aduna-software.com/

37

to SPARQL Sesame is able to interpret the Sesame RDF Query Language (SeRQL) [1]

integrated for enhancing the functionality of RQL and RDQL. Sesame offers parsers for various

well known RDF formats N3, N-Triples, RDF/XML, Turtle and two new formats TriG8 and

TriX.

Figure 13: Architectural Overview of Sesame

Figure 13 illustrates an architectural overview of Sesame. The Repository Abstraction Layer

(RAL) is an interface that offers RDF-specific methods to its clients and translates these methods

to calls to its specific repository [64]. It contains all repository specific code, in order to keep

8 http://www4.wiwiss.fu-berlin.de/bizer/TriG/

SESAME

Admin Module Query Module Export Module

Request Router

HTTP Handler SOAP Protocol Handler

Repository

In-memory Native RDBMS

Http Client SOAP Client

Repository Abstraction Layer

Repository API

SAIL Repository HTTP Repository

SAIL API RIO API

RDF Model

HTTP Client

38

Sesame repository independent, making it possible to implement Sesame on top of a wide variety

of repositories without changing any other component.

The RDF Model implements basic concepts about RDF data. The component RDF I/O (Rio)

consists of a set of parser and writer for the handling of RDF data. This is for instance used by

the Storage And Inference Layer (Sail) API for initializing, querying, modifying and the

shutdown of RDF stores. On the topmost layer constitutes the Repository API the main entrance

to address repositories. Compared to Sail, which is rather a low level API, the Repository API is

the associated high level API with a larger amount of methods for managing RDF data. The

HTTP Repository is an implementation that acts like a proxy in order to connect to a remote

Sesame server via the HTTP protocol.

Admin module, query module and export module are three functional modules of Sesame. These

are the clients of the RAL. Query module evaluates queries posed by the users, administration

module allow RDF data and schema information to be inserted into as well as deleted from a

repository and export module allows for the extraction of the complete schema and /or data from

a model in RDF format.

3.1.3. AllegroGraph

The software producer of AllegroGraph RDF Store is Franz Inc.9. The company has been

founded in 1984 and is well known for its Lisp programming language expertise. Recently, they

also started developing semantic tools, like AllegroGraph. The associated licenses of

AllegroGraph come in two different flavors. The version evaluated in this research is the free

edition, which is limited to 50 million triples maximum. In contrast to that, the enterprise version

9 http://franz.com/

39

has no limits regarding to the number of stored triples but underlies a commercial license.

AllegroGraph is not extensible. It is closed source and stores data as well as the database indices

inside its particular storage stack. An architectural overview is not possible because of its closed

source. Figure 14 shows client server architecture of AllegroGraph.

The software is developed especially for 64 Bit systems and runs out of the box, as it does not

need any other databases or software. Storage, indexing and query processing is performed

inside AllegroGraph. The software can be accessed using Java, C#, Python or Lisp. There are

bindings for Sesame or Jena integration available and also an option to access AllegroGraph via

HTTP.

Figure 14: Client Server Architecture of AllegroGraph [63]

Franz Inc. suggests using TopBraid Composer10 by TopQuadrant Inc. for OWL support. The

available query language of the software is SPARQL, but it also supports low level API calls for

direct access to triples by subject, predicate and object. With those API calls, it is possible to

retrieve all datasets matching a certain triple. The API calls provide functionality, which can be

10 http://www.topquadrant.com/topbraid/composer/index.html

AllegroGraph RDF Store

Common Server Services

Direct Server Sesame REST SPARQL Protocol

Python C# Java Lisp Any HTTP Client, Java,

Sesam Jena

40

compared to SQL SELECT statements. The interpretable RDF data formats of AllegroGraph are

RDF/XML and N-Triples. Other formats are planned to be supported in future versions.

Table 2: Overview of Evaluated Semantic Web databases

Name Supported

Storage

Supported

RDF format

Supported

Query

Language

Programming

Language

License

Jena In-memory,

native disk

storage,

relational

backend

RDF/XML,

N3 and N-

Triples

SPARQL,

RDQL

Java Open source

Sesame In-memory,

native disk

storage,

relational

backend

RDF/XML,

N3, Turtle

and N-

Triples

SPARQL,

SeRQL

Java Open source

AllegroGraph Native disk

storage

RDF/XML

and N-

Triples

SPARQL Java Commercial

and free edition

3.2. Storage Layouts and Access Mechanisms

3.2.1. Native Stores

Native stores provide persistent storage for Semantic Web data. These databases create disk

based files to store Semantic Web data. Native stores implement different data structures, a detail

study of few triple stores is provided here.

41

3.2.1.1.TDB

Jena TDB stores RDF triples in a directory on the disk in filing system. Whenever a TDB store is

created, it creates some files for the storage and retrieval of triples, that can be broadly divided

into three categories that are Nodes, Prefixes, Triples & Quads

Nodes:

TDB files ‘nodes’ and ‘node2id’ provide two types of mappings from node to nodeId and from

nodeId to node. The ‘Node to NodeId mapping’ is used during data loading and when converting

constant terms in queries from their Jena Node representation to the TDB-specific internal ids.

The ‘NodeId to Node mapping’ is used to turn query results expressed as TDB nodeIds into the Jena

node representation and also during query processing when filters are applied if the whole node

representation is needed for testing e.g. regex.

 8 bits 56 bits

Type Disk address of Node lexical value

External

NodeId

Disk address of Node

Type Inline values

xsd:integer “22”

Figure 15: Structure and Example of NodeId Types

A nodeId can be of two types in Jena TDB i.e. External nodeId or the Value space as shown in

Figure 15. First byte of the nodeId stores the type of the nodeId. If type is external nodeId then

next 7 bytes contain the physical address of the node as describe above. If the type of nodeId is

42

value space then the values of data types, which are considered in value space, are stored as a

part of nodeId in lower 7 bytes. Data types that are considered in value space are xsd:decimal,

xsd:integer, xsd:dateTime, xsd:date and xsd:Boolean.

The node file stores the actual Jena node representation. The node to nodeId mapping is based on

the hash of the lexical value of the node and is stored in node2id file that is implemented as a B+

tree. The size of an entry in this file is of 24 bytes. The first 16 bytes are the hash value of node

and next 8 bytes are the disk address of the node lexical value (except for the inline values) in the

node file.

Whenever a node is asserted into a TDB store MD5 hash of the node is computed and enters into

the first 16 bytes. Then a unique id is assigned against this hash value, this id represents the

physical address in node file. Actual lexical value of that node is stored at the address which is

represented by the nodeId. The storage process of node is represented in the Figure 16.

 Nodes

Node to Node ID Mapping

Hash

(16byte MD5)

NodeId

(8byte)

hash (http://seecs.edu.pk/Delsa) [External NodeId| Disk address]

hash (“22”^^xsd:integer) [xsd:Integer|22]

…. ….

Figure 16: TDB Node storage architecture

Prefixes

This category contains three files that are prefixes, prefix2id and prefixidx. These provide

supports for TDB Prefix Mappings. Just like nodes and node2id, prefixes and prefix2id provide

http://seecs.edu.pk/Delsa

43

two types of mapping for prefixes and prefixIds. Prefixidx is another implementation of B+ tree

that is ordered on GPU (Graph, Prefix, URI).

Triple and Quads

Remaining files are categorized under this category. These are SPO, POS, OSP, GSPO, GPOS,

GOSP, SPOG, POSG, and OSPG.

24 bytes

8 bytes 8 bytes 8 bytes

SPO

Subject NodeId Predicate NodeId Object NodeId

Figure 17: Triple entry in SPO file

32 bytes

8 bytes 8 bytes 8 bytes 8 bytes

GSPO

Graph NodeId Subject NodeId Predicate NodeId Object NodeId

Figure 18: Quad entry in GSPO file

There is no distinguishing triple file and then indexes on this file. SPO, POS and OSP are triple

index files that have B+ tree implementation. These are populated when no provenance

information is stored about the triples. Each entry of these files is of 24 bytes and has all the

information about a triple. Triples in these files are represented as a combination of three nodeIds

in different orders, one for subject second for predicate and third for object. Name of each file

represents the order of triple in terms of subject, predicate and object as shown in Figure 17.

44

Whenever a triple is asserted into Jena TDB store three entries are made in three different files,

one entry in each of SPO, POS and OSP files.

Quads index files are used to represent the named graphs. Default storage of these files in Jena

TDB is B+ tree. These are populated when provenance information is stored about the triples.

Each entry in quad index files is of 32 byte representing subject, predicate, object and graph for a

triple as shown in

Figure 18. Whenever a quad is asserted into Jena TDB store six entries are made in six quad

index files, one entry in each file.

3.2.1.2.SesameN

SesameN stores triples permanently on disk for inferencing and querying of Semantic Web data.

SesameN schema in the disk directory can broadly be divided into three logical blocks. (1)

Namespaces (2) Values (3) Triples.

Values

This logical part is composed of three disk based files that are named as value.dat, value.id and

value.hash. These three files provide two types of mapping i.e. “value to value-Id” and “value-

Id to value”. The ‘value to value-Id mapping’ is used during data loading and when converting

constant terms in queries from their node representation to the Sesame specific internal value-

Ids. The ‘value-Id to value’ is used to turn query results expressed as Sesame value-Id into the

RDF node representation and also during query processing when filters are applied if the whole

node representation is needed for testing e.g. regex.

45

valueId(http://seecs.edu.pk/Delsa) = 123

valueId(http://seecs.edu.pk/Anila) = 2

valueId(“22”^^xsd: integer) = 3

Figure 19: value-Id to value mapping in SesameN

The actual values of URIs, blank nodes and literals are stored sequentially in the values.dat file.

Value-Id to value mapping is maintained in value.id file. It is a B-tree disk based implemented

file. The values.dat offset for value X is stored in values.id at offset 8 * X, where X is a positive

32 bit integer and offsets are 64 bit longs. So, to look up the lexical value for id 123, the native

store fetches the long stored at offset 8 * 123 = 984 from values.id. The value of this long is, for

example, 654321. The lexical value can then be read from values.dat at offset 654321 as shown

in Figure 19.

The value to value-Id mapping is based on the value.hash file that is a disk based hash table. It

stores value identifiers using a hash code derived from the actual value. Hash of any RDF node’s

lexical value (i.e. resource, literal or blank node) returns the physical address of the value-Id for

that node, within the address space of value.hash as shown in

“22”^^xsd: integer

http://seecs.edu.pk/Delsa

http://seecs.edu.pk/Anila

00

02

03

………

654321

value.dat

……..

01

654321

02

03

00

16

24

976

984

value.id

992

08

8*123 = 984

8*3 = 24

8*2 = 16

46

Figure 20: value to valueId mapping

Triples

Triple-sopc, triple-posc and triple-cosp fall under this category. These are on-disk indexes to

speed up querying. These uses B-trees for indexing statements, where the index key consists of

four fields: subject (s), predicate (p), object (o) and context (c). These file only store identifiers

(integer ids) instead of actual URIs, blank nodes and literals as shown in Figure 21. The order in

which each of these fields is used in the key determines the usability of an index on a specify

statement query pattern. Searching statements with a specific subject in an index that has the

subject as the first field is significantly faster than searching these same statements in an index

where the subject field is second or third. In the worst case, the 'wrong' statement pattern will

result in a sequential scan over the entire set of statements.

SOPC

Subject valueId Object valueId Predicate valueId Context valueId

Figure 21: Triple in SesameN

http://seecs.edu.pk/Delsa

Value-Id (“22”^^xsd: integer)

Value-Id (http://seecs.edu.pk/Delsa)

Value-Id (http://seecs.edu.pk/Anila)

00

“22”^^xsd: integer

http://seecs.edu.pk/Anila

01

02

03

20

21

22

Hash Function

47

By default, the native repository only uses two indexes, one with a subject-predicate-object-

context (spoc) key pattern and one with a predicate-object-subject-context (posc) key pattern.

However, it is possible to define more or other indexes for the native repository, using the Triple

indexes parameter. This can be used to optimize performance for query patterns that occur

frequently. Creating more indexes potentially speeds up querying, but also adds overhead for

maintaining the indexes. Also, every added index takes up additional disk space.

Namespaces

A single file contains the namespaces of the dataset.

3.2.1.3.AllegroGraph

Allegrograph store’s structure can logically be divided into five major blocks, which are

assertions, indices, strings, Freetext indices and deletion records as shown in Figure 22.

.

Figure 22: Logical Schema of an AllegroGraph Store

Assertions

(subject, predicate,

object, graph, id)

Indices

(spogi, posgi, ospgi,

gspoi, gposi, gospi)

Freetext

indices

Strings Deletion

records

48

In Semantic Web world, triples are RDF statements comprise subject, predicate and object value

in the context of graph. AllegroGraph stores triples that are composed of five fields; subject,

predicate, object, graph and triple-id. Where graph encodes the context of the triple to save the

provenance information and triple-id is a unique identifier assigned to each unique triple. Main

purpose of triple id is to make reification supper efficient in AllegroGraph.

All of subject, predicate, object, and graph are strings of arbitrary size. It is very inefficient to

store all of the duplicated strings directly as a part of a triple. On the basis of this argument in

AllegroGraph a special number, called a Unique Part Identifier (UPI) is assigned to each unique

RDF node value.

There are two types of UPIs in AllegroGraph as shown in Figure 23. A UPI size is twelve byte.

First byte of UPI denotes the type code of its corresponding RDF node. If value of first byte is

ranging from 0-3 i.e. it node type is either a resource, a literal, a literal datatype and a literal

language, then next eleven bytes are used to store the hash of the lexical value of the node and

actual lexical value is store in “String Dictionary” that keeps the mappings between UPI and

nodes string values. This allows the prevention of duplicate values. However if first byte has a

1
st
 byte 11 bytes

Type (0-3) Hash of String value of Node

1
st
 byte 11 bytes

Type (4-44) Encoding of UPI contents

Figure 23: Type of UPIs in AllegroGraph

49

type code from any other supported types then next eleven bytes store the nodes actual contents.

Table 3 shows the currently supported node types in AllegroGraph. Its ability to encode values

directly into its UPIs provide the facility to bypass the String Dictionary completely thus

allowing both more efficient data retrieval and extremely efficient range queries.

60 bytes

 12 bytes 12 bytes 12 bytes 12 bytes 12 bytes

Triple

Subject UPI Predicate UPI Object UPI Graph UPI Triple-id UPI

Figure 24: Triple Structure in AllegroGraph

Whenever a triple is store in AllegroGraph store. All its parts i.e. subject, predicate, object and

graph are either assigned the corresponding URIs (hashed /encoded) and complete triple is

assigned a unique identifier called triple-id and an entry of 60 bytes is made in “Triple

Directory” as shown in Figure 24.

AllegroGraph provides the facility to create up to six B-tree indices for efficient data retrieval.

These indices are named as spogi, posgi, ospgi, gspoi, gposi, and gospi. Each index is named by

the order in which triple is sorted. Apart from these six indices AllegroGraph provides the

facility of “Freetext Indices” to perform free text searching in the Triple Directory. Final block

of AllegroGraph keep track of deleted records in “Deletion Record Directory”.

50

Table 3: Node types in AllegroGraph

3.2.2. Non-memory non-native Stores

Non-memory non-native stores also provide persistent storage for Semantic Web data. They use

the storage and querying techniques provided by existing RDBMS. Detailed study of different

storage layouts deployed by Semantic Web databases is presented in this study.

3.2.2.1.SDB

SDB is a subsystem of Jena that is design to support the scalable storage and query of RDF and

OWL data using conventional SQL databases [58]. SDB is designed specifically to support

SPARQL.

Type

code

Type name Type

code

Type name Type

code

Type name Type

code

Type name

0 Node/ resource 1 Literal 2 literal-typed 3 literal-language

7 literal-short 8 blank-node 11 single-float 12 double-float

14 unsigned-byte 15 unsigned-short 16 unsigned-int 17 unsigned-long

18 Byte 19 Short 20 Int 21 Long

23 Date 24 Time 25 date-time 26 gyear

27 telephone-umber 28 latitude 29 Longitude 30 triple-id

31 default-graph 36 geospatial 41 Subscript 42 long-88

43 unsigned-long-88 44 Plain

51

Figure 25: SDB Layout in MySQL

SDB follows the ‘schema oblivious’ approach as storage schema does not change even if the

schema of the data to be stored changes [64]. SDB always creates four tables in database with

table name; Prefixes, Nodes, Triples, and Quads. The storage schema factors out the common

prefixes of URI to reduce the storage space. It creates a separate table named as “Prefixes” to

store the association of unique identifiers with each distinct prefix as shown in Table 4. SDB

uses an id-based approach for triple storage that requires an additional table “Nodes” for storing

one to one mapping between lexical values and corresponding identifiers as shown in Table 5.

SDB supports two types of node tables depending upon the layout choice. In case of Index

layout, a separate id is used beside hash values of the node. In hash layout, hash of the node is

used as a node identifier. Figure 25 is presenting the hash layout. In hash layout, “Triple” table

stores the hash value as an id for all nodes of the triples as shown in

Table 6 and lexical values for these triples are stored in nodes table. “Quads” table store the ids

of dataset quads for maintaining the provenance information as shown in Table 7.

52

Table 4: Prefixes table Design

Prefixes

Column Type Description

Prefix varchar (50) Prefix for the corresponding asserted uri

Uri varchar (500) Asserted URI

Primary key: prefix

Table 5: Nodes Table Design

Table 6: Triples Table Design

Triples

Column Type Description

S bigint(20) Hash value for the subject of asserted statement

P bigint(20) Hash value for the predicate of asserted statement

O bigint(20) Hash value for the object of asserted statement

Primary key: s,p,o

Node

Field Type Description

hash bigint(20) CRC32 hash value for the asserted node

Lax Longtext Actual value of the asserted node

lang varchar (10) Language Identifier for the nodes if literals

datatype varchar (200) Data type for the nodes if literals

type int(10) unsigned Type of asserted node to differentiate blank nodes,

literals and URIs. Type will be 1 for blank nodes, 2 for

URIs and 3 for Literals.

Primary key: hash

53

Table 7: Quads Table Design

SDB creates one index on both of Prefixes and Nodes table, three indices for Triples table and

six indices for Quads table. Detailed Description of each index is shown in Table 8.

Table 8: Detail of Indices on SDB tables

Index on Prefixes Table

Key_name Column_name Non/unique Index type

Primary prefix Unique Btree

Index on Node table

Key_name Column_name Non-unique Index type

Primary Hash unique Btree

Indexes on Triple Table

Key_name Column_name Non/unique Index type

Primary s,p,o Unique Btree

ObjSubj o,s Non-unique Btree

PredObj p,o Non-unique Btree

Indexes on Quads table

Quads

Column Type Description

G bigint(20) Hash value for the graph of asserted statement

S bigint(20) Hash value for the subject of asserted statement

P bigint(20) Hash value for the predicate of asserted statement

O bigint(20) Hash value for the object of asserted statement

Primary key: g,s,p,o

54

Key_name Column_name Non-unique Index type

Primary g,s,p,o Unique Btree

SubjPredObj s,p,o Non-unique Btree

PredObjSubj p,o,s Non-unique Btree

ObjSubjPred o,s,p Non-unique Btree

GraPredObj g,p,o Non-unique Btree

GraObjSubj g,o,s Non-unique Btree

3.2.2.2.SesameRDB

SesameRDB store stores its data in a relational database. SesameRDB supports ‘schema-aware’,

‘schema-oblivious’, and ‘hybrid’ as storage layouts for RDF data. The database's table layout can

be tweaked using the “Max number of triple tables” parameter. Schema-oblivious approach creates a

“monolithic layout” with a single table that stores all statements, by setting maximum number of

tables’ parameter equal to one. Schema- aware approach creates a “vertical layout” that stores

statements in a per-predicate table, by setting maximum number of tables’ parameter equal to

zero or a negative value. Hybrid approach creates predicate tables as well as a single triple table

that are collectively equal to desired max number of tables. The Schema-aware layout has better

query evaluation performance on most data sets, but potentially leads to huge amounts of tables,

depending on the number of unique predicates in dataset. If the number of tables becomes too

large, the database's performance can start to decrease or it can even fail completely. Vertical

layout in Sesame RDB is shown in Figure 26.

55

Figure 26: SesameRDB Layout in MySQL

As shown in Figure 26 SesameRDB always creates twelve fixed tables with table names;

bnode_values, uri_values, label_values, long_label_values, long_uri_values, datatype_values,

datetime_values, numeric_values, language_values, hash_values, namespace_prefixes, and

locked. Along with these twelve tables it creates per-property tables in case of schema-aware

approach or a single triples table in case of schema-oblivious approach. Each table along with

fields and their data type is described in Table 9, Table 10, Table 11, Table 12 and Table 13.

Table 9: Property table description

Property_table

Column Type Description

Ctx int(11) Context of the data

Subj int(11) Id of the subject node for the triple with predicate of corresponding

56

table

Obj int(11) Id of the object node for the triple with predicate of corresponding

table

Expl tinyint(1) Value is zero if the triple is explicit and one if triple is implicit

Primary key: id

Table 10: {bnode, label, uri, long_uri, long_lable, datetime, datatype, numeric, language}_values

tables description

Table 11: Hash_values table

hash_values

Column Type Description

Id int (11) Ids of the {bnode/ label/ uri/ long-uri/ long-label/

datetime/ datatype/ numeric/ languages}, asserted into

store as a part of statements

Value bigint(20) Hash of the {bnode/ label/ uri/ long-uri/ long-label/

datetime/ datatype/ numeric/ languages}, asserted into

store as a part of statements

Primary key: id

{bnode_values/label_values/uri_values/long_uri_values/long_label_values

/datetime_values/datatype_values/numeric_values/language_values}

Column Type Description

Id int (11) Ids of the {bnode/ label/ uri/ long-uri/ long-label/ datetime/

datatype/ numeric/ languages}, asserted into store as a part of

statements

Value varchar (127)
1

longtext
2

bigint(20)
3

double
4

Values of the {bnode
1
/ label

1
/ uri

1
/ long-uri

2
/ long-label

2
/

datetime
3
/ datatype

1
/ numeric

4
/ language

1
}, asserted into store

as a part of statements

Primary key: id

57

Table 12: Namespace_prefixes table description

Namespace_prefixes

Column Type Description

Prefix varchar (127) Prefix of the dataset

namespace Text Corresponding namespace of dataset

Table 13: Locked table description

Locked

Column Type Description

process varchar(128) Process that has locked the database

SesameRDB an id-based approach for triple storage that requires some additional tables i.e.

uri_values, label_values, bnode_values, long_uri_values, and long_label_values, for storing one

to one mapping between lexical values and corresponding identifiers. Whenever a triple is

inserted into SesameRDB each node of the triple is assigned an id on the basis of its corresponding

category i.e. uri, label, bnode, long_uri, and long_label; and the nodes are inserted into that

corresponding table and triple is inserted into corresponding property table or in triples table in

case of schema-aware or schema-oblivious approach respectively. Hash of each asserted node is

computed and inserted into hash table along with its corresponding id. Hash values are used

when looking up internal Ids from known terms. The uri_values, label_values, bnode_values,

long_uri_values, and long_label_values tables store the URIs or literal text in value column,

these cannot be indexed (in many databases), and so another index-able column is

needed to lookup the internal ids for the text of URIs or literals. The hash value maps a globally

unique 64 bit hash of the term to a local internal 32 bit id.

58

Literal values of ‘label_values’ may have some rdf/xml properties such as datatype, datetime,

numeric and language. These literals along with their corresponding ids and values are also

inserted into the corresponding tables that are datatype_values, datetime_values, numeric_values

and language_values, created as a part of schema design of the SesameRDB database.

Namespace_prefixes table contains the namespace of the dataset and locked table contains the

entry for each process that has currently locked the sesame database.

SesameRDB creates four indices on each property table, two indices on hash table and one index

on each remaining table (other than locked and namespace_prefixes). Detailed Description of

each index is shown in Table 14.

Table 14: Indices on tables in SesameRDB Layout

index on property_table

Key_name Column_name Non-unique Index type

Primary ctx,subj,obj,expl Unique Btree

tableName_subj_idx subj Non-unique Btree

tableName _ctx_idx ctx Non-unique Btree

tableName _expl_idx expl Non-unique Btree

Index on corresponding table

Key_name Column_name Non-unique Index type

Primary id Unique Btree

Index on hash_values table

Key_name Column_name Non-unique Index type

Primary hash Unique Btree

HASH_VALUES_value_idx value Non-unique Btree

59

3.2.3. In-Memory Stores

In-memory Semantic Web databases store and manage data in main memory they deploy

different in memory data structures for efficient retrieval and storage of triples. A brief

description of two in-memory Semantic Web databases is given in this section.

3.2.3.1.SesameM

SesameM stores and manipulates Semantic Web data in in-memory. It uses a bipartite graph

representation for triples in main memory. Vertices of this bipartite graph representation are

divided into two parts. First part is a combination of statement nodes, representing the number of

triples in the dataset. Second part is a combination of resource nodes, representing all resources,

literals and blank nodes. Each statement node references four resource nodes, one reference for

each resource role: subject, predicate, object or context. Each resource node also has, for each

role it plays, a reference to a list of statement objects in which it plays that particular role. An

overview of storage model is shown in Figure 27.

Statements Subject Predicate Object

1 Anila_Sahar supervisedBy Sharifullah

2 Sharifullah supervises Anila_Sahar

3 DELSA hasMember Sharifullah

4 Anila_Sahar memberOf DELSA

Figure 27: SesameM Storage Layout

c

c

c

c
s

p

o

p
o

s

s

p

o

p

s

o Anila_Sahar

1

2

3

4

superviseBy

Sharifullah

DELSA

supervises

hasMember

memberOf

Seecs

60

3.2.3.2.JenaM

JenaM is another prominent Semantic Web database that stores and manipulates Semantic Web

data in main memory. It uses a HashBunchMap for triples storage and retrieval in main memory.

At the heart it creates three indexes one for subjects to triples, second for predicates to triples

and third for object to triples. These three indexes map RDF term (subjects, predicates, objects)

to triple using a HashBunchMap.

Jena uses its own hash maps which are more compact and faster than the standard Java ones

although they provide fewer facilities, just what is needed for RDF indexing in Jena.

In fact, the indexes map terms to "bunches" (triples with common indexing term) e.g. a subject

index takes all the resources, that appears as a subject in triples, as hash-keys and stores all the

triples as value for that key that contains that resource as its subject as shown in Figure 28. This

complete set of triples against any key is called a bunch and the bunch is stored as an array if

small and a set (using the same code as Jena's hash maps) if larger. Similarly predicate and

object indexes store triples with predicates and objects values as keys and store triples with

having these keys as shown in Figure 29 & Figure 30.

Anila_Sahar

Sharifullah

Anila_Sahar supervisedBy Sharifullah

Anila_Sahar memberOf DELSA

Sharifullah supervises Anila_Sahar

Sharifullah teaches Databases

Hash_keys Hash_values

61

Figure 28: Jena Subject Index Structure

Figure 29: Jena Predicate Index Structure

Figure 30: Jena Object Index Structure

memberOf

teaches

Anila_Sahar memberOf DELSA

Humera memberOf Wisnet

Khalid teaches Semantic_web

Sharifullah teaches Databases

Hash_keys Hash_values

DELSA

Sharifullah

Anila_Sahar memberOf DELSA

Sauleha memberOf DELSA

Anila_Sahar supervisdBy Sharifullah

MS(IT) taughtBy Sharifullah

………

Hash_keys Hash_values

62

Summary of Chapter

This chapter documents the architectural study and features comparisons of these stores.

Following this, we presented storage architecture and access mechanism of different open source

Semantic Web databases. For describing the Semantic Web databases’ storage layouts we

surveyed the past approaches used by selected Semantic Web databases and presented their

common approaches to store the data e.g. id-based vs. value-bases approach, schema oblivious

vs. schema aware approach, and prefix compression. We also described the access mechanism of

these databases i.e. we detailed type and number of indexes, value-to-Id, and Id-to-value

mapping techniques

63

SEMANTIC WEB DATABASES EVALUATION FRAMEWORK

This chapter provides the detail of evaluation framework for our research. It starts with the

introduction of Semantic Web databases that we evaluated followed by logical schema of dataset

used for evaluation. Last but not the least section describes the detailed methodology for the

comparative and scalability analysis of Semantic Web databases.

4.1. Semantic Web databases

We have analyzed and evaluated all three types of Semantic Web databases as given in Figure

31. Semantic Web databases evaluated in this research includes JenaM [57], SesameM [60], TDB

[59], SDB [58], SesameN [60], SesameRDB [60], and AllegroGraph [37].

Figure 31: Evaluated Semantic Web databases

CHAPTER CHAPTER CHAPTER CHAPTER 4444

Semantic Web

databases

In Memory Native Store Non-Memory

non- Native

Jena-2.5.6

Sesame-2.3.1

TDB-0.8.4

Sesame-2.3.1

Allegrograph-3.3

SDB-1.3.1

MySQL-5.1.44

Sesame-2.3.1

MySQL-5.1.44

64

All these Semantic Web databases are quite popular and frequently used for performance

evaluation and benchmarking of RDF storage architecture in Semantic Web research community.

Figure 31 presents the category and version of each store.

4.2. Evaluation Dataset

The objective of this research is performance evaluation of scalable Semantic Web databases. A

real dataset allows realistic and accurate quantification of Semantic Web databases. Therefore,

we are interested in using a real and public data set to evaluate the performance of Semantic Web

databases. Different RDF datasets are available online for testing purpose, such as, Barton

libraries [29], DBpedia [52] and DBLP [51]. They are amongst the most commonly used RDF

datasets for Semantic Web databases evaluation.

The Barton Libraries dataset [29] is used for the performance evaluation. This data is provided

by the Simile Project [53], which develops tools for library data management and

interoperability. The data contains records that compose an RDF-formatted dump of the MIT

Libraries Barton catalog. This dataset has been used as a standard data set for Semantic Web

analysis. Semantic Web data has two basic characteristics (a) large size of data and (b) irregular

structure of data. The presence of both the characteristics at the same time makes a dataset true

representation of Semantic Web data that affects the performance of Semantic Web databases.

The analysis performed only on a large dataset, does not present true picture of the performance

of Semantic Web databases. While selecting the dataset, we made tradeoff on dataset size and

dataset structure and selected it for our evaluation. The Barton Library dataset was derived from

multiple sources and it follows a semantically rich ontology. It preserves the irregular structure

of data and it is one of the large size data currently available online.

65

4.2.1. Barton Libraries Dataset

The dataset is analyzed using longwell [54], a faceted browser that combines the flexibility of

RDF data model with user interface paradigm. Data is categorized on the basis of the types of

resources present in the dataset. The index page of longwell is shown in Figure 32. The right

panel shows Barton dataset types arranged in alphabetical order. The integer number with each

type gives instance count of that particular type.

66

Figure 32: Longwell Screenshot

By clicking on any type, facets are shown to further drill down the data. The facets of each class

represent the predicates that are associated with resources of class type. Figure 33 shows the

facets for Date type resources.

67

Figure 33: Longwell screen shot of facets for Date type resources

An overview of the Barton data model, analyzed through longwell, is presented for the better

understanding of dataset in Figure 34.

68

Figure 34: Overview of Barton Data Model

In Figure 34 classes represent the types of resources in dataset, attributes of each class presents

all those predicates whose domain is this class. The relationship of a class with other classes

69

shows the range of the predicates of that class. A brief description of classes is given in Table 15.

A detailed description of attributes and their associated object type are given in [58].

Table 15: Barton Dataset Classes Description

CLASSES DESCRIPTION

Class Name Definition

Record Record present information about the metadata record

Item: Item is a resource that is being described

TitleInfo TitleInfo is an abstract class represents all those words, phrases, characters,

or group of characters, that constitutes the chief title, abbreviated title,

translated title, alternative title and uniform title of a resource.

Topic Topic class models all those subjects of resources that are not appropriate

under title class

Date Date class represents the information about date on which a record is

created, changed, issued, and copyrighted or any other date that needs to be

specified

Description Description may be used to give a textual description for a resource when

necessary

Form Forms provides the information about the designation of physical

presentation of the resource

Publisher Publisher is the entity that published, printed, distributed, released, issued,

or produced the resource

Place Place describes the all those places that are associated with the issuing,

publication, release, distribution, manufacture, production, or origin of a

resource

Entity Entity class represents all those persons, corporations and events (e.g.

conference) who can be related to a resource in some way

Language language class provides all those languages in which contents of the

resources of dataset is expressed

70

Audience Audience class provides a description of the intellectual level of the

audience for which the resource is intended

TypeOfResource Type of resource defines the term that specifies the characteristics and

general type of content of the resource. Type of resource may be from one

of text, cartographic, notated music, sound recording musical, sound

recording nonmusical, still images, moving images, software and

multimedia, and manuscripts

Classification Classification class indicates all those categories in which resources can be

organized according to subject area

4.2.1.1.Statistics of Barton Dataset:

A detail analysis of Barton dataset provides us the characteristics of evaluated data that are

presented in Table 16. There are slightly more than 25 million triples in dataset, previously it

was claimed that this dataset contains 50 million triples [62].

Table 16: Summary Statistics of Barton Dataset

Dataset Characteristics

Total Number of Triples 25176626

Total Nodes 9716253

Total types of Instances 30

Total Unique Properties 199

Multi-valued Properties11 72

Single-valued Properties12 127

11 Multi-valued properties means these properties appear more than once for a given subject

12 Single-valued properties means these appear only once for a given subject

71

4.2.1.2.Namespaces

Similar string at the start of properties of dataset belongs to some predefined schemas, such as

RDF, OWL or some other schemas. These are declared as namespaces in the document. URIs or

namespaces for the Barton dataset are given in Table 17.

Table 17: Prefix to URI mapping

Prefix URI

modsrdf: http://simile.mit.edu/2006/01/ontologies/mods

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

role: http://simile.mit.edu/2006/01/role/

owl: http://www.w3.org/2002/07/owl#

4.2.1.3.Dataset Scaling and population

We performed our evaluation on four different sizes of Barton dataset. Dataset 1, dataset 2,

dataset 3 and dataset 4 contains 0.2M, 1 Million, 5 Million and 25 Million triples respectively.

As we sampled our datasets from a large dataset, we tried to make our sampling fair and realistic.

For fair sampling, we selected ten different samples of each dataset 1, dataset 2 and dataset 3.

Average of ten samples for each dataset represents its population. Detail of each dataset is given

in Table 18.

72

Table 18: Dataset Scaling and Population

Class Name

Scaling Factor

Dataset 1

(200K)

Dataset 2

(1Million)

Dataset 3

(5Million)

Dataset 4

(25Million)

Number of Date 15697 78382 391951 1959758

Number of Title 6453 32706 163502 817508

Number of Text 5499 30400 152230 760564

Number of Description 4421 21760 108802 544011

Number of Record 4430 20569 102813 514067

Number of Classification 3219 15538 77588 387942

Number of Person 2856 14198 90561 353635

Number of Item 2516 12511 62671 312270

Number of Alternative Title 780 3810 19098 95489

Number of Publisher 746 3852 23698 89589

Number of Corporation 485 2345 15838 58639

Number of Topic 459 2100 22804 52681

Number of Uniform Title 286 1162 5736 28679

Number of Conference 237 1125 5702 28139

Number of Place 189 853 5103 15542

Number of Notated Music 126 716 3008 15016

Number of Sound Recording Musical 91 449 2208 11022

Number of Abbreviated Title 87 498 2167 10835

Number of Cartographic 28 103 477 2353

Number of Manuscript 15 79 351 1753

Number of Moving Image 26 44 222 1109

Number of Language 35 58 178 399

Number of Genre 9 28 111 352

Number of Sound Recording Nonmusical 5 17 57 286

73

Number of Software and Multimedia 10 15 52 260

Number of Form 6 17 65 242

Number of Translated Title 5 7 16 82

Number of Audience 0 5 17 66

Number of Still Image 0 2 4 18

Others 3653947

Total 48716 243349 1257030 6062306

4.2.1.4.Dataset Cleaner

Publically available dump of Barton libraries dataset contains illegal URIs. Some Semantic Web

databases such as AllegroGraph and Mulgara do not allow loading datasets that contains illegal

URIs. To load Barton dataset, illegal URIs are identified and transform into legal URIs before

testing different stores using this dataset.

4.3. Evaluation Methodology

As we concern with the performance and scalability evaluation of Semantic Web databases.

According to the Bondi [49] scalability can be divided into four major categories: load

scalability, space scalability, space-time scalability and structural scalability as shown in Figure

35. Our research scope covers the performance evaluation of Semantic Web databases with

respect to their space scalability and space time scalability.

74

Figure 35: Types of Scalability

We divide our proposed evaluation methodology for the analysis of Semantic Web databases

into two parts. The first part describes the test cases designed to check the performance of stores

while the second part highlights the proposed performance and scalability metrics for evaluation.

4.3.1. Test Cases

Database community broadly divides all database operations into four major Database

communities broadly divides all database operations into four major categories [69], as given

below;

SCALABILITY

System performs gracefully without undue delays and

unproductive resource consumption as the traffic increases

Load Scalability

System’s resources utilization does not grow to intolerable

levels as the data set size increases.

Space Scalability

System continues to function gracefully as the number of

objects it encompasses increases by order of magnitudes.

Space-time Scalability

System expands in chosen dimension without major

modifications to its architecture.

Structural Scalability

75

1. Load data to a data store (Create)

2. Get existing data from a data store (Read)

3. Modify existing data in a data store (Update)

4. Delete data from a data store (Delete)

These operations are collectively known as CRUD operations. Optimizing a data store for some

operations of a category can result in performance degradation of another category’s operations.

For example multiple indexes can reduce the data access time considerably; but, can degrade the

performance of create, delete and update operations. Each addition or deletion requires updating

all the indexes so does each update operation also requires changing an index key of indexes

[55]. Therefore performance testing results of a data store, for single category, are not reliable.

All these operations need to be tested for any data storage system in order to get a clear vision of

data store performance. On the basis of this argument, we have divided our test cases into four

different categories representing the CRUD operations.

4.3.1.1.Create

Most of the Semantic Web databases support two types of RDF data loading, bulk load and

incremental load; therefore, test cases are designed to test stores’ performance for both data

loading types.

• Bulk Load: This test case measures a Semantic Web database’s performance while

operating in bulk load. Cost i.e. execution time and system resources utilization, of bulk

load is an additive cost of creating new store, their appropriate indexes and data set load

cost.

76

CBulkLoad = CRepositoryCreation + CIndexCreation + CDataLoading

• Incremental Load: This test case evaluates a Semantic Web database’s performance

when loading some statements into an existing store at the cost of updating the indexes.

CIncrementalLoad = CDataLoading + CIndexUpdation

4.3.1.2.Read

As mentioned before, RDF data query patterns are unpredictable, so we cannot define the test

cases for the most anticipated query patterns. Some general query patterns are defined in [27]

also giving rise to inspiration to design some test cases. Our test cases for read operations

measure the Semantic Web databases performance for their data access patterns and query

optimization techniques.

Moreover, we have designed queries for all test cases and strive best to evaluate each test case

independently, out of the effect of all other test cases.

• Simple query performance: This test case returns a result set against some specified

subject, predicate or objects value. The test case evaluates the storage and indexing

mechanism of the store. A store that is indexed or stored on the basis of anyone within

subject, object and predicate, will show comparatively decreased performance on other

two. See Appendix (SimpleQuery)

• Complex query performance: This test case has been designed to evaluate the effect of

query complexity on the performance of Semantic Web database. It is hard to define

discrete difference between a simple and a complex query, but a query that involves more

number of triple patterns is considered to be a complex query [27]. Two patterns for

77

complex queries we considered are Long pattern and bushy patter. In Long Pattern, RDF

resources are related to each other through a long path and whereas in bushy pattern, a

single resource is linked to many other resources. See Appendix (ComplexQuery)

• Queries with different result sizes: It has been observed that time and resource utilization

increases with the increase in the result size; a query returns. Therefore a separate test

case is designed especially to analyze the effect on store’s performance with the increase

in result size. Queries for this test case will return different result sizes to check the

performance. A store where hash or node ids are used to store triples and actual node

values are stored somewhere else. It would require more time while retrieving the final

results while mapping node ids to node values. See Appendix (ResultSize)

• Query with different join selectivity: A good query optimizer executes join first that has

highest selectivity as compared to other joins in the query. This test case determines the

query optimizer’s intelligence to create an optimal query plan. Therefore, a query to test

this test case has different selectivity for each join. Selectivity of each join is considered

as high or low with respect to other joins selectivity of query. See Appendix

(SelectivityEstimation)

• Queries having irregular access patterns: This test case is designed to assess the

irregular access patterns for the data access. This is the characteristics of Semantic Web

query, where data is mostly accessed irregularly. See Appendix (IrregularAccessPatterns)

4.3.1.3.Update

We employ a simple test case to determine the update performance of a Semantic Web database.

Updating a triple would also result in updating the index entry for that particular triple.

78

• Update some statements in the existing store: This test case examines the performance of

triple stores while updating the existing triples in the store. This test case also determines

the triple store’s criteria of maintaining its versioning information and updating the triple

at the cost of updating its indexes.

CUpdate = CTripleUpdate + CIndexUpdate

4.3.1.4.Delete

Semantic Web databases usually provide two types of deletion i.e. deletion of entire store and

deletion of some statements from store. Two test cases are designed to check the deletion

performance of the Semantic Web databases.

• Deletion of entire store: The test case evaluates the deletion performance for single

model Semantic Web databases. Deletion of an entire store is simple if Semantic Web

database supports only a single model or it does not support the cross model inferences.

• Deletion of some statements from a store: Deletion of individual statements is relatively

simple if a Semantic Web database supports RDF-only stores. In case of RDFS and

OWL, if a store supports forward chained entailments, it becomes very complex because

deletion of single statement needs to alter the inferred statement.

4.3.2. Performance & Scalability Metrics

In this thesis, a set of performance and scalability metrics are proposed that captures various

aspects of the space scalability and space time scalability evaluation of Semantic Web databases.

While evaluating the performance of a Semantic Web database, we consider two important

parameters as a measure of its execution cost for each proposed test case, i.e. execution time and

79

resource usage. Depending upon the scenarios we will consider secondary disk space, main

memory, and CPU time as cost primitives of resource usage to have an in-depth study of

performance. The execution cost of operation on a Semantic Web database is influenced by a

number of factors, including number of nodes in dataset, number of triples in dataset and type of

operation [68]. Therefore we record the execution cost for different operations and dataset sizes.

Table 19 presents corresponding cost primitives for each type of operation and for all datasets.

Table 19: Test case categories with their corresponding performance metrics

 Metric

Test Cases

Load

Time

Query

Execution

Time

Repository

Size

Main

Memory
CPU

Success

Ratio

Cumulative

Query

Response

Create √ × √ √ √ √ ×

Read × √ × √ √ √ √

Update × √ × √ √ × ×

Delete × √ × √ √ × ×

4.3.2.1.Load Time:

The load time metric reports the loading time for datasets of different sizes. Load time is

measured as a commutative time to build a repository structure, build initial index structures and

generate statistics about the dataset for query optimization.

TLoad = TRepositoryCreation + TloadDataset + TIndexCreation + TStatisticsGenration

4.3.2.2.Query Execution Time

This metric provides the query execution time for each test on datasets of varying sizes. In order

to eliminate the query cache effect, query execution time is computed at three different instances

followed by their mean and uses this mean value as a measure of query execution time. Query

80

execution time includes the time to connect the repository, execute query, print result set and

then close connection.

TQueryExecution = TOpenConnection + TExecuteQuery + TPrintResultSet + TCloseConnection

4.3.2.3.Repository Size

This metric presents the detail of the storage size occupied by a dataset after loading it into a

persistent storage. Repository size is a composite figure of total size of all files present in the

repository including data files and index files. For main memory systems we also compute the

largest dataset size handled by each system on fixed memory platforms. The main memory

Semantic Web database that handles the largest dataset size, consumes memory more efficiently.

SRepository = SDataFiles + SIndexFiles

4.3.2.4. Main Memory

This metric computes the memory requirement for the execution of a particular test case. This

memory is the amount of memory needed to hold the working buffers. Size of main memory,

hardly few GBs, is a limit on the size of the semantic data that can reside or process in main

memory [56]. A Semantic Web database consuming memory more efficiently is supposed to be

more scalable and efficient.

4.3.2.5. CPU time

This metric shows the CPU time consumed for processing a particular test case. Whenever a test

case is executed by a user, it engages some of the system resources among which CPU time

utilization is the most critical. CPU time utilization is important because the higher the

81

percentage of the CPU used by a Semantic Web database the less power the CPU can devote to

other tasks. User CPU Time and System CPU Time is computed for in-depth analysis.

4.3.2.6. Success Ratio

Success ratio describes the fraction of successfully executed test cases either for a semantic store

or for a dataset. For success ratio computation, we considered only bulk load test case and six

read test cases (i.e. total seven test cases on a dataset) to develop a clear effect of failed tests. For

each store and dataset size, success ratio is calculated using formulae given in Equation 1.

SRstore �

∑ ST�
���

store

dataset�i�

∑ TT�
���

store

dataset�i�

 SRdataset �

∑ ST�
���

dataset

store�i�

∑ TT�
���

dataset

store�i�

(a) (b)

Equation 1: Success Ration Computation Formula for (a) Semantic Store (b) Dataset

Where

SRstore = Success Ratio of store

ST
store

dataset�i�

= Number of successful test cases on dataset(i) for this store

TT
store

dataset�i�

= Number of total test cases on dataset(i) for this store

SRdataset = Success Ratio of dataset

ST
dataset

store�i�

= Number of successful test cases on store(i) for this dataset

TT
dataset

store�i�

= Number of total test cases on store(i) for this dataset

82

4.3.2.7. Cumulative Query Response Time

Cumulative performance metric describes three averages i.e. mean query response time, mean

main memory usage and mean CPU time for read test cases. Computations results have huge

variations that necessitate the selection of geometric means over arithmetic means. As our

cumulative performance metrics preserve the performance behavior of each store, so they show

that our choice for computing geometric mean is quite appropriate. For all failed test cases we

considered large values for response time as 86400sec, main memory as 6144 MB and CPU time

as 60 sec to penalize the respective store.

Summary of Chapter

In this chapter we discussed the Semantic Web databases evaluation framework in detail along

with introduction to some prevalent Semantic Web databases that are being evaluated. We

describe the logical schema of Barton dataset in detail to evaluate previously mentioned

Semantic Web databases. Dataset description provides an insight to the Barton data model and

dataset statistics along with description of its important classes. The last section provides details

of our proposed evaluation methodology that includes evaluation framework, test cases

description and proposed performance and scalability metrics.

In next chapter, we will present an overview of the Semantic Web databases architecture.

83

PERFORMANCE EVALUATION RESULTS

This chapter documents the outcomes of our research. The chapter is divided into three parts.

The first part describes the configuration setting of evaluation both for machine and Semantic

Web databases. The second part presents the comparative performance evaluation results of

tested Semantic Web databases while the third part presents their scalability analysis.

5.1. Evaluation Configuration

This section describes experimentation set up including hardware and software where all the test

cases were executed followed by the configuration set up for each Semantic Web database. All

the results for comparative evaluation and scalability analysis are dependent upon these

configuration settings.

5.1.1. Test Environment

All experiments were performed on a single machine under 64bit Enterprise edition of Microsoft

Windows Server 2003 on the top of ACPI Multiprocessor (16 processors) X5550@ 2.67GHz

CPU. We used 8 GB RAM and 120 GB PERC 6/I SCSI Disk Device with 8GB virtual memory.

All Java engines were executed with Netbeans IDE 6.8 that run on the top of JRE 1.6.0_18 64-bit

version. RAM Rush 1.0.5.817 was used as a RAM cleaner.

5.1.2. Semantic Web Databases Configuration

All of tested stores were run using its available Java APIs. We configured these stores to perform

up to our known best performance level of each stores. Detailed configuration of each store

along with its tested version is given below.

CHAPTER CHAPTER CHAPTER CHAPTER 5555

84

TDB Version 0.8.4

The statistics-based BGP optimizer was used by generating the stats.opt file and copying it to the

database location. All three indexes for triple graph i.e. SPO, POS, OSP were created. Java

options of Tomcat were set to -Xmx6144m.

SesameN Version 2.3.1

Store type was set to “Native”. Indexes created include SPOC, POSC, and OSPC. Java options

of Tomcat were set to -Xmx6144m.

AllegroGraph Version 3.3

Open source copy of AllegroGraph was used. All six index flavors (spogi, gspoi, gposi, gopsi,

ospgi, posgi) provided by AllegroGraph were created. It offers two optimization parameters i.e.

“Default Expected Resources” that was set according to dataset size and “Chuck size” was

configured to 4 GB. Java options of Tomcat were set to -Xmx6144m.

SDB Version 1.3.1

SDB was configured with MySQL version 5.1.44 with hash layout. In MySQL,

“innodb_buffer_pool_size” was tuned to 4096M for performance improvements. Java options of

Tomcat were set to –Xmx3072m.

SesameRDB Version 2.3.1

Store type was set to “RDB”. It was configured with MySQL version 5.1.44. In MySQL,

“innodb_buffer_pool_size” was tuned to 4096M for performance improvements. Java options of

Tomcat were set to –Xmx3072m.

SesameM Version 2.3.1

Store type was set to “Memory”. Java options of Tomcat were set to –Xmx6144m.

85

JenaM Version 2.5.6

 Jena memory model was created. Java options of Tomcat were set to –Xmx6144m.

5.2. Comparative Evaluation Results

This section provides detailed analysis of test results performed for comparative evaluation. To

record the results for a test case against its complement performance metrics, we run that test

cases on ten different samples for each dataset and considered the average. After executing each

single test, we restarted our machine and cleared the RAM using RAM Rush 1.0.5.817.

5.2.1. Success Ratio Results

Table 20: Semantic Web databases and datasets success ratio

Stores

Datasets

SR Store
Dataset1

(0.2M)

Dataset2

(1M)

Dataset3

(5M)

Dataset4

(25M)

 S F S F S F S F

SesameM 7 0 7 0 7 0 0 7 0.75

JenaM 7 0 7 0 6 1 0 7 0.71

AllegroGraph 7 0 7 0 6 1 4 3 0.86

SesameN 7 0 7 0 6 1 5 2 0.89

TDB 7 0 7 0 7 0 5 2 0.93

SDB 7 0 7 0 6 1 5 2 0.89

SesameRDB 7 0 7 0 6 1 5 2 0.89

SRDataset 1.0 1.0 0.89 0.49

Table 20 enlists the success ratio for each store and each dataset. Success ratio of both in-

memory stores SSesameM = 0.75 and SJenaM = 0.71 shows that they are less successful than the

other stores, because the 25 Million triples dataset fails to load in main memory for both these

86

stores. RDB backed stores success ratio i.e. SSDB = 0.89 and SsesameRDB = 0.89 showed the same

success rate. From native stores TDB with success ratio STDB = 0.93 is the most successful store.

On the other hand success ratio for Dataset1 and Dataset2 was 100%, but success ratio decreases

tremendously for the Dataset3 and especially for Dataset4.

5.2.2. Time and Resource Utilization Results

5.2.2.1. Load Results

Load test cases show interesting results regarding load time and resource utilization. Both of load

test cases described are ventured. The datasets are asserted into single model by all Semantic

Web databases.

Bulk Load: Figure 36 shows the comparative performance of Semantic Web databases on bulk

load. Experimental results showed that SesameM had better load time and resource utilization

than JenaM during bulk load. Both these stores failed to load twenty five million dataset.

AllegroGraph showed better performance for bulk load over other native Semantic Web

databases. It required less load time, memory usage and CPU time than SesameN and TDB.

SesameN proved to be faster than TDB in terms of its load time and CPU time, but its main

memory requirement for loading was greater than TDB. AllegroGraph, with least consumption

of main memory and CPU utilization, occupied lots of disk space. Since physical disk is neither

an expensive nor a limited resource, so its better load time, less memory consumption and CPU

time make it a better native RDF data loading API. From non-memory non-native category, SDB

required less load and CPU time but more memory and disk space than SesameRDB.

87

(a)

(b)

(c)

1

10

100

1000

10000

100000

1000000

0.2M 1M 5M 25M

lo
g

1
0
(t

)
Load Time (s)

0.1

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(c

p
u
 t

im
e)

CPU Time (s)

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(m

m
)

Main Memory (MB)

88

(d)

Figure 36: Bulk Load Comparative Evaluation Results

Table 21 presents the summary of Bulk Load results. Comparatively good store of each category

against its corresponding metrics is shown here.

Table 21: Summary of Bulk Load Results

Metrics

Semantic Web Databases

In-memory Native
Non-memory

non-native

Load Time SesameM AllegroGraph SDB

CPU Time SesameM AllegroGraph SDB

Main Memory SesameM AllegroGraph SesameRDB

Repository Size � SesameN SesameRDB

Incremental Load: We loaded ten triples in already created stores. Tests results showed almost

constant time and resources utilization during incremental load for in memory and native stores

of all datasets except for AllegroGraph. AllegroGraph is expensive in terms of its load time for

Incremental Load. SesameRDB incremental load time was much greater than SDB. Load time

results for Incremental Load test case are shown in Table 22.

1

10

100

1000

10000

100000

0.2M 1M 5M 25M

lo
g

1
0
(r

s)

Repository Size (MB)

89

Table 22: Load Time for Incremental Load

Semantic Web

Databases

Load Time (sec)

Dataset1

(0.2M)

Dataset2

(1M)

Dataset3

(5M)

Dataset4

(25M)

SesameM 1 1 1 1

JenaM 1 1 1 1

AllegroGraph 2 3 13 38

SesameN 1 1 1 1

TDB 2 2 2 2

SDB 1 2 3 5

SesameRDB 12 41 122 347

5.2.2.2. Read Results

Test results for read operations were more complex to analyze. Due to the large number of

results retrieved from these tests against different performance parameters, we have only shown

results for query response time in detail and described resource usage briefly.

Simple Query: Figure 37 (a)(b)(c) describe the store performance on searching for a single triple

pattern for a specific predicate, object and subject value respectively. SesameM query response

was much better for all three queries than JenaM.

SesameN showed better query response time in its category for predicate search on all datasets.

But while searching on Object and/or Subject TDB performs even better than sesame on large

dataset. From RDB backed stores SesameRDB showed better results while searching on a

predicate but for other two searches SDB showed better response time over SesameRDB.

90

(a)

(b)

(c)

Figure 37: Simple Query Results for Query Response Time

1

10

100

1000

0.2M 1M 5M 25M

lo
g

1
0
(s

)
Simple Query (A)

1

10

100

1000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Simple Query (B)

0.1

1

10

100

1000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Simple Query (C)

91

Table 23 presents the summary of Simple Query results. Comparatively good store of each

category against its corresponding test case for Query Response Time (QRT) are shown here.

Table 23: Summary of Simple Query Results (QRT)

Complex Query: Complex query results are shown in Figure 38. Query results implementing

the Bushy Patterns revealed that all stores failed to retrieve the results for a large dataset size.

SesameM showed better response time and scaled well for memory and CPU utilization than

JenaM.

SesameN and TDB showed less query response time than AllegroGraph. SesameRDB executed

bushy pattern with less response time than SDB. Figure 38 (b) shows the results for long chain

pattern. JenaM displayed better results for long chain pattern queries than SesameM. TDB has

better results for Long Chain Pattern identification than SesameN. SesameRDB performed better

than SDB from non-memory non-native category. For Long Chain Patterns identification

SesameRDB performed even better than the native and memory stores.

Test Cases Semantic Web Databases

In-memory Native Non-memory

non-native

SQ(A-Predicate search) Sesame
M

 Sesame
N
 Sesame

RDB

SQ(B-Object search) Sesame
M

 TBD (DS-4) SDB

SQ(C-Subject search) Sesame
M

 TDB (DS-4) SDB

92

(a)

(b)

Figure 38: Complex Query Results for Query Response Time

Table 24 presents the summary of Complex Query results. Comparatively good store of each

category against its corresponding test case for Query Response Time (QRT) are shown here.

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(s

)
BushyPattern

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Long Chain Pattern

93

Table 24: Summary of Complex Query Results (QRT)

Result Size: Result Size (A), Result Size (B), Result Size(C) queries returns large, medium and

small result sizes respectively. For all result set sizes SesameM exhibited better results than

JenaM. SesameN and SesameRDB performed extremely faster than other native stores for all result

set sizes. However while retrieving for large results set on large datasets; AllegroGraph exhibited

better results than other native stores. ResultSize results are shown in Figure 39.

Table 25 presents the summary of ResultSize results. Comparatively good store of each category

against its corresponding test case for Query Response Time (QRT) are shown here.

Table 25: Summary of ResultSize Results (QRT)

Test Cases Semantic Web Databases

In-memory Native Non-memory

non-native

Bushy Pattern Sesame
M

 Sesame
N
 Sesame

RDB

Long Chain Patterns Jena
M

 TBD Sesame
RDB

Test Cases Semantic Web Databases

In-memory Native Non-memory

non-native

Result-Size(A) Sesame
M

 Sesame
N
 Sesame

RDB

Result-Size(B) Sesame
M

 Sesame
N
 Sesame

RDB

Result-Size(C) Sesame
M

 Sesame
N
 Sesame

RDB

94

(a)

(b)

(c)

Figure 39: ResultSize results for Query Response Time

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(s

)
Result Size (A)

1

10

100

1000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Result Size (B)

0.1

1

10

100

1000

0.2M 1M 5M 25M

lo
g

1
0
(m

s)

Result Size (C)

95

Selectivity Estimation: We run the same query of having different triple selectivity and join

selectivity in all possible orders for all stores. Each time they produced the same results. This

showed that they have optimized the query on the basis of their selectivity. For selectivity

estimation results SesameM, Sesame N and SesameRDB performed best from their respective

category as shown in Figure 40.

Figure 40: Selectivity Estimation Results for Query Response Time

Irregular Access Pattern: For irregular access pattern all the stores fail to retrieve results on

large dataset. SesameM, TDB and SesameRDB performed the best from their respective category

for this test case. But a very strange behavior of SesameN was observed. Despite of its better

query execution cost SesameN fails drastically while retrieving triples for irregular pattern as

shown in Figure 41.

0.1

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Selectivity Estimation

96

Figure 41: Irregular Access Pattern Results for Query Response Time

Resource utilization of In-memory, Native and Non-memory Non-native stores for all Read test

cases is shown in Figure 42, Figure 43, and Figure 44. From In-memory category results we

concluded that SesameM is better resource utilizer than JenaM as shown in Figure 42 (a) (b).

Figure 43 (a) models the main memory usage whereas Figure 43 (b) models the CPU time for

each store. It is clearly observed that from native category AllegroGraph utilizes resources more

efficiently than SesameN and TDB. From remaining two SesameN is better than TDB for its

resource utilization. From Non-memory non-native category SesameRDB exhibited better

resource utilization than SDB as shown in Figure 44 (a) (b).

1

10

100

1000

10000

0.2M 1M 5M 25M

lo
g

1
0
(s

)

Irregular Access Pattern

97

Memory Usage

CPU Time

Figure 42: Resource Utilization of In-Memory Stores for Read Test Cases

0.01

0.1

1

10

100

1000

10000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

0.01

0.1

1

10

100

1000

10000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

98

Memory Usage

CPU Time

Figure 43: Resource Utilization of Native Stores for Read Test Cases

1

10

100

1000

10000

100000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

0.01

0.1

1

10

100

1000

10000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

99

Memory Usage

CPU Time

Figure 44: Resource Utilization of Native Stores for Read Test Cases

1

10

100

1000

10000

100000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

1

10

100

1000

10000
BushyPattern

LongChain

ResultSize(A)

ResultSize(B)

ResultSize(C)

SimpleQuery(A)

SimpleQuery(B)

SimpleQuery(C)

Selectivity

Estimation

Irregular Access

Pattern

100

5.2.2.3. Delete Results

While all datasets were loaded into single store and reasoning was not considered in our tests,

deleting an entire store is relatively a simple matter. For other delete test case i.e. “Deleting some

statements from the store”, we deleted ten statements from data stores. All in memory and native

stores showed constant time and resource usage for different datasets. TDB took almost double

time than other native stores. SDB took much more time than all other stores as shown in Table

26.

Table 26: Delete Results

Semantic Web

Databases

Delete Time (sec)

Dataset1

(0.2M)

Dataset2

(1M)

Dataset3

(5M)

Dataset4

(25M)

SesameM 1 1 1 1

JenaM 1 1 1 1

AllegroGraph 1 1 1 1

SesameN 1 1 1 1

TDB 2 2 2 2

SDB 15 117 239 356

SesameRDB 1 12 40 125

5.2.2.4. Update Results

All these Semantic Web databases do not provide facility for update operations. Updating a triple

in a Semantic Web database is done by deleting the original triple and loading the new triple.

Therefore, cost of updating a triple is equal to cost of deleting a triple from the store and then

loading a new triple into it.

101

5.2.3. Cumulative Query Performance Results

Cumulative performance results are shown in Table 27, Table 28, and Table 29. These results

clearly present an overall query cost estimation for each Semantic Web database. Overall results

revealed that SesameM exhibited less response time and less resource utilization than JenaM,

therefore query cost is less for SesameM than JenaM. Since SesameM also exhibited better load

performance both in terms of time and resource utilization, therefore SesameM clearly dominate

the JenaM.

Non-memory non-native stores exhibited greater query cost than other two types of stores.

SesameRDB demonstrated better read performance both for query response time and resource

utilization. However SDB exhibited better load performance both in terms of bulk load and

incremental load. Therefore SDB is “write optimized” and SesameRDB is “read optimized”.

SesameN and TDB both showed better response time than AllegroGraph, but resource utilization

of SesameN and TDB is much higher than AllegroGraph. AllegroGraph also presented better load

performance than the other two in terms of load time, memory usage and CPU time. On the basis

of these analyses we believe that SesameN and TDB can exhibit better query performance for a

system having high computing resources, but with low resources, AllegroGraph would be better

option. Results showed that AllegroGraph is “write optimized” and SesameN and TDB are “read

optimized”.

102

Table 27: Geometric Mean of Query Response Time for Read Query Set

Datasets Read Execution Time (sec)

SesameM JenaM Allegro

Graph

SesameN TDB SDB SesameRDB

Dataset1 2.24 7.31 3.21 2.01 2.93 8.18 5.28

Dataset2 3.31 9.34 11.76 5.73 8.4 26.25 18.34

Dataset3 7.81 36.71 45.98 22.55 22.35 137.09 128.55

Dataset4 Α α 398.48 139.75 173.43 928.283 825.62

Table 28: Geometric Mean of Main Memory Usage for Read Query Set

Datasets Read Main Memory Usage (MB)

SesameM JenaM Allegro

Graph

SesameN TDB SDB SesameRDB

Dataset1 646.75 643.23 128.45 171.87 140.87 216.54 190.66

Dataset2 1930.28 2046.98 128.4 172.57 194.36 398.27 284.7

Dataset3 3158.94 3572.66 189.1 252.93 367.48 1042.26 559.15

Dataset4 Α α 409.98 415.05 693.6 1506.09 1005.77

Table 29: Geometric Mean of CPU time for Read Query Set

 Read CPU Time (sec)

SesameM JenaM Allegro

Graph

SesameN TDB SDB SesameRDB

Dataset1 2.19 4.86 0.2 0.6 2.26 3.34 1.48

Dataset2 3.09 8.32 0.98 1.43 7.5 5.67 2.36

Dataset3 5.26 28.6 2.6 5.66 19.4 39.4 15.94

Dataset4 Α α 4.55 25.7 89.1 187.8 56.33

103

 Conclusion of Comparative Analysis:

Comparative evaluation results are summarized in Table 30. In this table we concluded the read

and write optimized stores of each category (i.e. in-memory, native, non-memory & non-native)

with respect to time and resource utilization. From the in-memory category SesameM is read &

write optimized both in terms of time and resource usage. It also have higher success ratio than

JenaM. SesameN and TDB are read optimized in terms of time and AllegroGraph is read

optimized in terms of resource usage from the native category. However AllegroGraph is also

write optimized in terms of both time and resource usage. Success ratio of TDB is better than the

other two. From non-memory non-native category SesameRDB is read optimized and SDB is

write optimized, both stores exhibited equal success ratio.

Table 30 : Summary of Comparative Evaluation

 Summary Table for Comparative Evaluation

Sesame

M

JenaM Allegro

Graph

Sesame

N

TDB SDB SesameR

DB

Read optimized �
TR

 � �
R
 �

T
 �

T
 � �

TR

Write Optimized �
TR

 � �
TR

 � � �
TR

 �

Successful � � � � � = =

In Table 30

�TR = Optimized in terms of Time and Resources

�
T
 = optimized in terms of Time

�R = Optimized in terms of Resources

Overall native stores performed better in terms of their success ratio, time and resource usage.

104

5.3. Scalability Analysis Results

This section provides detailed scalability analysis of tested data stores on the basis of results

obtained from our tests for comparative evaluation.

5.3.1. Load Analysis

5.3.1.1.Bulk Load

Load Time: Load time analysis revealed that Load time for in-memory stores increases in

polynomial time, but for all native and non-memory non-native stores, it increases exponentially

as shown in Figure 45. Here x-axis shows the time in seconds and y-axis is representing our

linearly increasing datasets from 1 to 4.

105

Figure 45: Load Time Scalability Behavior

Main Memory: Usage of main memory during bulk load increased almost linearly for in-

memory & native stores expect for AllegroGraph for which it remained constant. However for

non-memory non-native stores, it increases in polynomial times as shown in Figure 46. Here x-

axis and y-axis are representing main memory in MBs and our linearly increasing datasets from

1 to 4 respectively.

106

107

 Figure 46: Main Memory Usage Scalability Trends during Bulk Load

CPU Time: CPU time for main memory stores increases in polynomial time, however for native

and non-memory non-native stores it increases exponentially during bulk load tests as shown in

Figure 47. Here x-axis is representing the CPU time in seconds and y-axis is representing our

linearly increasing datasets from 1 to 4.

108

Figure 47: CPU Time Scalability Trends during Bulk Load

Disk Space: During Bulk Load disk space is not used by in-memory stores as they keep and

manage data in main memory and do not stores data permanently. However, for all other stores

109

disk space usage increases exponentially for linearly increasing dataset as shown in Figure 48. In

this diagram x-axis and y-axis are representing physical disk size in MBs and our linearly

increasing datasets from 1 to 4 respectively.

Figure 48: Disk Space Scalability Trends during Bulk Load

110

5.3.1.2. Incremental Load

Test results for incremental load revealed that both of in-memory stores have a constant time and

resource utilization for all datasets. SesameN and TDB of native stores category also have a

constant time and resource utilization for all datasets. However, AllegroGraph exhibited linear

increase in load time and resource usage for linearly increasing datasets for this test case. From

non-memory non-native category of Semantic Web databases SDB and SesameRDB requirements,

for time and resource usage, increases in polynomial times and exponentially respectively as

shown in Figure 49. In this diagram x-axis and y-axis are representing load time in seconds and

our linearly increasing datasets from 1 to 4 respectively.

Figure 49: Incremental Load Test results for SDB and SesameRDB

5.3.2. Read Analysis

Scalability analysis for read operations is presented for cumulative query performance results,

rather than per query results in this section.

111

Query Response Time: Read tests results revealed that query response time for in-memory

stores increases in polynomial time, but for all native and non-memory non-native stores, it

increases exponentially as shown in Figure 50. Here x-axis shows the time in seconds and y-axis

is representing our linearly increasing datasets from 1 to 4.

112

Figure 50: Query Response Time Scalability Trends for Read Test Case

Main Memory: Usage of main memory during bulk load increased almost linearly for in-

memory stores. However for all native and non-memory non-native stores, it increases in

polynomial times as shown in Figure 51. Here x-axis and y-axis are representing main memory

in MBs and our linearly increasing datasets from 1 to 4 respectively.

113

Figure 51: Main Memory Usage Scalability Trends during Read Tests

CPU Time: CPU time for main memory stores increases in polynomial time, however for native

and non-memory non-native stores it increases exponentially during read tests as shown in

114

Figure 52. Here x-axis is representing the CPU time in seconds and y-axis is representing our

linearly increasing datasets from 1 to 4.

115

Figure 52: CPU Time Scalability Trends during Bulk Load

5.3.3. Delete Analysis

Test results for delete test case revealed that both of in-memory stores and all native stores

needed a constant time and resource utilization for linearly increasing datasets for this test case.

From non-memory non-native category of Semantic Web databases SDB and SesameRDB

requirements, for time and resource usage, increases linearly and in polynomial times

respectively as shown in Figure 53. In this diagram x-axis and y-axis are representing deletion

time in seconds and our linearly increasing datasets from 1 to 4 respectively.

Figure 53: Delete Test results for SDB and SesameRDB

116

Conclusion of Scalability Analysis:

Table 31 presents the summary of the scalability analysis. Results depicts that although in-

memory stores because of their characteristics to reside whole data in main memory are not able

to handle large datasets but their time and resource usage does not increase as rapidly as in other

two stores.

Table 31: Summary of Scalability Analysis

T
es

t

C
a
se

s

Metrics

Scalability Behavior of Stores

In-Memory

Store

Native Stores Non-memory

non-native stores

B
u

lk
 L

o
a
d

Load time Polynomial Exponential Exponential

Memory usage Linear Linear/constant Polynomial

CPU time Polynomial Exponential Exponential

Disk space � Exponential Exponential

R
ea

d

Query execution time Polynomial Exponential Exponential

Memory usage Linear Polynomial Polynomial

CPU time Polynomial Exponential Exponential

Summary of Chapter:

In this chapter we presented the detailed results and analysis obtained during our research. We

presented the test configurations, both for machine and Semantic Web databases. A detailed

comparative evaluation of tested Semantic Web databases is presented and strengths or

weaknesses of each store are discussed on the basis of these results. By the end of this chapter,

scalability analysis for these stores is provided.

117

CONCLUSION AND FUTURE WORK

This chapter concludes the research work carried in this thesis. It provides an analysis of the

work done in this thesis. A bird’s eye-view of the future directions where this work can be

extended is given at the end of this chapter.

6.1. Conclusion

The Semantic Web offers the potential to vastly improve the manner in which we retrieve and

interact with data. Semantic Web databases represent a critical requirement for the emergence of

this vision (i.e. Semantic Web): the importance of high performance storage and query over

unpredictable Semantic Web data is clear, and has been articulated during the course of this

thesis.

The main goal of this research was to develop a better understanding of Semantic Web

databases, and to analyze their performance behavior and scalability. We initially propose an

evaluation methodology with an aim to obtain insights into key strengths and short comings of

existing popular Semantic Web databases. Our evaluation methodology provides a new

categorization of Semantic Web databases’ operations, and proposes novel performance and

scalability metrics especially the ‘Resource Utilization’, ‘Success Ration’ and ‘Cumulative

Query Performance’.

Moreover we evaluate and compare seven prominent Semantic Web databases on Barton Library

dataset. These belong to three different categories of the Semantic Web databases and have been

used frequently for performance evaluation in Semantic Web databases research literature.

Results of comparative evaluation offers several contributions; results exhibit that a store

CHAPTER 6CHAPTER 6CHAPTER 6CHAPTER 6

118

performed efficient in time using some resources, but in the meantime unavailability of these

resources could result in system degradation.

Strengths and weaknesses of stores under consideration have also been discovered as part of

research by application of proposed framework, i.e. (a) searching for predicate is more efficient

in SesameN, and for object and subject TDB showed better results than other persistent stores (b)

for complex queries SesameRDB exhibited better results than all other tested databases (c) result

size effects the query performance of each store, AllegroGraph clearly showed better

performance than other databases while searching for a large result size on large datasets and (d)

SesameN despite of its good performance exhibit degraded performance on irregular queries and

long chain patterns identification, and TDB can nicely operate to retrieve long chain triple

patterns.

It is also concluded that TDB has highest success ratio than all other Semantic Web database

under consideration. The experimental results explained the best suited scenarios for a Semantic

Web database, as SesameM has a performance edge over JenaM; AllegroGraph is write optimized

and less resource utilizer of its respective category. SesameN and TDB are read optimized in

terms of their query response time. From non-memory non-native category, SesameRDB is read

optimized for its time and resource usage, while SDB is write optimized in terms of its load and

CPU time. Over all native category of Semantic Web databases performed better than other two.

Other than these findings, we presented detailed scalability analysis and described the scalability

trends on all test cases for each Semantic Web database. We concluded that in-memory stores’

requirement for time and resource usage does not increase as rapidly as in other two types of

119

Semantic Web databases. In addition, different storage and retrieval techniques and data

structures used by existing Semantic Web databases are also discussed.

6.2. Future Work

The future work provides an avenue for significant new research that will benefit the Semantic

Web community. As Semantic Web databases are getting better, therefore evaluating them

becomes more important. We observed that there is recent work on query performance

evaluation and lot of literature has been published in recent decade. However, there is no recent

work on reasoning performance evaluation. Only inventive work on reasoning performance

evaluation was presented by LUBM in 2002. Similarly the third category of Semantic Web

database also lack in detailed and recent benchmarks. Therefore, future work on Semantic Web

database evaluation that would complement the field includes (1) Federated query and (2)

Reasoning performance evaluation. Secondly there is no organized benchmark campaign for

Semantic Web databases. It is evidently important to build an organized benchmark campaign

for fair and realistic quantifications of Semantic Web databases’ performance.

120

BIBLIOGRAPHY

[1] T. B. Lee, J. Hendler and O. Lassila, ”Scientific American: The Semantic Web,” in Scientific

American, May 17, 2001 [online]:

http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-

84A9809EC588EF21 (1 of 18)

[2] O. Lassila and R. Swick, "Resource Description Framework (RDF) Model and Syntax

Specification,” W3C Recommendation, World Wide Web Consortium, Cambridge (MA),

February 1
st
, 1999

[3] G. Klyne and J. J. Carroll. “Resource Description Framework (RDF): Concepts and Abstract

Syntax”, [online]: http://www.w3.org/TR/rdf-concepts/, 2003.

[4] K. S. Candan, H. Liu and R. Suvarna, “Resource Description Framework: Metadata and Its

Applications,” SIGKDD Explorations, Vol: 3, Issue 1, Page 6, 2001.

[5] D. Reynolds, C. Thompson, J. Mukerji and D. Coleman, “An assessment of RDF/OWL

modeling,” in HPL Bristol, HPL-2005-189, October 28, 2005

[6] G. Antoniou and F. V. Harmelen, "Web Ontology Language: OWL," in Book Chapter:

Handbook of Ontologies, Sprinkerlink, Pages: 91-110, Sunday, March 14, 2010

[7] McGuinness and F. V. Harmelen, “OWL Web Ontology Language Overview,” W3C

Recommendations, 2004, [online]: http://www.w3.org/TR/2003/WD-owl-features-20030331/

[8] Powered by MediaWiki, A List of large Triple Stores.[online]:

http://esw.w3.org/topic/LargeTripleStores

[9] M. Janik and K. Kochut, "BRAHMS: A WorkBench RDF Store And High Performance

Memory System for Semantic Association Discovery,” Fourth International Semantic Web

Conference ISWC 2005, Galway, Ireland.

121

[10] C. J. Date, “An Introduction to Database Systems”, Volume 1, Addison Wesley Publishing

Co., Boston, MA, USA, 1990.

[11] D. J. DeWitt, “The Wisconsin benchmark: Past, present, and future,” in The Benchmark

Handbook for Database and Transaction Processing Systems, 1, 1991.

[12] A. Owens, ”An Investigation into Improving RDF Store Performance,” [Online]:

eprints.ecs.soton.ac.uk/17917/1/MiniThesis.pdf

[13] R, Lee, “Scalability report on triple store applications,” in Technical report, Massachusetts

Institute of Technology, July, 2004, USA, [online]: http://simile.mit.edu/reports/stores/

[14] D. Beckett, “SWAD-Europe deliverable 10.1: Scalability and storage,” Survey of free

software /open source RDF storage systems. Technical Report IST-2001-34732, July, 2002,

EU, [Online]. Available: http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage

report.

[15] D. Beckett and J. Grant, “SWAD-Europe Deliverable 10.2, Mapping Semantic Web Data

with RDBMS,” in Technical Report IST-2001-34732, [Online]. Available:

http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report.

[16] A. Barstow, “Survey of RDF/Triple Data Stores,” W3C, April 2001

[17] Y. Guo, Z, Pan and J. Heflin, “An Evaluation of Knowledge Base Systems for Large OWL

Datasets,” Proc. of the Third International Semantic Web Conf.(ISWC 2004), LNCS.

Springer Verlag (2004)

[18] B. Liu, and B. Hu, “An Evaluation of RDF Storage Systems for Large Data Applications,”

skg, pp.59, First International Conference on Semantics, Knowledge and Grid (SKG'05),

November 27-November 29, 2005, ISBN: 0-7695-2534-2, Beijing China

122

[19] K. Rohloff, M. Dean, I. Emmons, D. Ryder and J. Sumner, “An Evaluation of Triple-Store

Technologies for Large Data Stores,” Lecture Notes in Computer Science, 2007, ISBN: 978-

3-540-76889-0, BBN Technologies, 10 Moulton St., Cambridge, MA 02138, USA

[20] T. Weithoner, T. Liebig, M. Luther, S. Bohm, “What’s Wrong with OWL Benchmarks?,”

Proc. of the Second Int. Workshop on Scalable Semantic Web Knowledge Base Systems

(SSWS 2006) 101-114, Athens, GA, USA November 2006

[21] Y. Guo, Z. Pan, J.Heflin, “A benchmark for OWL knowledge base systems,” Web

Semantics, Services and Agents on the World Wide Web 3, pp. 158-182, Publisher: Elsevier

2005, ISSN: 15708268, Bethlehem, PA 18015, USA

[22] A. Owens, N. Gibbins, M. Schraefel, “Effective Benchmarking for RDF Stores Using

Synthetic Data,” in ISWC 2008: 7
th
 International Semantic Web Conference, Karlsruhe,

Germany

[23] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, S. Liu, “Towards a Complete OWL Ontology

Benchmark (UOBM),” In: The Semantic Web: Research and Applications, LNCS vol.

4011/2006, pp 125-139, 2006

[24] C. Bizer, A. Schultz, “The Berlin SPARQL Benchmark,” International Journal On Semantic

Web and Information Systems - Special Issue on Scalability and Performance of Semantic

Web Systems, 2009.

[25] C. Bizer, A. Schultz, “Benchmarking the Performance of Storage Systems that exposes

SPARQL Endpoints,” Proceedings of the 4th International Workshop on Scalable Semantic

Web knowledge Base Systems (SSWS2008)

[26] C. Bizer and A.Schultz, “Berlin SPARQL Benchmark (BSBM),” International Journal On

Semantic Web and Information Systems - Special Issue on Scalability and Performance of

123

Semantic Web Systems, 2009 [Online]. Available: http://www4.wiwiss.fu-

berlin.de/bizer/BerlinSPARQLBenchmark/

[27] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2 Bench: A SPARQL Performance

Benchmark,” Technical Report, arXiv:0806.4627V1 cs.DB, 2008b

[28] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen and C. Pinkel , “An Experimental

Comparison of RDF Data Management Approaches in a SPARQL Benchmark Scenario,”

Lecture Notes In Computer Science; Vol. 5318, Proceedings of the 7th International

Conference on The Semantic Web, pp, 82 – 97, Springer-Verlag Berlin, Heidelberg

[29] Barton Library Dataset [online]: http://simile.mit.edu/wiki/Dataset:_Barton

[30] U.S. Census Dataset [online]: http://www.rdfabout.com/demo/censu/

[31] E. Codd, “A relational model of data for large shared data banks,” Communications of the

ACM, Vol. 13, Issue – 6, pp- 377-387, 1970, New York, Ny, USA

[32] M. Atkinson, D. Dewitt, D. Maier, F. Bancilhon, K. Dittrich, S. Zdonik, “The object-oriented

database system manifesto,” In Proceedings of the First International Conference on

Deductive and Object-Oriented Databases, Vol. 59, pages 223-40, Kyoto, Japan, December

1989

[33] J. Broekstra, A. Kampman, F. van Harmelen, ”Sesame: An architecture for storing and

querying RDF data and schema information,” Spinning the Semantic Web, pages 197-222,

2003.

[34] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, “Jena:

implementing the semantic web recommendations,” In International World Wide Web

Conference, pages 74-83. ACM Press New York, NY, USA, 2004.

124

[35] S. Harris, N. Shadbolt, “SPARQL query processing with conventional relational database

systems,” Lecture Notes in Computer Science, pages 235-244, 2005, Springer Berlin /

Heidelberg

[36] Allegro Graph [online]:

http://www.franz.com/agraph/support/documentation/current/agraph-introduction.html

[37] O. Erling and I. Mikhailov, “RDF support in the virtuoso DBMS,” In CSSW 2007

[38] Semantic web [online]: http://en.wikipedia.org/wiki/Semantic_Web

[39] J. J. Carroll, “An Introduction to the Semantic Web, Considerations for building multilingual

Semantic Web sites and applications,” Digital Media Systems Laboratory, HP Laboratories

Bristol , HPL-2005-67, April 22, 2005

[40] Semantic web and other technologies [online]: http://www.w3.org/2008/Talks/1009-bratt-

W3C-SemTech/Overview.html

[41] S. Margherita, S. Gauri, C. Pardy, J. Albert, J. Keizer, S. Katz, “Ontology-based Navigation

of Bibliographic Metadta,” Food, nutrition and Agriculture Journal, DRTC, February 2007

[42] K. Wilkinson, C. Sayers, H.A. Kuno, D. Reynolds, “Efficient RDF storage and retrieval in

Jena2,” In Proceedings of 1st International Workshop on Semantic Web and Databases

(SWDB-03), pages 131-150, Septermber 7-8, 2003

[43] P. Haase J. Broekstra, A. Eberhart, R. Volz, “A Comparison of RDF Query Languages,” In

Proceedings of the 3rd International Semantic Web Conference, pages 502–517, ISWC 2004

[44] E. Prud’hommeaux, A. Seaborne, “SPARQL Query Language for RDF,” W3C Candidate

Rec. 6 April 2006. http://www.w3.org/TR/rdf-sparql-query/

[45] RDF query language [online]: http://en.wikipedia.org/wiki/RDF_query_language

[46] RDF Query Specification: http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html

125

[47] RDF Query Survey [online]: http://www.w3.org/2001/11/13-RDF-Query-Rules/

[48] J. P´erez, M. Arenas, C. Gutierrez, “Semantics and Complexity of SPARQL,” ACM

Transactions of Database Systems (TODS), Volum 34, issue 3, ISSN:0362-5915, Article No.

16, ACM New York, NY, USA

[49] A. B. Bondi, “Characteristics of Scalability and their impact on performance,” in WOSP ’00:

proceeding of 2
nd

 international workshop on Software and performance, page 195-203,

ISBN:1-58113-195-X, New York, NY, 2000. ACM press

[50] DBLP dataset [online]: http://kdl.cs.umass.edu/data/dblp/dblp-info.html

[51] DBpedia dataset [online]: http://wiki.dbpedia.org/Datasets

[52] SIMILE Project [online]: http://simile.mit.edu/

[53] Longwell [online]: http://simile.mit.edu/wiki/Longwell

[54] MODS User guide [online]: www.modsperu.org/MODS_user_guide.pdf

[55] Database performance study [online]: http://mis.umsl.edu/bov/TuningPaperV5.pdf

[56] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, D. Reynolds, “SPARQL Basic Graph

Pattern Optimization using Selectivity Estimation,” Proceeding of the 17th international

conference on World Wide Web, Pages: 595-604, ISBN:978-1-60558-085-2, Beijing China,

ACM New York, NY, USA

[57] Jena [online] : http://jena.sourceforge.net/

[58] Jena SDB [online]: http://openjena.org/SDB/

[59] Jena TDB [online]: http://openjena.org/TDB/

[60] Sesame [online]: http://www.openrdf.org/

[61] BigOWLIM [online]: http://www.ontotext.com/owlim/big/index.html

126

[62] D. A. abdi, A. Marcus, S. R. Madden, K. Hollenbach “Using Barton Libraries Dataset as an

RDF Benchmark,” Massachusetts Institute of Technology Computer Science and Artificial

Intelligence Laboratory, MIT-CSAIL-TR-2007-036

[63] J. Broekstra, A. Kampman, “SeRQL: A Second Generation RDF Query Language [online],

http://www.w3.org/2001/sw/Europe/events/20031113-storagepositions/aduna.pdf ,

November 2003

[64] F. Stegmaier, U. Gröbner, M. Döller, H. Kosch, G. Baese, “Evaluation of Current RDF

Database Solutions” In: Proceedings of the 10th International Workshop on Semantic

Multimedia Database Technologies (SeMuDaTe 2009)

[65] Aduna B. V. “User Guide of Sesame” [online],

http://www.openrdf.org/doc/sesame/users/index.html

[66] M. Hausenblas, W. Slany, D. Ayers, “A Performance and Scalability Metric for Virtual RDF

Graphs”, Proceedings of the ESWC'07 Workshop on Scripting for the Semantic Web, SFSW

2007, Innsbruck, Austria, May 30, 2007

[67] CRUD [online] :

http://www.databasejournal.com/features/mssql/article.php/3082201/Implementing-CRUD-

Operations-Using-Stored-Procedures-Part-1.htm

127

APPENDIX

A.1. Barton Queries

Here we present the SPARQL queries over Barton dataset which we have used for testing the

Read performance of each Semantic Web database. The SPARQL queries are given below with

query description.

 SimpleQuery: (a) Select different types of data in store (b) Select all different subjects for object

value “mods:Person” (c) Return all predicate for a subject Id.

a) PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?type

Where

{

 ?instances rdf:type ?type

}

b) PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

 SELECT DISTINCT ?subject

 Where

 {

 ?subject ?someproperty mods:Person

 }

a) PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

PREFIX info:<info:isbn/>

SELECT DISTINCT ?properties

Where

{

 info:0525070893 ?properties ?object

}

ComplexQuery: (Bushy Pattern) Extract values for recordID, genre, classification, creator,

publisher, language, title, subject, contents and optionally audience, format, version, and

reference for all text type items.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

PREFIX role:<http://simile.mit.edu/2006/01/role/>

128

SELECT ?recordID ?genre ?classification ?creator ?publisher ?language ?title ?subject ?contents

?audience ?format ?version ?reference

Where

{

 ?recordID mods:records ?item.

 ?item rdf:type mods:Text.

 ?item mods:genre ?genre.

 ?item mods:classification ?classification.

 ?item mods:publisher ?publisher.

 ?item mods:subject ?subject.

 ?item role:creator ?creator.

 ?item mods:language ?language.

 ?item mods:title ?title.

 ?item mods:contents ?contents.

OPTIONAL

 {

 ?item mods:audience ?audience.

 ?item mods:otherFormat ?format.

 ?item mods:otherVersion ?version.

 ?item mods:isReferencedBy ?reference

 }

}

ComplexQuery: (Long Chain) Return recordID and type of all that items that are published at

more than one location.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

SELECT DISTINCT ?recordID, ?type

Where

{

 ?recordID mods:records ?item.

 ?item rdf:type ?type.

 ?item mods:publisher ?publisher1.

 ?publisher1 mods:location ?location1.

 ?location1 mods:name ?name1.

 ?item mods:publisher ?publisher2.

 ?publisher2 mods:location ?location2.

 ?location2 mods:name ?name2.

 FILTER(?name1 != ?name2)

129

}

ResultSize: Return all items of type (a) Text (b) Notated Music (c) Still Image.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

a) SELECT ?recordID

Where

{

?recordID mods:records ?item.

?item rdf:type ?type.

FILTER(?type = mods:Text)

}

b) SELECT ?recordID

Where

{

?recordID mods:records ?item.

?item rdf:type ?type.

FILTER(?type = mods:NotatedMusic)

}

c) SELECT ?recordID

Where

{

?recordID mods:records ?item.

?item rdf:type ?type.

FILTER(?type = mods:StillImage)

}

SelectivityEstimation: Return translated title of all text type records in the data store.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

SELECT ?translatedTitle

Where

{

 ?recordID mods:records ?item.

 ?item mods:title ?title.

 ?title rdf:type mods:TranslatedTitle.

 ?title mods:value ?translatedTitle

}

130

IrregularAccessPatterns: Select all different properties that has text type item as its domain or

range.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX mods:<http://simile.mit.edu/2006/01/ontologies/mods3#>

SELECT DISTINCT ?item ?property

Where

{

 {

 ?item rdf:type mods:Text.

 ?item ?property ?object

 }

 UNION

 {

 ?item rdf:type mods:Text.

 ?subject ?property ?item

 }

}

