Automated Generation of Application
Models Through Access Traffic
Analysis

By

Syed MishalMurtaza

2007-NUST-MS-PhD-IT-34

Supervisor

Dr. Hafiz Farooq Ahmad

A thesis submitted in partial fulfilment of the requirements for the degree of
Masters in Information Technology (MSIT)

In

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST),
Islamabad, Pakistan

APPROVAL

It is certified that the contents and form of thesis entitled “Automated Generation of Application
Models Through Access Traffic Analysis” submitted by Syed MishalMurtaza has been found
satisfactory for the requirement of the degree.

Advisor: Dr. Hafiz Faroog Ahmad

Signature:

Date:

Committee Member 1: Dr. Khalid Latif

Signature

Date:

Committee Member 2: Ms. Sana Khalique

Signature

Date:

Committee Member 3: Mr. QasimRajpoot

Signature
Date:
(i)
L)

IN THE NAME OF ALMIGHTY ALLAH
THE MOST BENEFICENT AND THE MOST MERCIFUL

TO MY PARENTS & SISTERS

CERTIFICATE OF ORIGINALITY
I hereby declare that this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, nor material which to a
substantial extent has been accepted for the award of any degree or diploma at SEECS or at any
other educational institute, except where due acknowledgement has been made in the thesis. Any
contribution made to the research by others, with whom | have worked at SEECS or elsewhere,

is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for
the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged.

Author Name: Syed MishalMurtaza

Signature:

ACKNOWLEDGEMENTS
First of all I am thankful to Almighty Allah for giving me courage and strength to complete this
challenging task and to compete with international research community. | am also grateful to my
family, especially my parents who have supported and encouraged me through their prayers that

have always been with me.

I am extremely thankful to Dr. H. Farooq Ahmad, Dr Khalid Latif, Mr. QasimRajpoot and Ms.
Sana Khalique for their help and guidance. I am thankful to Dr. H. Faroog Ahmad and Dr.
Khalid Latif for his valuable suggestions and continuous guidance throughout my course work
and research work. There foresightedness and critical analysis of things taught me a lot about

research which will be more helpful to me in my practical life.

I am highly thankful to all of my teachers who have been guiding me throughout my course work
and have contributed to my knowledge. Their knowledge, guidance and training helped me a lot
to carry out this research work. | would like to offer my gratitude to all the members of the
research group and my close colleagues who have been encouraging me throughout my research
work especially Mr. Ali Hur, Mr. Zaffar Gachhal ,Mr. Rana Faisal Munair, Mr. Malik Nabeel
Ahmad, Mr. Mahmood Ahmad. In the end | am thankful to my Mother and Father for their

unconditional love, patience, and continuous guidance.

Syed MishalMurtaza

Table of Contents

Table of Contents

N oS L - Tl SO OO PR PSP X
(O F=T o] 1 ot TSP PSPPSRSO 1
a1 0o [0Tod £ o] o ISP 1
1.1, Default alow MOdel.cooeiiiii e 3
1.2, Default DENY MOGEL.......ccouiiiiiieiie e 4
1.3, TheSIS OFQANIZATION.ueiiiiiiieiiii ettt ettt ettt e et e e ba e e et e e e beeeaseeeeeneeeanes 6
(O F=T o] T PP PPPUPRRPPRTRI 7
B F= 163 (0] {01 g [o RSP PPRR PR 7
0 [14 £ o 0ot Ao o F TP TPPOTRP 8
2.2, Learning tECANIGUES.oi ittt et ta e ne e 8
2.2.1 RUIE DASEU SYSTEIMSoiiiiiiitiiee ittt ettt et e e b e re e e e neeee e 8
2.2.2 Case based reasoning SYSLEIMScoiuiiiiiiieiiieeiiie e siee et e sttt b e e e enes 9
2.2.3 CBR VS Rule Dased SYStEIMSooiiiiiiiiieiiie et 9
2.3 AAVANTAGES OF CBR ...ttt ettt et e e e sra e e e nnee e e anaee s 10
2.3.1 Evade repeating mistakes made inthe Past.cccoooiiiiiiiie e 10
2.3.2 Trim down knowledge aCqUISTEION.cccviiiiiiiiiiiecie e 10
2.3.3 Providing flexibility in comprehension modeling.cccocviiiieiiin i 10
2.3.4 Analysis in domains that have not been fully implicit, distinct, or modeled. 11
2.3.5 Over the time IRarNING..oooiiiiiiie et e e 11
2.3.6 Reasoning in a sphere with a small Knowledge.ccoooieiiiiiieii e 11
2.3.7 Broaden the range of dOMAINS.cooiiiiiiiiiiie e 11
2.3.8 Shimmering human reaSONING..ooooeieiiiieiiie et reeeaaea e 11
2.4, AIChItECtUIE OF CBR.uiiiiiii ettt eannaee s 12
2.5, SUMIMIIY. ..ottt ettt e e e ekttt e e ek e bt e e e e bbbt e e e e sttt e e e e mb b e e e e e bbb e e e e annbeaeeannes 14
(O F=T o] =T g SRR OPRRUPRRRRN 15
LITEIALUIE SUINVBY . oottt ettt ettt ettt e bt e e ettt e kbt e et et e et e e e e nbe e e e bt e e anbeeeanteeennes 15
3.1. Conventional Input validation teCNNIQUESeeeiiiiiiiiiieiiee e 15
(v)

3.1.1 Updating and maintenance probIem. ... 15

3.1.2 THME INTENSE TASK. veiieiiiiie ittt ettt ettt e e srb e e rae e e sna e e s nneee s 16
3.1.3 Incompatibility with legacy appliCations.cccuoiiieiiiiiiiiee e 17
3.1.4 Dealing with many sources Of INPUEc.ooiiiiiiiiieie e 17
3.2, REVIBW OF PAPEIS ...ttt e et e bb e ba e e e nba e e s nbeeeaneee s 18
3.0 SUMIMIAIY ..ottt ettt e oottt e e ekttt e e ekt et e e e e skt e e e e st b e e e e e e bbbt e e s anbbeeeeanees 22
(O F=T o] = o PRSP OPRRUPRRTRN 23
Y0 ANV 4 o] SO RPUPR 23
4.1, RESEAICH MOTIVALION ...ooiiiiiiiiie ittt e e e e s e e e e nes 23
4.2, RESEAICH SCOPE. ..ueiiiiiie ittt et e ettt et e et b e e et b e e tb e e be e e et e e enreas 24
4.3. AIMS of purposed tECANIQUEoooiiiiiiiie e e 25
A4, SUMIMAIY ...ttt ettt e ekttt e e e a bt e e e ekttt a2 o ok b et e a4 am b bt e e e e kbbb e e e anbbe e e e e e anbbneeeaanbbeaeens 26
(O F=T o] =1 gl PRSP OPRRUPRRRRN 27
SYSEEM AFCNIEECTUIE . ..ot e et e et b e e et eebae e e e beeeanbeeeas 27
5.1, PropoSed SOIULIONooiuiiiiiiiieiiie ettt et e e s ne e e e beee s 27
5.2, ADSLraCt @rChItECTUIE.eiieeie et 27
5.3.First time learning (LSt iteration)cccoooeieiieieiiie e 28
5.3.1 ACCESS 10Q. ..ttt aea e 28
ST I 111 (<] (o2=T 0] (o] TP PR PPPPPN 30
5.3.3 LBAIMET ..ttt bt b et e bt et e e nnaea e 30
5.3.4 REGEX TBPOSIIONY ooieiieiitiieittieeitiee et ee et e ettt et e et e e s esbe e e snbe e e srb e e e sbeeenneeeannneeas 31
5.3.5 Case MOAUIE QENEIALOT.cueiiiiiieiiie ettt e e snaeaeas 31
5.4. Second iteration 0f the SYSTEM i i 33
5.5.2N0 TIME TBAIMING ..eeiiiiieiiie ettt e et e e rb e e e bt e e be e e e bae e s ateeeanbeeens 34
5.5.1 CaSE FELIBVAL ...eeiiiiiiiiiiie ettt 35
5.5.2 Case learning (Adaptation)ccooieieiiiroiiie et 35
5.5.2.1 Adaptation process algorithmcccccooiiiiiii i 36

5.5.3 CaSE MAINTENANCE ...veiiiieieeiiieeitiie et ee ettt et et e e s e e srb e e asb e e e s rbeeennbeeannneeeas 39
5.6. Case based reasoning adVANTAGESoeoiveieiieieiiieieiieieesieeesiieessreeeasieeesnreee s sneeeseeeeanaeaens 40
5.7. Main features 0f the MOAUIE eeriii e 41

(v)

5.8, SUMMAIY oottt ettt e ettt e e ekt bt e e e et e e e e e mbb e e e e e e bbbt e e e annbeeeeannes 41

(O g F=T o] =] gl TR OPRRPPRRRRN 42
Design and IMpIemeNtatiONooiiiiiiiie et nre e 42
6.1. WAMG SEQUENCE DIAGIAMS.veiiiiiieiitieeiiiee st ee ettt ettt ettt e st e e e ssbeessnbeeeanaeeesnaeeans 42
6.1.1 ACCOMMOUALE PATAMELET. ...cciueiieiiiiieiiieeeiee et ettt e e et e e e e e esb e e et e e anbeeeanaeaeas 43
6.1.2 GeL 1ENGtN MAX. oot et 44
6.1.3 Get MINIMUM 1ENGEN . ..o 45
6.1.4 PArse PArGMELET ...oeiiiiiiiiie ittt e ettt e e et r e e et e e e et r e e e e nr e e e e e e anees 46
6.1.5 Match CONtENt PArAMELEEc.veiiiiiie e 47
6.1.6 PrOCESS PATGMELET . ..ottt ettt e et r e e et e e e e s eab b e e e e e nrr e e e e annes 48
6.1.7 AUt 109 ENEIY FEAUET.eeiiieiie et e e nnaeeen 49
6.1.8 MatCh CONtENt PALLEINS. ..oiiieiiii et snaee e 50
I O - B I T-To] -1 PP URPRRTPRIN 51
6.2.1 Class diagram for learning data using access 10g. ccoovveiiiiiiiin i 53
6.2.2 Class diagram for rule GENEratorcccooiiiiiiiieiie e 55
6.2.3 Class diagram for HTTP TransactiOn ccccveiiiiiiiiieiiie e 56
6.2.4 Class diagram 0f CBR MOAUIE cooiiiiiieee e 57
B.2.5 SUMIMAIY .ottt e et e e e ekt e e s ekt b e e e e e bbr e e e e anbb e e e e e e anbbeeeesannes 58
(O F=T o] o RO OPRUPRRRRN 59
RESUILS . ettt e e e R e e nr e e e e anae e e nneeeennes 59
7.1, SYSIEM BVAIUALION......oiiiiiieiiie ettt ba e eeaneee s 59
7.2, SYSEEM ENVOUIMIMENTiiiiiiiiiee ittt e ettt e et et e et e e e e e bbb e e e e s bbe e e e e sssbeaeeaneneaeeeennes 59
A T oA V-1 [0 14 (o] g I 1= - RSP UPRTPPRI 59
T o 1o V7T PR PRPPRRTIN 60
S T V-1 [0 14 (o] o IR TPROPRRTIN 61
7.6, SUMIMEAIY ...ttt ettt ettt e ettt e oottt e e ek bt e e e e bbbt e e e e st bt e e e e bbb e e e e e e bbbt e e s anbbeaeeanees 62
(00§ F=T o] =T o TR OPRUPRRRRN 63
Conclusion and fULUIE WOTKoouiiiiiiiiie et 63
ST 70T Tod 11 (o] o PR TPROPRRIN 63
ST V1 (0] (Y o] ¢ PP TPROTRRIN 63
([i]

R B O N BINICES . oot e e et e aarr i —aaaaa 64

[vii

'

List of Figures

Table of
Figure 1.1:

Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 3.1:
Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Contents

Technology breakdown with respect to attacks...........cccovvieiiiiiiiii e, 2
Traditional web application firewall ..., 3
ArChItecture OF CBRocviiiiii e e 12
CaSe FELIEVAI PIrOCESSveiiiiieiiiie ettt ettt et e et e e rae e e srbe e e nneeas 13
Case based adaptationcocuieiiiie e 14
Input sources to Web appliCAtIONcoouiiiiiiiiiiie e 19
Input sources to Web appliCAtIONcoouiiiiiiiiiiii e 25
SYSEEM ArCHITECTUIE ..o 28
RESOUICE TFBE.....ce ettt e e e e e e e e e s aannees 32
XIMIL TUIE SEFUCTUIE. ...ttt e 34
Selection criteria Of CBR........coiiiiiiiie e 35
Cases learned from the previous data...........cceeiieeiiiiieiiee e 36
Cases learned from the NEW data...........ccuvviiiiiiiiie i 36
RESUILS. et 39
Case based MAINIENANCEoooiiiiiiiiie et e e sneeas 40

Abstract

Web applications security has become critically vibrant. Traditionally the "default allow™ model
has been used for securing web applications, but this approach has exposed web applications to a
plethora of attacks. Default deny model, on the other hand provides more restricted security to
the web applications. This approach depends on building a model for the application and then
allowing only those requests that comply with model and ignoring everything else. An
innovative and effective methodology being adopted which lead to the analysis of valid
application requests and as a result semi-structured XML cases for the web application being
generated. Moreover, learning techniques are being adopted resulting to more mature and strong
generated XML cases. This positive security model namely Web Application Model Generator
(WAMG) consists of three components namely 1. Automatic white list cases generation Module,
2. Resource Tree Generator and 3.Case Based Reasoning. AMG needs to be described using a
standardized XML language. The format should be able to describe all the three components of
the positive security model accurately. We build this model through analysis of valid traffic logs
in offline mode. The model is represented in the form of XML based cases. This system will be
evaluated on the basis of fact that the XML file containing cases is being generating correctly
according to the XML format. Moreover, it is ensured that splitting of malicious and non
malicious traffic is carried out successfully. Results prove its effectiveness of rule generation
using access traffic log of cross site scripting (XSS), SQL injection, JS Charcode, HTTP

Request Splitting, HTTP response splitting and Buffer overflow attacks.

Chapter 1: Introduction

Web Applications security has become progressively more important these days. Enormous
numbers of attacks are being deployed on the web application layer. Due to dramatic increase in
Web applications, security gets vulnerable to variety of threats. Most of these attacks are targeted
towards the web application layer and network firewall alone cannot prevent these kinds of
attacks. The basic reason behind success of these attacks is the ignorance of application
developers while writing the web applications and the wvulnerabilities in the existing
technologies. There are different technologies from various vendors for implementing same
standards, e.g. Common Gateway Interface (CGI) is the standard mechanism for specifying the
work of dynamic web application. Different technologies like ASP and ASP.NET, JSP and PHP
to name a few exist for implementing the same technology in different ways and hence results in
increasing complexities entailing in added security concerns. Figure 1 shows various

technologies with respect to vulnerabilities found in their implementations.

The rapid development in Web 2.0 and evolution of social networks became centric to the
hackers. Considering above fact, web applications are the most vulnerable. 75% of attacks are
being deployed on web application layer [1, 2, 3, 4]. 81% of these attacks are targeted on
payment card industry. The organizations which uses shared and default credentials give 51 % of
the data to the hackers [5]. According to site security monitor that in every 90 breaches there are
285 million records exposed and that is greater the 230 millions exposed records in previous 5
years [6]. 30% of each 57 attacks are carried out using SQL injection attack [5] that’s why the

web application security is the most important these.

Fig [1]: Technology Breakdown with respect to attacks

The underlying layers like network layer are mature enough to survive attacks on that layer due
to extensive research upon security of network layer. Web application layer is most vulnerable to
these attacks unlike the network layer. Fig 2 shows the architecture of traditional network
firewalls. Such kind of network firewall cannot stop the application layer attacks because of

some conventional problems with web application layers as given in the following:

e Web applications are so dynamic that traditional network level firewalls using black
listing approach are not able to detect these kinds of attacks.
e Web applications always require custom tuning.

e It does not protect Port 80 and 443[9].

Application ‘. Database
I Server
Application

Fig [2]: Traditional Web Application Firewall [10]

Due to the problems mentioned above, the Web Application Firewalls (WAFs) are used to
protect the web application layer. WAFs prevent web application form different classes of
attacks like XSS, SQL Injection, and Directory Traversal etc. Traditionally WAFs use two

different approaches to prevent from web attacks i.e.

1. Default allow model (Black List)

2. Default Deny model(White List)

1.1. Default allow model.

Defaults allow model is also called the black listing approach. It is widely used by most of the
firewalls [25,26]. It allows all kinds of traffic but only stops the traffic which is detected by
WAF. When the input(HTTP packet)is received at the security gateway, it is first compared to

already created list of exploits or black list. If the input matches, it will be considered malicious

and consequently discarded. Traditionally the default allows model has been used for securing
web applications. But this approach has exposed web applications to a numerous attacks like

XSS,SQLI, Input validation attacks etc.

1.2. Default Deny Model

Default denies model is also known as the White List. White List approach denies all kind of
traffic. It only allows the benign traffic. It maintains a list of all the parameters in the web
application and allows the traffic according to input type of the parameter by disallowing rest of
the traffic[27]. This will reduce the chances of Zero day attack and many other attacks such as
Buffer Overflow, forceful browsing and Injection flows to mention a few. Moreover, it prevents

the attacks done using PUT and Delete methods of HTTP.

Black List is used widely out of these two techniques though it has some associated

(conventional) problem as given in the following:

e Blacklist always needs to be updated with emergence of every new attack for it contains
the signatures of attacks developed by analyzing attacks on the web application.

e Blacklist cannot detect any variation in attack whose signature is present in the black list.
Therefore, it is ineffective against the Zero Day Attack.

e It can expand the surface of attack by manifold.

e |t can accept any request except the request it can handle.

e Database grows with time and makes the system slow.

Intrusion Detection Systems (IDSs) are being categorized as misuse detection and anomaly

detection systems, most of which follows negative security model like SNORT-IDS [7]. Because

of the issues mentioned above these systems do not prove good against the polymorphic
variation of attack and Zero Day attack. A very good approach would be the manual creation of
Blacklist. This technique will be very effective against Zero Day Attack and polymorphic
variations of attack. Currently no data mining approach has proved effective for the generation of
automatic blacklist creation [8].

Blacklist is an inefficient technique for the detection of attacks on web application. Here we need
an appropriate validation technique for the web applications that can make profile of these web
applications and check the input types of the parameters. This allows only valid inputs. The

purpose will be served by Default Deny Model (White List).

e |t can generate profile of the Web application and generates policy through learning. This
is a good technique for it performs proper validation of the parameters and is effective
against unwanted traffic.

e It only allows the traffic detected by rules and rejects everything else. That’s why it is
effective against the Zero Day attack and new variation of attacks.

e |t can prevent form the forceful browsing attacks, injection attacks like SQL injection,
buffer over flow attacks and many more.

e |t decreases the surface of attacks.

e It eliminates the attacks caused by error(s) in web server.

White List proved much effective against the web application attacks. Policy generation
through learning is very efficient technique; therefore, we need a learning mechanism useful

against the web attacks and can generate more mature and adaptive

1.3. Thesis organization

This thesis is ordered into eight different chapters. Chapter 2 provides a background of the web
application security, it gives an overview of learning techniques and why learning is important
for White List. Chapter 3 presents literature survey to have an idea about the existing limitations
in White List, which can help us to propose an efficient and effective solution. Chapter 4
highlights some facts and figure that demonstrates the increasing number of application level
attacks. Furthermore, it emphasizes its criticality that demands a serious effort for an effective
solution. Chapter 5 presents the proposed solution and its system architecture. Chapter 6
presents the proposed system design and implementation. Chapter 7 demonstrates the system
evaluation carried out to prove proposed system effectiveness over other existing systems. The
system evaluation is mainly focused on the detection ability and overall system features.

Chapter 8 presents the conclusion and future work.

Chapter 2: Background

2.1. Introduction
75% of the total attacks are being deployed over the web application layer hence more

vulnerable to the attacks as compare to network layer .Network firewall can block all the
traffic but it leaves the traffic of port 443 and port 80 (ports for web application
traffic).This is the reason, why web application layer is becoming vulnerable to attacks as
network firewall leave the web application security over the application developers [9].
Developers have to write the safe code that is invulnerable to attacks. Most of the
developers of the web applications do not know how to write safe code hence causing the
chances of attacks to increase with overwhelming commencement of web applications.
However, writing the safe code is not an easy task with some limitations in existing
technologies e.g. there is a shortcoming of C that it is prone to Buffer Overflow attack or
some components of web 2.0 like AJAX are given priorities and are scheduled before the
security.

If we are not able to comply with the condition of working out the safe code then other
possible solution is to deploy a WAF. It is mostly done for the web application security
because these firewalls are developed specially for application layer attacks. Most of the
WAFs have deficiencies because of using black listing techniques. So we need some
mechanism that can stop the web application attacks effectively and efficiently. That’s
why we need White Listing for the security of Web Applications. Black listing is

definitely not the trust worthy technique as it works only with the known attacks. So we

have to use the White Listing technique which helps in protecting form the Zero day

attacks and many other attacks mentioned above in Chapterl.

2.2. Learning techniques.

White Listing is a very good approach for web application security but the problem
with this technique is
When and how we can learn the rules?
How we can make this White Listing technique more effective?
How we can adapt the rule to create much better and more mature rules for the web
application?
In answering these vital questions, we present learning techniques as a solution.
Learning will help us to:
e Detect the changes in the web application and adapt the rules according the
web application.
e Learn from mistakes committed in past.
e Check the validity of inputs of each parameter.
o Differentiate between the free parameter and discrete parameter.
There are basically two types of systems.
1. Rule Based system
2. Case Based Reasoning systems.

2.2.1. Rule based systems

Rule bases system (RBS) are basically the If-then conditions and the rule based

system contains set of rules which are conditions C1,C2,C3....Cn. In case of a new

2.2.2.

2.2.3.

problem, solution of the problem is checked according to the given conditions.
Additionally RBS contains an inference engine in it. It works as a comparing
module which holds the data in it, and then compares it in the working memory
with the condition part of the rule and decides which rule to fire [10]. It also
determines the best sequence of rules to fire. Its working will be more efficient as
size of its knowledge base increases [10]. Rule based systems are very efficient

and are widely used in most of the learning systems [10].
Case based reasoning systems.

Case-based reasoning (CBR) pertains to the concepts and methods that touches

upon some of the fundamental subject including reasoning, knowledge

representation, and learning from knowledge.CBR uses previous knowledge to

solve the problem. It represents the human reasoning because when we have a new
problem we refer to our previous experiences and then try to solve the problem on
the basis of how previous problem was solved. Advantage of CBR is that we can
learn from previous mistakes. With each new iteration of learning we have more
mature rules for our system. It makes the knowledge acquisition task very easy and

is faster than other conventional systems.
CBR VS Rule Based Systems.

CBR is opposite of the rule based system. Rule based systems are slower because
it has the inference engine which works to compare and execute the conditions
according to the rules. RBS needs a lot of time for knowledge acquisition, and it is

adaptation will improve with a knowledge base having handsome number of rules.

This huge knowledge base will however increase the decision time which is very
important aspect in a security application. On the other hand CBR can do
reasoning with a limited amount of time. It uses an incremental approach for
building Knowledge base. With the maintenance feature of CBR it eliminates the
useless rules from the knowledge base and keeps knowledge base in a limit. It
makes the knowledge acquisition task easy by using the previous cases and it can
build the case base with less knowledge. In Security applications CBR is the best

choice because it is faster than the rule based systems [11].

2.3. Advantages of CBR

2.3.1.

2.3.2.

2.3.3.

Evade repeating mistakes made in the past.

It uses the incremental approach for the development of Knowledge base. It
analyzes the previous and current cases and then updates the case base according
to the pattern of inputs hence each and every time it corrects it.

Trim down knowledge acquisition.

It eliminates the need to extract a model or a set of rules, as is necessary in
model/rule-based systems. The understanding of acquisition tasks of CBR consists
primarily of the collection of appropriate experiences/cases, their demonstration
and storage space.

Providing flexibility in comprehension modeling.

Other systems cannot often cater the problem which resides in the boundary of the
solution or which cannot be determined by their rules. They need a very good

understanding of the domain which leads to a huge knowledge base. In the case of

2.3.4.

2.3.5.

2.3.6.

2.3.7.

2.3.8.

CBR it uses previous cases for domain knowledge which will provide reasonable

adaptation of the new problem.

Analysis in domains that have not been fully implicit, distinct, or

modeled.

In those situation where you have a small knowledge of domain CBR will also
work in that domain with a small amount of knowledge.

Over the time learning.

It uses the incremental approach for learning of knowledge. As it caters more
problems it also increases the knowledge base as well.

Reasoning in a sphere with a small knowledge.

At the start, the case base reasoner works on few cases of problem domain and
then gradually builds its knowledge base with the increase of more cases. The
accumulation of new cases will cause the system to enlarge in strategy that is
determined by the cases encountered in its problem-solving activities.

Broaden the range of domains.

CBR can be extended to a broad range of domains. It is easy to implement and it
can be represented in a limitless number of implementation in indexing and
adaptation of new cases.

Shimmering human reasoning

CBR represents human reasoning as humans encounter a problem they refers to
previous cases and then try to solve the problem so CBR also has previous cases

referred to solve a new problem and to adapt the cases.

2.4. Architecture of CBR
Fig 4 we have the architecture of CBR

Praobierm

Confirmed Suggested
solution solution

Fig 2.1.Architecture of CBR [11].

CBR have four phases
e Retrieve

CASE retrieval is the process of finding the cases which are similar to the new problems

which are very near to the problem. Fig [2.2] shows the Case Retrieval process of CBR.

Input specification
of query case

Query i
Case retrieval T|Case base

Y

Refine query and Case(s)
retrigve again h |
Analysis of » Goto
retrieval

adaptation

Case appropriate
to adapt

Inappropriate case—
further retrievals
not possible

Fig 2.2 : Case retrieval process [11].
Whenever a new case comes to the case base, it will send a query to the case base and
retrieve similar cases form the case base. The cases will be analyzed to find the similar

cases form the case base [11].
Reuse

After the analysis of the previous cases, if CBR finds cases which is similar to the

previous cases then it will use the pattern and solve the new case.
Revise

If the solution is not according to the problem then the process of revision will start. It
also called the process of adaptation. It gives solution of the new problem and makes a

new case out of it. Figure 2.3 show the process of revising the solution.

Retrieved

cass
Fossible
Case - = Case base ||
adaptation interaction
L

Imiermal
assessment of - {I:"L.lt|:_u.rt
solution Solution addresses solution

Solution doesn't current problem

address current
problem

Fig 2.3. Case based adaptation [11].
e Retain

The larger the case library, the greater the problem space covered. However, this would
also downgrade system performance if the number of cases were to grow unacceptably
high. Case based systems remove redundant or less useful cases to attain an acceptable
error level is one of the most important tasks in maintaining CBR systems.
2.5. Summary
For the protection of web application we need some strong mechanism for the detection of web
application attacks and also to avoid Zero Day Attacks. White Listing is most strong technique
for the prevention of such attacks. Profile generation is the most powerful technique for White
Listing and for this we need some learning technique, capable of learning for the log of the web

application and generate a model of the web application.

Chapter 3: Literature Survey

3.1. Conventional input validation techniques

As we saw in the preceding section that the core foundation of various application layer attacks
is due to the incapability of the web application to sieve malicious content being input.
Fundamentally to filter or validate input we need to employee validation list that is the most
widely used technique. This contains the list of either legitimate or illegitimate expected inputs.
The input when arrives is first checked against this already built list and then marked as

legitimate or illicit.

White List is used for authentication of user inputs that are being deployed on several web
applications. The White List contains all legitimate input values that are considered permissible
for the web application. The user input is first compared to the entries in the white-list and if

found in the list, it is considered as legitimate and is permitted otherwise it will be blocked.

Few of the observed problems in deploying White List are as below:

3.1.1. Updating and maintenance problem:

The White List is generally application specific and it requires to be updated when there is
any modification in the web application to which they are coupled with. Everyday attackers
are becoming more and more dynamic and using various new kinds of attack vectors. It
often uses code injection attacks like Forceful browsing, Cross Site Scripting (XSS), and

SQL Injection etc. According to OWASP these kinds of attacks are endlessly escalating

day by day despite of many counter measures. Attackers are using more robust attacking
techniques and hence able to circumvent the already engaged filtering techniques. To
protect our applications from these modern attacks, there is need of unremitting update and
maintenance of the White List. This is again a complex task as it needs nonstop

development endeavor that is unfeasible in most of the cases.

3.1.2. Time intense task:

Development of White List is also a time intensive task and more often overlooked.
Generally developers work in extreme pressure and under strict time deadlines, so they
tend to focus on functionality rather than the safekeeping of the application. In most of
the cases they are usually not aware of the security aspects of the application and leave
the loop holes for the attacker to be exploited. Developer of the application knows, how
to built the application but unaware of security concerns of web applications. In
commercial level development the developers know the security concerns because it is
very important for business and hence they follow security measures and try to employ
defense mechanism for the security of application. Development of these defense
strategies is itself time intensive and more often results in conflicting deadlines. Usually
developers examine carefully all the input values to the application and then embed
validation schemes, like in the application source code. It is highly time consuming task
considering big applications have several inputs and to consider each and each value to
embed in White List itself needs lot of time. It requires understanding the permissible

range of the values, format, size etc of that thorough knowledge of input.

3.1.3. Incompatibility with legacy applications:

The other discrepancy with this conventional White List approach is that it cannot be
deployed for existing applications. What could be our approach to deal with the security of
already built legacy applications? It would be very hard to maintain or develop white Lists
for existing applications that are already functioning. It consumes a lot of time as well as to
embed these lists into already functioning applications would also require modifications (to
make compatible with the changes) in to the existing application. Similarly to protect
already built and functioning legacy applications the developers have to face two problems
i.e. in most of the cases the source code is copyrighted and can’t be altered and the 2™
problem is that most of the cases the source code is shipped in binary forms e.g., in the
form of dynamic link library (.dll) file or java .class. In such cases, to include White List or
black list in the source code is impossible. Here conventional approach completely fails,
and the only solution to secure these applications is the employment of application layer
gateway that constitutes the validation mechanism capable of filtering these malicious

contents.
3.1.4. Dealing with many sources of input:

The other difficulty with this White List approach is that, there are many sources of
conveyance of input to the web applications, so in order to properly authenticate input we
must consider each and every source of input and then the White List should be made

exclusively according to these input sources. There are many sources of input for web

application the four broad categories of sources of input are user input, databases, 3" party
applications, other network and desktop applications with which web applications interact
through defined interfaces. This is shown in the fig 3.1. This is also a time intense job for
developers to validate and analyze all the upcoming inputs towards web application that
take away their consideration from properly applying the functionality and further
increases the ambiguity in their minds. Maintaining of White List is another big challenge.
The updating of validation list with respect to specific web application is respectively easy
to perform but if there is a change in those applications that lies outside your web
applications then it is difficult to understand those modifications and it further complicates

the task of updating validation list.

User Input

Post, query,
referrer,
cookies
3 party Services Database
Weh services, RDBMS,
content feed XML, FLAT
like RSS, Atom FILES

Other Applications

Through defined
interfaces, RMI,
CORBA, etc

Figure 3.1: Input Sources to web application [12]

3.2. Review of papers
This section contains the review of some of the papers which can provide the overview of

some problems of black lists, White Lists and dynamicity of the web applications.
3.2.1. Using generalization and characterization Techniques in the Anomaly-

based Detection of Web Attacks [13].

This paper describes a novel approach to detect the malicious patterns in inputs of the

web applications. The approach described in the paper uses an anomaly generalization

3.2.2.

technique which translate malicious requests in to signatures then the similar anomalies
are grouped together to identify similar kind of alerts in future. They have presented an
anomaly generalization technique which can detect the malicious inputs and then also
generalize them for the detection of similar attacks which can help in the detection of
similar attacks. They are using probability techniques attribute length for the detection of
buffer overflow attack, character distribution using character frequency analysis for the
occurrence of characters in the http packets for the detection of buffer overflow attack,
Directory traversal attack and SQI injection attacks. It uses token finder technique for the
detection of malicious token in the http packet. It also uses a heuristic approach to infer
the type of attack on the application to help the administrator to cater the false positives
issues. The paper presents a novel technique for the detection of attacks on application
layer but the problem is that it can detect only four types of attacks XSS, SQL injection,
buffer overflow attack, and directory traversal attack .administrator plays a vital role for
the detection of attack because it will group the similar anomalies and then administrator
have to decide whether it is a false positive or a false negative and if administrator make
a wrong decision then that particular type of anomalies are allowed in the system and this
will make the system vulnerable to attacks. This system is not able to learn the behavior
of normal traffic. At the same time, system is not fully automated because the

administrator has to decide about the false positives and the false negatives.

Protecting a moving target: Addressing web application Concept Drift
[14].

The paper focuses on the change management in the web applications. Web applications

change with the passage of time and these changes cause attacks on the applications

3.2.3.

because as every time logic changes in the application then number of bugs and loop
holes also increases with the change and this help attackers to attack on the web
application. The purposed technique in this paper will help to learn the changes in the
application and then it automatically adapts the anomaly detection model according to the
change for effective detection of attacks. It uses the technique of http response modeling
and this helps to detect the parameter changes in the application and also it learn the new
parameter in the application which helps to update the session and request model of the
application. It models the request and response for the detection of various application
level attacks like XSS, SQL injection and Directory traversal attack etc. It also models
the session of the application to detect the CSRF, Session authentication attacks. The
problem with this technique is that it can only detect the changes in the dynamic web
application but for the static applications it cannot work. It also did not work in the case
of java script if there is a change in the java script it cannot detect it. It also cannot detect
the rich and media dependent response model these are the component that are installed
at the client side like flash, adobe and Microsoft Silverlight application. If we can detect
the changes in the application effectively then it would be very useful for the detection of
web attacks because if one knows the model of the application you can identify the
discrepancies in the application and with this information you can easily secure the

application.
On the automated creation of understandable positive security models
for web applications [8].

The paper presents a technique which is based on the creation of White List for the

detection of web application attacks. According to the author network based firewalls

cannot protect against the web application attacks. To protect against the web attacks we
have to define some techniques for the detection of web attacks. Although we can define
black list, but black lists are ineffective against zero day attack and we have to make
White List for the better detection of zero day attacks and other class of web attacks.
Authors have given the concept of resource tree which define the hierarchal structure of
the web application this will help to prevent the force full browsing attacks. Authors also
have defined the parameter validity criteria. It also describes the validity of the parameter
in terms of the input given by users. This technique uses XML for the faster access of
data. This technique is very useful for the creation of White List and description of the
parameter validity but it did not cater the change in the web applications because web
application changes over time and with change of new parameters are introduced in the
web application. So this technique will not work against the dynamic web sites, where
thousands of users create new pages every day but this technique will not cater these
changes. Another problem with this technique is that it did not create mature rules and
also it did not check that the parameter is fake planted by an attack or not. It causes many

attacks on the application in terms of parameter tempering.

3.3. Summary

This chapter has provided the literature survey that demonstrates various existing problems
of White List. It also detailed the restrictions of these existing systems that make them

ineffective for recent expanding application level attacks.

Chapter 4: Motivations

4.1. Research motivation

Web Applications security has become increasingly important. Traditionally the Default
Allow Model has been used for securing web applications. But this approach has exposed
web applications to a plethora of attacks. Default deny model, on the other hand provides
fairly strong security to the web applications. This approach depends on building of a
model for the application and then allowing only those requests that compiles the model
and refusing every other request.

Black list approach has gained exponential growth in the knowledge base which makes the
system slower and it is also a source of creating a large amount of false positives which
result in the blocking of legitimate requests [15]. It is also a time consuming task and also
needs hard work for the creation of black list signatures and it is ineffective against the
polymorphic variation of various web attacks and also against Zero day attacks.

On the other hand White List is more secure and more accurate then the black list [15]. It
also create generate less false positives then the black list [15]. White List is faster than the
black list and it is very much effective against the zero day attacks and the polymorphic
variation of web attacks.

There are various problems in existing systems as mentioned in chapter 3.it is hard to
maintain and take too much time in its creation because in White List approach, we have to
maintain each and every parameter of the web application. It itself is a hectic task for the

administrator and with the change in the web application architecture we have to maintain

4.2.

the White List. We need some mechanism to learn the changes in the web application and
also check the validity of the parameter. It is also required to check the parameter in terms
of input that, what the valid inputs for the parameter and it are learns the changes in the
system and then adapt the new changes of the parameter by analyzing the previous and new
information. It can learn from the mistakes done in the past. It has some mechanisms that
eliminate invalid or useless rules for keeping the knowledge base up to date, useful and

precise.

Research scope.

Application security needs to have main conventional technique which provides security to
the application layer e.g. Black List and White List approach. White List has proven much
better than the black List but it deals with many problems as mentioned above. Web
Application security is the sub domain of the Application security which is further divided
into White List and Black List as described in Fig 4.1. The focus of the thesis is to provide
such a mechanism for White List that can learn the changes in the web application and can
correct itself over the time and also address the conventional problems of the White Listing

technique.

Information

security
Network layer Operating Database Application X
Security System security Security layer security |
P2P Application Email Security Web Application
security security

1
Black list ' Whitelist |
security ! security :
1
! 1

Figure 4.1: Research scope

4.3. Aims of purposed technique

In the light of the issues, we have explored in the criticism of existing solutions given rise

to below explained potential solution.

4.4.

Aims and objectives
Study of the present techniques of generation of Positive Security Model (PSM) and their
strengths and weaknesses.
Development of a module for SWAF which analyses the valid application requests and
generates XML cases for the application.
Generation of more mature and stronger cases using learning technique.
Develop such a mechanism that can make more mature rules and learn from the mistakes
of the past and correct itself.
It should be capable of learning and adapting the changes in the web application.
Summary
This chapter explains, how crucial the application level security is, and validity of White
List security on the basis of different facts and surveys carried out by various authentic
sources. Despite different existing White List security mechanisms, the rising figure of
application level attacks has created the urge to investigate a valuable solution for

application level attacks.

Chapter 5: System Architecture

5.1. Proposed solution
Considering all the issues asserted in chapter 3, architecture is designed to address those
issues. The proposed system comprises of the features given in the following:
e System analyzes the log and consequently generates the profile of web application
according to the Semi Structured XML format.
e System operates based on effective machine learning technique (namely CBR),
which can generate mature White List rules.
e System is able to learn the changes in the web application.
e Generation of White List is an offline process that is anticipated to save run time
processing.
5.2. Abstract architecture
Following are the three modular components of positive security:-
e Automatic White List Cases Generation Module
e Resource Tree
e Case Based Reasoning
This process of creating White List rules and learning through CBR has two iterations as

given below

5.3. First time learning (1st iteration)
First iteration works to automatically generate SWAF White List Cases in Sami structured

white list rules, whose detailed architecture is given in Figure 5.1.

e et

Policy
Generator

Learner

Interceptor

Figure 5.1: System Architecture

Each of the components illustrated above is given in the following.

5.3.1.Access log
There are two ways to collect the data from the web application

1. Web Crawler

2. Log Scanning

In these two techniques log scanning is the better technique because

* Web crawler cannot comprehend the dynamicity of the web application.

* Web crawler learning is not realistic as it is blind to the user inputs and can not access the

restricted parts of the web application; log scanning leads us to realistic learning.

* We can observe the degree of web application’s dynamicity with the help of log, as we
can figure out different inputs given by user. By analyzing these inputs we can generate

more mature White List rule.

Access log is the most important part of this module. It collects HTTP request and response, on
the basis of this information, we decide which request is valid and which is invalid [12].
Moreover, it also helps us to see the request architecture and the response generated by the web
application against the request. System collects all the data from the access log through log

scanning. The request header checked for the generating White Listing rules are:

Date timestamp Accept-Encoding
Hostname with port no Accept-Charset
Client address with port no Keep-Alive
Accept-Language Http Referrer
Full Resource URL with parameter Content-Length
Method name Content-Type

Table 5.1: Access log components.

5.3.2. Interceptor

It segregates the valid and invalid requests by analyzing the response of request. Moreover,

following potential operations are performed by this interceptor:

* On the basis of response, it checks the invalid request and then eliminates these
requests.

» Checks which IP previously generated the attack and eliminates all the request form
that IP.

» Formation of requests and then sends it to the learning module.

5.3.3. Learner

This module compares different parts of the request with patterns in Pattern Repository and picks

the matching pattern (regex).

» Learns cardinality and size of the parameters

» Checks the media type of the request.

» Checks the methods regex of the request.

» Sends the data to the case generator module.

* Min threshold (MT); it will see the minimum requests sufficient to create the case for
specific resource; if the minimum threshold is met then it generates the case

otherwise it does not.

* Max threshold (MXT): on achieving maximum threshold, the case confidence should
be 100% and decision made by the case is 100% accurate requiring no extra defense
mechanism.

» Ifanoccurrence of a resource crosses MT then we create its case with the confidence
level.

Note: Confidence: is the parameter that helps us to determine that how strong the

Case is.

5.3.4. Regex repository

The repository contains many regex and is completely configurable by administrator. We can

also send the updated repository as an update.

5.3.5. Case generator module

It takes all the data in form of learning module and then generates the Semi Structured XML
format. It also creates the resource tree and this is a very important component. Some of the

advantages of the resource tree is listed blew.

It protects against CSRF () attacks.

. It helps to track user behavior as shown in the Figure 5.2. If the normal behavior of the
user (first login and then go to the inbox), but when it will directly go the Inbox this will show

the malicious behavior.

. It tells us when to start the learning process. If a new URL comes then it sends to
blacklist and include it in the resource tree. Whenever the new URL request is greater than the

threshold given by administrator then resource tree will start the process of learning.

A typical structure of a resource tree is given in the Figure 5.2.

LOGIN

-
- .

Figure 5.2: Resource tree.

After the end of first iteration Semi structure rules in XML are created for the web application,

the structure of the Semi structure rules in XML are shown in figure 5.3.

32

—
| —

<WARL-GURD>

{Application name="10,3.18.230" method regex= "1*(GET|HERD|POST) 8"
contentType regex= "1~ (zpplication/x-ww-form-urlencoded) ">

¢Resource URI ="/webgoat/attack " Method ="GET"
param regex= "I*(Screen|menu|stage |atart|swaftokenid) 8" confidence="2"

{parameter name ="Screen" datatype=" digits" regex=""([0-9]4+)%" minlength="2"
mincordinality= "0" maxcordinality= "1" Confidance="2"/>

</Resourcey

</Lpplicationy
< /WERL-GURDY

Figure 5.3: XML rule structure.

5.4. Second iteration of the system

maxlength="an

After first iteration learning, the resulting cases will be added to the case base. Whenever

administrator flushes the database, the learning process starts before the flushing of database to

generate the profile. This means that every time the cases are generated by a new data (as a result

of flushing the data). For the generation of mature rules, we need some process for the

integration of the previous cases and the new cases. For this purpose we use Case based

reasoning.

For the first learning in first iteration, our learning module will calculate these given parameters:

« Min threshold (MT): How many minimum requests are sufficient to create the

case for the specific resource? If the minimum threshold is met then it generates the

case otherwise not.

5.5.

resource on which the rule is 100% accurate and its confidence is 100%.

achieving maximum threshold decision made by this rule will be correct.

Max threshold (MXT):Max threshold means maximum number of requests for a

By

Confidence: The confidence parameter helps us to determine how strong rule is.

Figure 5.3 shows the Semi structure rules in XML rules that contain these parameters.

2" time learning

After first time learning iteration, we get a case base containing cases. The second time learning

takes place in following scenarios

After any of the above cases is triggered, algorithm is re-executed and cases are generated in

Before flushing access log database (Time based).

With Significant changes in the resource tree

temporary files. We retrieve the cases from previous file by matching their application name and

resource URI.

<WARL-GURD>

—

—_——__—_——‘

— = —
— ——

< sResource URI ‘"/webgoat/attack "> Method ="GET"

i B

param regex= "1~ (Screen|menu|stage|start|swaftokenid)$" confidence="2" >

<parameter name ="Screen" datatype=" digits" regex=""([0-9]+)§" minlength="2"
mincordinality= "0" maxcordinality= "1" Confidance="2"/>
</Resource>

</Bpplication>
</WERL-GURD>

Fig 5.4: Selection criteria of CBR

maxlength="2"

5.5.1. Case retrieval

Case retrieval is an important aspect of CBR. Once we have a problem case, we try to retrieve
similar one out of the previous cases form the case base. This is carried out on the basis of a
similarity metric. Later, the decision about reusing the retrieved case(s) is made on the basis of

similarity threshold. Figure 5.4 shows the selection criteria of cases from CBR.

» Application name is checked followed by resource name checking.
» Ifapplication name and resource are matched, parameters similarity is computed.
» The formula for similarity assessment of cases in case base is “common/common +

different”.

5.4.3. Case Learning (Adaptation)

The adaptation process is done by comparing two XML file. First file contains the learned data

from the previous cases existing in the case base. This is shown in Figure 5.5.

<WARL-GURD>

<Application name="10.3.18.230" method_regex= "1~ (GET|HEAD|POST)S"
contentType_regex= "!” (application/x-www-form-urlencoded) ">

<Resource URI ="/webgoat/attack " Method ="GET" last modified = "10/08/2010"
param regex= i~ (Screen|menu)$" confidence="Z" >

<paramecer name ="S5creen” dacatype=" digicsa" regex=""([0-9]+)§" minlength="2" maxlength="2"
mincordinalicty= "O" maxcordinalicy= "1" Confidance="2"/>
<parameter name ="menu" datatype=" digits" regex=""([0-9]1+)§" minlength="4" maxlength="4"
mincordinality= "0" maxcordinality= "1" Confidance=2 />

</Resource>

</Application>
</WERL-GURD:

Fig 5.5: Cases learned from the previous data.

The second file contains the cases emanating from the new learning cycle as shown in the

Figure 5.6.

<WARL-GURD>

<Application name="10.3.18.230" method regex= "!*(GET|HEAD|POST)S"
contentType regex= "!*(application/x-www-form-urlencoded)">

<Respurce URI ="/webgoat/attack " Method ="GEI" last modified = "10/08/2010"
param regex= "!” (Screen|menu|stage)$" confidence="Z" >

<parameter name ="Screen” datatype=" digita® regex="*([0=9]+)5" minlength="2" maxlength="2#
mincordinality= "0" maxcordinality= "1" Confidanses=n2n/s
<parameter name ="menu" datatype=" string" regex="*([-0-%a-zA-Z]+)§" minlength="&" maxlength="7'
mincordinality= "0" maxcordinality= "1* Confidance="{" />
{pATANATAY RAME ="sTage" datatyps=" digits ragax="" ([0-9]+)§" minlength="1" maxlangrh="1"
mincordinality= "0" maxcordinality= "1" Confidance="]" />
</Respurce>
</hpplication>

</WERL-GURD>

Fig 5.6: Cases learned from the new data.

Whenever new learning takes place as a result of new case coming, having no corresponding
solution in the case base; previous and new case base files are analyzed. If there is some
difference in the both of the files (case bases) then the adaptation process starts. Algorithm of

adaptation process is given blew.
54.3.1. Adaptation process algorithm

1. Match the application name and the resource name. If they are 100% similar then we will

fetch the cases and then start the adaptation process.

2. Inthe adaption process there are three conditions:

a.

It will first see the parameter name if it is 100 % matched then see its min regex,
max length regex and the min max cordiality. If all if all are 100 % matched as in
the first parameter “Screen” then it will add the confidence by adding the previous
confidence and the new confidence. As you can see in the results file, the new

confidence for the new case is 3.

In the case of 2™ parameter named “Menu” this minimum and the maximum
value is changed such that parameter properties do not match. Therefore, it will

adapt this case.
I. For minimum value it will apply this function

“min {vi,v2 }”
where v1= previous value
V2= new value

it takes the min from both values.
ii. For maximum value it will apply following function

“max{vl,v2 }”’
where v1= previous value
V2= new value

it takes the max from both values.

iii. I the regex is not matched then it matches first regex with all the current

inputs. New inputs that are not matched are sent to the blacklist. If these

inputs match with the system then the previous regex is retained otherwise

new one is created.

iv. Because all the things are not 100% same then it applies min confidence
function which is” minconf{c1-c2}”. It will minus the confidence from
case and assigns new value to the case. The 2™ parameter’s new

confidence for the new case is 1 in the result file.

c. If a parameter comes which does not exist in the previous file then it is added to

the previous case.

After the adaptation process is done, the XML file will be generated which contains the results.
Figure 5.7 shows these Result files of the previous two files described in Figure 5.5 and 5.6

respectively.

<WARL-GURD>

<Application name="10,3.18.230" method regex= "1*(GET|HERD|POST) 4"
contentType regex= "1* (application/x-wn-form-urlencoded) ">

<Resource URI ="/webgoat/attack " Method ="GET" last modified = "10/08/2010"
paran regex= "1*(Screen|menu|stage) 8" confidence="2" »

{parameter name ="3creen" datatype=" digits" regex=""([0-9]+)%" minlength="2" maxlength="2"
mincordinality= "0" maxcordinality= "1" Confidance="4"/»
{parameter name ="menu" datatype=" string" regex=""([-0-9a-z&-Z]+)§" minlength="4" maxlength="7"

nincordinality= "0" maxcordinality= "1" Confidance=”ﬂ” [»

{parameter name ="stage" datatype=" digits regex=""([0-9]4)8" minlength="1" maxlength="1"
nincordinality= "0" maxcordinality= "1" Confidance= "2" [»
{/Regourcey
</Applicationy
{/WERL-GURD>
Fig 5.7: Result.

5.4.4. Case maintenance

CBR repository keeps on growing so CBR maintenance becomes important. CBR case base may
contain the redundant and useless rules e.g. if we have a web page that is not used since last year
then the rule is not useful so we have to delete it from the case base. While Maintaining CBR, we

have to enter another property of the rule named “last modified as shown in figure 5.8.

{WARL-GURD>

<Application name="10.3.18.230" method regex= "!"(GET|HEAD|POST)3"
contentType regex= "1Alapplication/x-wiw-form-urlencoded) "y

--
- -

-

<Resource URI ="/webgoat/attack " Method ="GET"< last modified = "10/08/201Q:)

s

- -
param regex= "1*{Screen|menu)$" confidence="2" > N e mm---

<{parameter name ="Jcreen" datatype=" digits" regex=""([0-9]+)§"

mincordinality= "0" maxcordinality= "1" Confidance="2"/>
¢parameter name ="menu" datatype=" digits" regex=""([0-9)+)§"
mincordinality= "0" maxcordinality= "1" Confidance=2 />

¢/Reaource’

¢/Application>
</WERL-GURD>

Fig 5.8: Case based maintenance.

5.5. Case based reasoning advantages

minlength="2" maxlength="2"

minlength="4" maxlength="4"

1. Maturity: makes the rule base mature by integrating previous and newly learned
cases.

2. Adaptation: provides mature cases and decides the confidence factor of the case.

3. Confidence (weak/strong) cases: system can decide upon weak and strong cases.

Also, if some packet which is stopped by a week case then it will generate mail to the

administrator so that if a false positive comes we can stop it. If a week case stops an

attack its confidence will increase and if a strong case makes a false positives or an

attack its confidence will decrease.

4.

5.6.

10.

11.

12.

13.

5.7.

Dynamicity of the application: changing nature of the parameters can decide how

dynamic a web application is.
Main features of the module

Log scanning for the case making use of interceptor.

Request validation on the basis of response generated by web server.

Checks the min length and max length

Checks the min cardinality and max cardinality.

Learning of Free and fix parameters using cardinality function.

Calculates the confidence level of the parameter basis on number of requests.
On the basis of confidence, we can introduce decision weighting of the system.
Matching of regex with the input

Semi Structured XML case generation.

Automatic creation of resource tree

Uses CBR for the integration of the new data, the case bases and learn the new cases.
Learns when to add the case in the case base and when to delete it.

Matures case creation.

Summary
This chapter contains the architecture of the system. It describes the processing of
different Components of system in detail, different advantages of system and how the

system cater most of the problems discussed in chapter 3.

Chapter 6: Design and implementation

This chapter describes the design and implementation of Web Application Model Generator. The
chapter is comprised of sequence diagrams, and class diagrams of WAMG. Furthermore it

contains the description of log scanning and its parsing details.

6.1. WAMG Sequence Diagrams.

This section contains sequence diagrams. It shows that how processes are communicating with
each other. It shows placement or sequence of the system. System first takes the request from the
access log, choose the valid request among those requests and generate the rules for web
application. Whenever the system repeat the first iteration (generate White List), CBR starts
analyzing new file with the old one, if it sees changes in different parameter, it adapt the new

rules and generate a new file.

112 [0:Pr ofilcPar am — | | allReauestParams: — r:ReauestPar amEx = | | wakies: (=

1: AlFcoquostharams, aclollp)
1
[l .
H
T
[Y
= geCardinalty ()
T wmahaes miEe H
-
H
=2 H H
an T
[LZErchain == —1] || Loardkin = c1]
T
[K=arckdas —— -1 || icafdidan — =1]
= pgetl engthiing) wlrert
geTL engunivin
-
am
[Cenghbdic == 11 || (lenaibbin = p.gst enathbdin))]
4 pgetl engthking =
et enothiin
5: =L Pt
[N =ngtl = - rer]t
aetl enathiMax
am T
[C=raihbdse —— 43 | Chsrgthbdss = o ostl snothbiss]
& pooell enethiba=s) [rerT
et engthilax

6.1.1. Accommodate parameter

Parameters are the basic unit of a web application. A web application consists of many
parameters. Most of the attacks executes with tempering these parameters. Thus securing
parameter of the web applications are a major task. For this purpose Discrete or Free parameter
reorganization is very important. Cardinality gives us the information that either the parameter is
discrete or fixed. With the analysis of different inputs we can take the minimum and maximum

length of the parameter which prevents buffer overflow attacks.

p:RequestParanmEx H values: 5 wakue

T
1 n 1
1] 1
N | ey) 1
1 |] 1
1 L] 1
: 1: walies =size) : :
"r"_|' | 1
1
et T :
' i
Ioop [Intl =0, 1 =v slzeds 1< n; 1++]) g H
i i
1 1
] 1
""""" 1
1 | '
2 walues g2t : :
—"|. | 1
1
=t ¥ i
1 1
- u {
_______ n 1
h - -
1
1
1
an | :
Iwalle 1= i) '
1
““““ 1 By i
3 walue lengthi :
| "
| 1
[1
T T
1 1
[1
1
am] H
[Clengthka=z == -1 ||l = lengthbdas]
L]
-
L]
1
1
H
1
.
1
H
1
1
.
I 1 |LI
1

6.1.2. Get length MAX

Maximum and minimum input values help us to prevent the buffer overflow attack.With the
analyses of different inputs given by users we can obtain these values range. This diagram
describes how maximum values are obtained from the access log of the web application. First we
get all the values from the access log and then analyze these values and take the biggest of these

values as maximum length

p:RequestParamEx =H wvalues: 5 walue

|

n
1
1
loop [int i =0, n = wval size(): i < mn; i++]) :
:
n

aklt
[»alue 1= null]

3 walue lengthil)

amt §
[(lengthbkdin == -17 || (1 = lengthbkding]
e B
1
n
n
1
1
n
1

6.1.3. Get minimum length

Maximum and minimum input values help us to prevent the buffer overflow attack and with the
analysis of different inputs given by the users, we can get these values. This diagram describes

how minimum values are obtained from the access log of web application.

E
1 1

1
'
'
i
1: tesd indexOf("="y H H
ok !
U I
1
Mo ; |
' '
' '
[ar] .
'
[il=-1] g
'
i b :
----- '
'
'
'
1
'
'
'
'
1
'
'
'
'
E i
1
'
'
'
1
1
i
T '
' '
1 1
'
----- i) :
'
& newe ReguestParam{name, value) p:RequestParam = :
=:| :
'
i
H '
' '
' '
1
————— = |
'
5 list add(p) !
>
" |
i
... Losossosossosossosossasossossossosossosossosossos
[el=e] r
1 5| |
'
""" 1
1
'
'
'
1
----- i | :
'
6 newy RequestParaminame) : plo:RequestParam =
4 L
'
'
T
i H
! :
'
[;
7: list adei(p) i
B!
" |
i
L '
'

6.1.4. Parse parameter
System generates cases on the basis of web application parameters. This sequence diagram show
that how it recognize the parameter and then added it into the list. It fist access the name and

value of the parameter form the access log and then add the information into a list.

aProfiler 5 PiRequestParamEx 5 | ‘ values: 5 | valus |lmlun.trim() ‘ EH [Z E] | m
oop I candidate : ns] J
loop [RequestParamEx p : allRequestParams]
1: patternaiches(eandiste)
1.1: values sizet 0
e U
an H
[values sizer) == 0])
loop [String value :|values]
1.2 value rim()
1.3 value trim() length()
alt
[valug == nulD) || Cealustrim).|sngth() == 07]
1.4 matches(value)

1.4.2 mmatches()

[

[pattern. == false]

an J
[p-patternmatchel(candidste) == false]

an J
[matched]

6.1.5. Match content parameter
This figure describes that how contents of the parameters are processed. When request

comes to the web application, it checks the parameter value length and then its Regex

followed by results.

a:Resource = ‘ pRequestParamEx = | profileParams: = PplV:ProfileParam =
1: getilame()
2 profileParams get(p.ostame))
>
an T
[pp == nuil]
3 aethams()
-
4 newy ProfieParamip. getiamer)) ppProfileParam =
S: gethlame) H
H
&: profieFarams puttp. gethigne(), pp)
>
H
7: gethlame()
H
a: profilef getF T
profilen getFor, ypep))_J =
getForcec IParamType(p.getlame ()}
alt
[ep = null]
&: forceContertPatternier)
RSN ciateF: filer,
PR .acommodateFaramiprofiler, p) et
acommodateParamiprofiler. p)

6.1.6. Process parameter

This sequence diagram shows the process of a case creation of a parameter. First we get
the name of the parameter and check its type to assign an appropriate type of regex to
parameter. We process the parameters by analyzing various inputs of the parameter

which helps us to decide the regex and the data types of the parameter.

aAudnlLogEmtryvEeader &

-5-------

D newy byte[9000] buf:byte [F]

6.1.7. Audit log entry reader.

For the generation of CBR cases first we need the http request and response data from the
access log. This sequence diagram shows the procedure of fetching data from access log then we

establish a connection with the database and fetch all the data from the database in a byte buffer.

a:ProfileParam 5 profiler:Profiler 5

art)

[finalized]

D

[cortertPattern == nul

0

1: pru:ufiler.ma{:hCDntentF‘aﬂern(allReques’cF‘arams] :
1 1

]
oY

6.1.8. Match content patterns.

When system gathers all the inputs from the access log and then match those inputs with
the pattern repository (that are regex) and choose a suitable pattern according to the input.
The regex is actually the pattern of the inputs, this will help us to allow only the benign

inputs and discard malicious inputs.

6.2. Class Diagram

3

cecoe

[

I

erpitin

|

|

tanantoleties
cumpstse g

e v

1 e

O sttpitraoess
S orise
O nespmeneen

ety

i
i

Sceceoeoeeee
§

]

cevsee
1
]

g o
a1 e

&
|80 maestantst

[0 coramaint

0 wreoamy
0 smmmmscamec
& maner
0 panse

an

——
B P ——
P

| wocesmm s e L, e

[et s et

R p——

e ———
esmsn

[—

T]

) e
) vy

PP e

© atvnanan

& s S
@

N

oty

|

1 oy
1 s

[T —

@ gevmmizy

eecooe

stk
i E— - —
[E——————

s

i
i

!EI“ |

ToovTooo|EESEEEE

i

¢ eRee000000eee0e

.
.
:
L
3
e :
3
. ———
FN———— et
[y 9 moams
: . e
Fg—— gmmm
| ereesssotomiyess 3 moremiem (=
gﬂM—sz E e .
e e
o
[@
— s
8
rossn & *
o =
= i
= 5o —
51 ettt 5
= e
e
O waman Ryrme—
& wadrayarg [0 servemmtr o 2emgy ot
& panegany O peterghyin
O e O setenghiin ergthee vt
O whaypont O sebummiiiog) Sxva.
: an O sePwwainan p g s i
e

@ o, st

Partial class diagrams

Tocessloghow

[——

serverAdar Sting

ety Siring

[T ——
SelUs S s St i

SRR SRR IR 1S e
et AT IS

R I ST

S T A IR P B et STRIR G et

et AT

S AT e A I i
[-

St AN S ST A SN) oI
etservariann

Setservertonin serverbortInt: oI
SIS THE SIS 1IN FHEHE S HITp eSS o
¥woict

etRe et oy Statu=0rint
=an it

setRasponssBody StatusCrint

SatRaspone B0y Statustin respanseBody Statusint): void

st ey O it

SotmlartS ey arity Exiin slertSeuerityint o

SotmlartSavarityin slenSeyarity:inty void

el Aloness agelin alorhoosans: &lohsn) vaid
actCatosaryy String

sotCatomorylin catousry: String): o

actalorthos saneCourtO int

St the s sanee Surmmear y O String
oS e TGO String

SetSensor Tallin enserTudc String) v oid

et TxDuration 3 ong

et TADuration(in biDur ation lonei) woid

et TP e e s sinaDurationt) 1onc

Sl TAProces sinaDUrationtin bFoce s sinaDur ation:tone) void TRl
et T ce StDur ation() ona
et vt et

T xR DU =L O
ST XS DU sl R0 e lion 0 void
T T s

ST Tinsn LTt woid

I Bl CR O, bl

Stk

B U, Bl 1 i
LR e U 1, S, St
CetRESpons SHe AT VaILSIN name: St S1rins
GetRECUESTIY HItPReaUEST

SRR SRR A AR RS e

etHn e =g

SRR AmELIn RAStnAme STInC e

et neAl SArr SN

Setl Al ISR Iae Il IRer St ol
ARt AIR SR YRR REr PR STINC Banieen
ARt AIR SR 1YRRGN RErT PR SRer T Boniean
SEtAITUn Pt 1P char) Bytels]

et nging x Strns

SetnEInGn Sngn N o

Sctet P Mler HE R SIS header e e) woIs
et I ramerHe ater SIS R HermS SN String
etSscRuIesOIList

setSecRuIes(in secRules: Listywoid

Broquest

AUDREGGES0

&1 roaucsticthod: String
B roaucstline: String
&1 roauostUrn String
@1 ceryString: String

51 hessersiList—re Arrsylist
51 cueryStringParams: List-new ArrayListo)
51 bodyParame List-nes Arraylist

PP
D setHmacersO st

D> setHEsARrsUn Remders ISt i

D seteretncoic SN

D> setPrAtORnIin proter Strnc i

D> metEuerySTNGUr String

D SerEArYSIIRGLIR Aiery SN StnCr i

> setRecuestLIne i String

> setrecuestLInein reauestLIne: String vold

> setRecuestMSthoc T String

D setRecuestiMEthod I reauesTMSthar: Strng: vold
D eGSO, St s

D selRee UG s U S i

D et e e S S s

D etParEn R, Ve

D> St R =L R,) Ui
D e St Gy S, St e
D e wudeUB oG B, St), Ui

D e wuden BSLUSL nes St o, i
D parseParameter(in st List. in test:Strine roid
D aetGuerStrinaParamsr List

D aetDodvParamsryList

D aetParamscrlist

D aetCortertTyely Strine

D aetCortertTymenoCharseto: String

Coorr=—rre—

@ resnu L S
@1 eroluol String
F1 stalus i

B Stolusmessae St
(51 headersiistones ArravListy

D addHoador(in hoader HitpHoader) oid

@ setProtosollin protossl Stringoid
> aetStatusoint

> etStatuscin status:intyvoid

> oetStatustessagel: String

<> in

O aetHesdervalus(in name:Strine: String
> aetResponseLine(: String

<> setResponsslinetn responseLine: String: void

—

R —
1 pessworsting
A oresming

1 eenmconnscton

u

E
E

O tercnrenUR Reme- Sming,
D> retrnresnc ReSUESE

LI e St s Ser

D> fAEnreC SN IAMmE SO, 17 SO SNG, N e e Stng
D> rennnmnRON e St

D> tetenRASTUR Fecue it nne

D retonresuestInenn FesetintE Strng

D retCnrSGheScer SR FECICEIM) HeSLIS St

D reapocypresentun res s nt Hoslean

D retCheoMmEMtPEON e ngE Strng

O retoneomemtastain eIt Strng

> fetohrespensehesdersin recichint) ResutS ot
> fetohrespenselinedin vecisint): String

<> fetohrssponsestatustin redic intyint

D> erOnSIEAAra o LR 1N STEING, I R e Rme: S, 10 e S SN

e

Toarnor

[——
i inputstream

recictint

tosein e
iSO Une IRy St
]
currenthan ype: Strng
Rt I ype string
sxpectecart e sng

aftern compe T e R (s) 0 tee] (ke

Liotm) G g

compusc 7 (T TR e
T TP et (AR ¢ T

e

s Sy

Learntin is:InputStreamy: seces sLouRom

“oonstuctors Learnerlin i InputSt e am)
constucta, Learnertn sty

ittt Bovndary (in line: Strins) boslean
analyse() socosel ogRown

analy et secosel oRow
ProceseRedquestHeadera() void
ProcossReauesBosy () o
ProcsssRoduestBosy Falel) ol
ProcossResponseBady (o
ProcossResponseHeador s void
procossTrailer(ivaid
FrocsssSaction ko void

6.2.2. Class diagram for learning data using access log.

The learner module is responsible for the creation of WAMG cases it will take data from access
log .Whenever a HTTP request comes it will be recorded in the access log and when the server
send the response against the request it will also be recorded in the access log. On the basis of
request and response learner will decide that which request is legitimate and which request is

illegitimate.

GoneratorParam

@1 name:sting

Ieretnme =1
ParamCRnt i =

cortentPatiernRegevhisteher=nul

steT1 Ut =ricso ArrayL Lt (r
[y ——

itz voic

setCardhingin cardhin:int):void
etContentPatternCrRege iatcher

et engtimiarin
SetLengthiesn lensthias Nt vl

Q000000000000 0000000

< [SBroticparams
< -~
Lt N
-
~.
-
.
~.
< .y
-~
¢ ~—
- ~
sty s AP s e
ApREGPar s
tring
ArraListaTt ~Stringn-nawe ArryList-String=0 @1 patemTaString
il
Leon &1 rocusim
S —— in
& aetiengtamiaxt Tt & aetrocu
> - D oePaternTR SHring
O toStrinatxString \ coneramerns
RuleGensrator
———
1
B resources: (reeMaR<I1-=StrnG, |2 Un==new | reetiaR<sng, Lri=()
&1
a1 ™ >
S e Arrayt >
E1 lanorePreties: ArrayLISt=T1 = String=
st strng=)
& processtntrvn sie:AccessLacaw Vot
P -
<>
> ot e
<> [T -
S TineatternOn name: Strine): Reasstcher
> setParamThreshinnC T
<>
O acklignorepratisin prefis Stingvoid
<>
<>
O sumpTermCStrng
<>
<>
>
[=1d
<>
<>
> N
> setRoscurseConfidenceThreshald(xint .
< ity v
> B \\\
g
&1 et
1 peth String
@1 metnac string
@1 BrofieParams:Treehian=T1-=String. T X)

B resmestCountint

<> wconstructors Urn patn: strinc)
>

@ isvsieps

=S g, in gt ki void
& astrathirstrng

> oetRemASICRRR it

D sotidindin:void

& st

> n "
>

> Jin

> G prtier 3 St
& aetennoenceln thresnoid imLLn

6.2.3. Class diagram for rule generator.

This module is responsible for generating WAMG rules. The class generator param will
generate the contents of the parameter like parameter name, lengths, cordiality etc. Then sends it
to the regex matcher class which will match the regex and then all the information will go to the

rule generator class and it will generate the WAMG rules.

Acce==l oamoirCrent
Cfrom seoplus::asnerstord

S clo: it Tronsastion

S T e Sormm s e S S T e T T e S e e e

Ao Transacoon

EB metEeforerdin refer o Steina: ol
P
A SetRemote.Sdelrlin rermote f ool Strime: vl
e

T A =)

6.2.4. Class diagram for HT TP transaction.

HTTP transaction class sets and gets the HTTP headers from access log. This class gets the
HTTP properties and headers from access log and then the values of this class is accessed by the

property class which send it to the learner class to learn the parameter of the application.

ChrRule
(from secplus:analyzer:chr:vo)

applicationLRL String

]
]
]
i
i

i

1
1 methodRegex Strng
1
1
1
1
1
1
m] parameterDatatype:String
1
1
1
1
1
1
1
1
1

contentType_tegex: String
resourcelRl String
resourcehtethiodType:String
paramRegex Sting
confidence: String

parameterblame:Sting

] parameterhaxLengthint
] parameterhnLengthint
] parameterRegEr Shring

]
i
i
B
¥
¥

minCord:Sring

maxCord: String

paramiCrint

applicationType: String
Property!: StoreParameters
Froperty2 Cugue<T1-=Main=

K

O wetConfidence() Shing

O setConfidenca(in confidence: String-voi

O getContentType_regex() Striny

O setContentType_regex(in cantentType _regex Sring) void
O wetiiethodRegex) Sting

O sethethodRegextin methodRegex: String] void
O getParamRegex() String

O setParamRegex(in paramRegex: Stringvoid
O wetiaCond) SHring

O ‘sethlaxCord(in maxCard Stringvoid

O wetinCord(yShing

Q sethfinCordn minCore String vaid

Q et pplicationTypet) String

O FH pe(in ey e String) void

& getParamiDyint

Q setParamDin parameint) void

Q et pplicatiorLRL() String

Q et pplicationUIRL(in applicationURL: String) void

() wetParameterDatatypel) Shring

() setParameterDatatypelin parameterDatatype: String) vaid
O uetParameteraLengh it

() setParameteriaxenchiin parametertaxLengtivint) void
O wetParameteriinLength()in

O setParametertinl ength(in parameterhinLencthint) void

O wetParameterhlamer) Siring

O setParametertlamelin parameterbiame: String void

O getParameterRegEx() String

O setParameterRegEx(in parameterRegEx String) vaid

O getfesourceMethadTypel) ting

(friom secplus: analyzer:chr:vo)

72 StoreParameters

ﬂ] parameteriiame: String

ﬂ] parameterDatatype Sting
ﬂ] parameterax_encthiint
ﬁ] parameterinLenct int

ﬁ] parameterRegEx Siring

g1 minCordSiring

f] maxCord Shing

@ parambint

9] Property1:ChrRul

CBRRulesHandler
(from secpius: analyzer. chr::dal)

] pathTshL:String
9] Praperty! StoreParameters
9] Property2. Clrfule

O seonatructors CBRRulesHandier(in path: String)

{ uetDocument() Documert

O insertihiteListRule(in ruleiariables: ChrRule)int

O etApplicationRules(in applicationbame: String) ArrayList=T1-=ChrRudes

0 RSP in g :3tring, in doc:Document): ArrayListT! -=StoreResaurces=
Q uetResources(in appElement Element) ArrayListT1-=StareResourcess
Q i Slring, in resName: String, in resType:String, in doc:Document) ArrayList<T! -=StoreParameterss

O elitaxCord) Sting

1 geico
O selvinCard
O uetParamD(yint

() sefParamiD(in paramiCrint) void
() etParameterDatatype() String

) 5tring

) uetParemeterMaxLength()int

() sefaxCord(in maxCaret String)void

in minCorck String): vaid

() seiParameter Datatype(in parameteratatype: String) vo

() seiParameterhaxLength(in parameteritaxLengthiin) v

Q uetParametersList(in paramElement Element) ArrayList<T1-»StoreParameterss

O oebblbppications() ArrayListeT1-»Storadpplcat

O aldf n docDocument, in :CheFule, n resElement Element Element
() R in doc:Document, in ChrRule, in appElemert Elemert) Element
() doc: Documert, in ChrRule)Element

() deleteParameter(in rulehariables: ChrRule)Element
() deleted pplication(in ruleariables ChirRule) Element
() dpleteResource(in ruleVariables ChRule) Element
() edftParameter(in alRuleVarisble:CorRule, innewRuleariable ChrRule]int

ApplicationResources
(from secplus:anatyzer.chr.:va)

] applicationhiames:String

6] Propertyl:Chrfule

'| resaurcesParameters: Hashhiap

& g

0 getApplicationhames () Stringy

i Hringy) woiid

0 oetResourcesParameters() Hashilap

¢

Parameters Hashhiap)void

(from secplus:analyzer: chr::va)

StoreApplications

StoreResources (from secplusanalyzer. chr. dal)

A appMame Sfring

1

] methcfeses Sting

m] cantentTypeRegex Sting
1
1

i appMode Node

[Froperty!: ChrRule

O getpposeyNode

O getCantentTypeRegex(15trng

O setApphlodeqin apphlode:Nodevoid

(from secplus:anatyzerchr.:va)

9] Praperty!:ChrRulz

ol resUREng
& mainiin aros:Strinefvoid

O ruleGenerate(n ruest:List, in rules? Lty ist

> IaSameRule(in rue CorRule, in 2 ChiRule) baolesn

O ISameResource(in et ChiFule, in le2 ChrRule Y boolean

ol resHTBting
D] resRegexSting
ol resCont String
§] Propertyl:Chrfuie

0 getResCant]) String Parameter|D
0 setResConf(in resCont: String] void

4] ¥String

(from secplusanalyzer. chr. dal)

O setCantentTyy
O getiethadRegex() 3ting

O gethppame() String

contentTypeRege:

O setMethodRegexdin methodR ee: String) void

O setApphame(in appame: String]-void

trinig] void

Byl permeterValie it

0 setResRegex(in resRegexStringvoid 9] oty Corfule

& petReahiT() Sting
() setResTiin resDT.String-void
& oetResl RISy
(} setResURI(in resURkShring vaid

@ getParameterDocument() Document
O gelParameter'Value() it
() aetParameter'alue(in parameterVialue intvoid

O il e tring void
O weResourcelRI) String)
O setfesourcelRlin resourcel R String) void
I
ResourceParameters CBRRulesManuplator

(from secplus:analyzer. chr.:dal)

(from secplus:analyzer. chr. dal)

] resowrcelRlSirng
m] resourcehtethiodType:Sting
m] parametersListHashitap

] pathTokML String="E frule sl
[whitelistRulesCache Heshivap=new Hashivan

O getParametersList, s Hashian
O setParametersListin parametersList Hashhap void
O getfesourcebethadTypel) 5ting

¢ i

tring)void

4

& oetDocumentDocumert
@ wihielistProfileCreatar(tHashhtap

& vt

@ getResourcesiin appElement Element) ArrayList=T1-StoreResources=

piici : String, in oz Document):ArrayList<T1-»StoreResaurcess

tring, in reshlame:String, in resType: String, in doc:Document): ArrayList=T1-=StoreParameters=

'

6.2.5. Class diagram OF CBR module.

CBR is the most important module of WAMG. Its responsibilities are to compare the previous
and new files and then according to the situation it adapts the rules and then makes a new file
out of it. This module helps to improve the White List profile ,learns from previous mistakes
and then corrects itself, also control the size of knowledge base by eliminating the useless rules

of the web application.

6.2. Summary

This chapter contains the Design and Implementation of WAMG in term of class and

sequence Diagrams. Each implementation item presented has also been described.

Chapter 7: Evaluation

7.1. System evaluation

This sole purpose of this system is to generate white list rules for web applications in semi
structured XML cases. The system is evaluated to generate XML cases successfully for all kind
of Web Applications and to stop injection flaws, forceful browsing, and buffer overflow attacks.
The false positives and false negative rate is another deciding factor for the success of this
module.

7.2. Evaluation environment.

The proposed system is evaluated in the following execution environment

Processer 2.0 GHz core 2 duo.
RAM 2GB

0S Microsoft Window 7
Java Version 1.6

Table:7.1 : Evaluation Enviournment

7.3. Evaluation criteria

Evaluation is performed with the most profound way of evaluating intrusion detection
system.The most effective way of evaluating WAMG effectiveness is to calculate its false

positive and false negative rates.

False Positive = Fp: the total number of benign messages that are classified as malicious

False Negative = Fy: the total number of malicious messages that are classified as benign

Total #Normal = Ty: the total number of normal or benign messages

Total #Attack = TA: the total number of malicious messages

Detection Rate= [(TA-FN)/TA]*100 &False Alarm Rate = [FP/TN]*100

7.4. Tools used

The tools used to test this module effectiveness are given blew.

Name Description

WebScarab This tool is developed by OWASP for testing web application
Firewall. It intercepts an HTTP request and then the attacker can

tamper the HTTP packet and send to server [16].

WebGoat This tool is used to test the web application firewall this is a Web
Site which contain security lessons. This can help to make see the

effectiveness of the firewall [17].

Badstore This is a web application and the purpose of this application is to

understand the vulnerabilities existed in the web application [18].

Nikto Nikto is an open source web application scanner which uses to
comprehensively test the web servers. It contains thousands of

dangerous file to test the web applications [19].

Moodle This is a web application template used for content management.

Table:7.2 :Tools Used

7.5. Evaluation

False

#Attack False False Detection | Alarm

Attack Type #Normal Record | Record Positive Negative | Rate Rate
XSS 350 200 98.00 0.57
SQL Injection 280 150 99.33 0.72
HTTP
Request
Splitting 200 4 100.00 1.00
Buffer
overflow 300 250 100.00 0.00
HTTP
Response
Splitting 100 5 98.00 20.00
JS charcode 20 100.00 0.00

Table: 7.2: Evaluation

We use three web applications Web Goat, Moodle and World Press for this purpose. Our module

uses 18 regular expressions which represent widely used data types like digits, hex etc and

popular fields e.g. passwords, credit cards etc. Above table shows the false positives and false

negative rates and the number of normal parameter and malicious parameter used to obtain these

results. Detection rate shows that out of malicious parameters how much are detected. False

alarm rate depicts that how many benign packets are detected as malicious, false alarm rate is

also very low against all the attacks. This technique prevent XSS, SQL injection, HTTP request

splitting, buffer overflow, HTTP response splitting, JS charcode attacks efficiently.

C——'

7.6.

Summary
This chapter contains results of the experiments. It shows us that the purposed technique
is efficient against various web application attacks. It also includes the test environment

and tools which are used for testing purpose.

Chapter 8: Conclusion and Future Work

8. Conclusion

Rapid increase in application level attacks brings the focus of security experts to existing security
systems, figuring out their limitations and weaknesses. A lot of research has been done on
network based systems and they are quite effective only for network level exploits.

The most prevalent security mechanisms are taking care of network level attacks. Few security
systems are operating at application level but are prove to be quite ineffective in providing solid
defense against application level attacks. For providing web application security there are two
conventional techniques Black List and White List. Black List is proven to be inadequate for
prevention of web application attacks due to overhead of signatures updates. White List is
proven to be effective but there are some problems with this technique. The purposed technique
addresses the conventional problems of White List and also helps to detect various web
application attacks. The learning capability of the system detects new changes in the application
and craft rules according to the changes. It also detects errors in the knowledge base and corrects
itself. The Evaluation shows that this technique is effective against various web application

attacks.

8.1. Future Work

® [ntroduction of multithreading in the White List generation module, will make system

more efficient.

® [ntroduction of Threshold leaning in the White List generation module.

References

[1] MITRE, “Web application attacks statistic”, http://www.mitre.org/.

[2] WHITE HAT, “Web application attacks statistic”, http://www.whitehatsec.com.

[3] OWASP, “Web application attacks statistic”, http://www.owasp.org.

[4] Acunetix ,“Web application attacks statistic”, http://www.acunetix.com/.

[5] Jeff Orloff, “Applicure Webhacking Facts and Figure”, http://www.applicure.com/blog/web-

application-hacking-facts-figures.

[6] Robert Abela, Website Defender, “General facts and figure on hacking”.

http://www.sitesecuritymonitor.com/web-hacking-facts/.

[7] Martin Roesch. “Snort: Lightweight intrusion detection for networks”. In LISA, pages 229-

238. USENIX, 1999.

[8] Christian Bockermann, Ingo Mierswa, Katharina Morik, ”On the Automated Creation of
Understandable Positive Security Models for Web Applications”, Sixth Annual IEEE

International Conference on Pervasive Computing and Communications.

[9].Ofer Shezaf, “Positive Security Model for Web Applications, Challenges and Promise”,
OWASP IL Chapter leader CTO, Breach Security Positive Security Model.

[10] Frederick Hayes, “Rule Based systems”, Communications of the ACM ,September 1995.
[11].Sankar. K. PAL, SIMON C. K. SHIU,” Foundation of soft case based reasoning”, ISBN 0-

471-08635-5

[12] Ali Hur, “Semantic based detection of application layer attacks using ontology”,SEECS
20009.

[13] William Robertson, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer,
“Using Generalization and Characterization Techniques in the Anomaly-based Detection of Web
Attacks”, Proceeding of the Network and Distributed System Security (NDSS) Symposium San
Diego, CA February 2006.

[14] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna, “Protecting
a Moving Target: Addressing Web Application Concept Drift”, Raid 2009.

[15] Processor, “Black list VS White”
List.http://www.processor.com/articles//P2724/33p24/33p24chartl.pdf?guid=.

[16] OWASP, “Web Scarab”,
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project.

[17] OWASP, “Web Goat”,
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project.

[18] Bad Store, “Bad store” ,http://www.badstore.net/.

[19] CIRT.net, “Nikto”, http://cirt.net/nikto2

[20] Christopher Kruegel, Giovanni Vigna, “Anomaly Detection of Web-based Attacks”,
CCS’03, October 27-31, 2003, Washington, DC, USA.

[21]Vern Paxson, “A System for Detecting Network Intruders in Real-Time”, 7th USENIX
Security SymposiumSan Antonio, Texas, January 26-29, 1998.

[22] Kenneth L. Ingham, Hajime Inoue, “Comparing Anomaly Detection Techniques for HTTP”,

RAID 2007.

[23] Grzegorz J. Nalepa,AntoniLig, ”Designing Reliable Web Security Systems Using Rule-
Based Systems Approach”, AWIC 2003.

[24] Yao-Wen Huang, Shih-Kun Huang, Chung-Hung Tsai, “Web Application Security
Assessment by Fault Injection and Behavior Monitoring”, ACM ,May 20-24, 2003.

[25] Armorlogic, “Profance”, http://www.armorlogic.com/web-application-firewall.html.
[26] ModSecurity, “Mod security”, http://www.modsecurity.org.

[27] Bruce Schneier Blog, “black listing vs. white listing”,

http://lwww.schneier.com/blog/archives/2011/01/whitelisting_vs.html.

67

'

