
i

Ceaseless Virtual Appliance Streaming

By

Shahid Nawaz
NUST-2012-60759-M-SEECS-60012-F

Supervisor

Dr. Asad Waqar Malik
NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(July 2016)

ii

Approval

It is certified that the contents and form of the thesis entitled “Ceaseless

Virtual Appliance Streaming” submitted by Shahid Nawaz have been

found satisfactory for the requirement of the degree.

Advisor: Dr. Asad Waqar Malik

Signature:

Date:

Committee Member 1: Dr. Muneeb Ullah

Signature: _______________

Date: _______________

Committee Member 2: Dr. Anees-Ur-Rehman

Signature: _______________

Date: _______________

Committee Member 3: Dr. Arslan Ahmed

Signature: _______________

Date: _______________

iii

Abstract
Cloud computing is a sort of Internet computing which offers the shared

processing of applications and data to computer devices on demand. The

procurement, maintenance, and up-gradation of the resources is the responsibility

of cloud provider. The client can utilize the cloud services on pay-as-you-go basis. It

offers flexibility, efficiency, competitiveness, and swift disaster recovery along with

the reduction in capital and maintenance for the client organizations. The cloud-

based virtual appliances can be exploited to solve the issues of software

maintenance, mobility, hardware compatibility, and security. The virtual appliance

is an image file of virtual machine which is created by integrating single software

application with intended components of operating system to run it optimally on

diverse hardware infrastructures. Clouds generally stores virtual appliances over

network attached storage. It generates scalability bottleneck because when user tries

to access virtual appliances from cloud, it triggers hundreds of megabytes of data

reads and subsequent network congestion problem.

The fundamental question arises, how to initiate a virtual appliance and to load

its application in a minimum time taken into consideration the transmission

capacity of the shared networks. Streaming is probable solution to this critical issue.

As streaming techniques associated with the video-on-demand, where data is

integrated into frames and assures in-order delivery are available, no streaming

scheme offers proper solution to overcome the complexity of streaming virtual

machines over shared networks. The novel Ceaseless Virtual Appliance Streaming

system offers virtual machine’s streaming over Internet in par with video-on-

demand streaming. It helps to reduces burden over computing resources and

internal networking nodes to enhance network resource utilization. When applied

over real networks it exhibits better efficiency over traditional legacy systems where

it was mandatory to download virtual appliance before its execution over a local

machine.

iv

Certificate of Originality
I hereby declare that the research paper titled “Ceaseless Virtual Appliance

Streaming” my own work and to the best of my knowledge. It contains no materials

previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at NIIT

or any other education institute, except where due acknowledgment, is made in the

thesis. Any contribution made to the research by others, with whom I have worked

at NIIT or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project’s design and

conception or in style, presentation and linguistic is acknowledged. I also verified

the originality of contents through plagiarism software.

Author Name: Shahid Nawaz

Signature: ____________

v

Acknowledgement

My labours bore fruit with successful completion of this project by the grace of

Allah Almighty. I would like to extend my sincere and heartfelt obligation towards

all the personages who have helped me in this endeavor. Without their active

guidance, help, cooperation & encouragement, I would not have made headway in

the project.

My special thankfulness to the Supervisor Dr. Asad Waqar Malik for sparing his

valuable time in putting together all the bits and pieces I brought in as raw data to

him, his contribution towards the success of this project is unmatched. I have to

appreciate the guidance given by Dr. Muneeb Ullah, Dr. Anees-Ur-Rehman, Dr.

Arslan Ahmed, Dr. Junaid Qadir, Dr. Zahid Anwar, Dr. Hamid Mukhtar, and Dr.

Raihan-Ur-Rasool, to their comments and advices.

My special thanks to my parents and family for their support and understanding

and of course for bearing with me when I was all too busy with the project.

Shahid Nawaz

vi

Contents

1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.1.1 Virtual Machine ... 2

1.1.2 Virtual Appliance .. 3

1.1.3 Streaming ... 4

1.2 Motivation ... 5

1.3 Problem Statement .. 5

1.4 Thesis Organization ... 6

2 LITERATURE REVIEW ... 6

2.1 Profiling of Pieces: ... 6

2.2 Prefetching State Access: ... 7

3 DESIGN GOALS .. 7

3.1 Modular Construction of VA: ... 7

3.2 Large-sized Virtual Appliances: .. 8

3.3 Single-task oriented Virtual Packs: ... 8

3.4 Equal-sized Virtual Packs: .. 8

3.5 The Swift Transmission of Virtual Appliances over Network: 9

3.6 Streaming of Complete Virtual Pack: ... 9

4 CVAS STREAMING MODEL ... 9

4.1 Video Streaming: ... 9

4.2 Virtual Appliance Streaming: ... 10

4.3 CVAS Hypothesis: ... 13

4.4 Design Assumptions: ... 15

5 ARCHITECTURE .. 16

5.1 Client Architecture: ... 17

5.2 Server Architecture: .. 18

vii

6 EXPERIMENTAL EVALUATION ... 18

6.1 Experimental Setup: .. 19

6.2 Experimental Virtual Appliance: .. 20

6.3 Comparison of CVAS with “Profiling” and “ Prefetching” Approaches 22

6.3.1 Lesser Buffer Time: ... 23

6.3.2 Zero Interruptions during Execution: ... 24

6.4 Comparison of CVAS with Onboard Native Application: 24

7 CHALLENGES OF THE CVAS SYSTEM .. 25

8 THE FUTURE RESEARCH & DIRECTIONS .. 26

9 CONCLUSION ... 26

Bibliography .. 27

viii

List of Abbreviations:

Abbreviations Descriptions
Arpanet Advanced Research Project Agency Network

CVAS Ceaseless Virtual Appliance Streaming

DISA Defense Information Systems Agency

DMTF Distribution Management Task Force

DSA Defense Communication Agency

DSL Digital Subscriber Line

FPS Frame Per Second

ISP Internet Service Provider

ISS Intelligent Streaming Server

JeOS Just enough Operating System

MIT Massachusetts Institute of Technology

NAP Network Access Points

NORSAR Norwegian Seismic Array

OVF Open Virtualization Format

PoP Point of Presence

RTCP Real-Time Transport Control Protocol

RTP Real-Time Transfer Protocol

RTSP Real-Time Streaming Protocol

SaaS Software as a Service

SRI Stanford Research Institute

TCP/IP Transmission Control Protocol/Internet Protocol

UCLA University of California, Los Angeles

USDoD US Department of Defence

ix

List of Figures

Fig. 1 Phases of gaming virtual appliance played shown by filled boxes 11

Fig. 2 Decision points (DPs) used to predict future user action. ... 12

Fig. 3 Selection of virtual packs on basis of decision points ... 14

Fig. 4 CVAS Architecture ... 17

Fig. 5 Comparison CVAS, Profiling, and Pre-fetching streaming approaches 23

Fig. 6 Similarity between CVAS and native application execution. 24

x

List of Tables

Table 1: CVAS system and network specifications .. 19

Table 2: Buffer and Interruptions Time during execution of VA and VPs 21

1

1 INTRODUCTION

1.1 Introduction

Virtual machines (VMs) are executed by virtual machine monitors (VMs) or

hypervisors from onboard VM images. With the combination of host-level

virtualization and storage area network facilities, the cloud computing offered extensive

variety of new applications for the VM technology [1]. The virtualized public and private

clouds facilitates the organizations to transfer their operation from their dedicated

hardware to the shared infrastructure having virtual servers. It resulted into proficient

hardware utilization, simple management, and faster disaster and failure recovery [2]. But

the system must download the complete image of the virtual disk the execution of the

virtual machine. But trying to execute larger numbers of VM instance may resulted into

network congestion. Foremost impediment in the popularity of virtual appliances is that

they could not be directly streamed from the server to the client. Therefore, it is necessary

to device a mechanism for the management and transmission of the virtual appliance in a

similar fashion as the video file. In this way, with the transmission of a smaller chunk of

a virtual appliance from server to the client, the user may be able to begin the execution

of the virtual appliance. According to principle of factor scarcity, eighty percents of the

users utilize only twenty percent functionality of the software [3]. Therefore, it is waste

of the expensive network resources if large virtual appliance files would be transmitted

from the server to the client. It is important that the streaming server must predict which

subsequently function or chunk of a virtual appliance will be required by the user and to

transmit the desired chunk instead of the complete virtual appliance file [4].

Virtualization means the creation of a virtual version of operating systems,

hardware platforms, storage devices, and network resources. Virtual machine, as the

vertebral column of virtualization, is a software emulation to facilitate the installation and

operation of diverse types of operating systems as guest over the host operating system

[20]. It relies upon a middleware virtualization layer called the hypervisor to allocate

2

hardware resources to the guest operating systems. Host system is transparent to the guest

OS and it functions in a similar fashion as it is directly installed on the hardware. It aids

the execution of those applications on computing devices which are inherently not

compatible to the host operating system. Numerous virtual machines can be installed on a

single host operating system provided there is enough storage capacity available. The

prime advantage of the virtual machine is its security and platform independence. It can

be executed on diverse types of computer devices regardless of the disparity in hardware

architecture.

Virtual Appliance (VA) is an image file of the virtual machine consisting of pre-

configured operating system and a single application [21]. It is not a complete virtual

machine but an image file which is intended to run on a virtual machine having type 1 or

type 2 hypervisor platform. It usually hosts single application. It functions like an

application but is managed as a virtual machine. Idea behind the concept of virtual

appliance is to create and deliver a readymade package of an application and operating

system for its easy installation and operation over non compatible devices on network.

Only those components of the operating system which are essential for the support and

execution of a single application is included in the image file. As the necessary operating

system components are embedded in the virtual appliance, it can be operated on diverse

types of architectures. For instance the game developed for Windows operating system

can be played on Linux with the same ease. Virtual appliances can be categorized as the

closed and open virtual appliance. The closed virtual appliances are configured and

distributed as indestructible units. Whereas, users have option to modify the open virtual

appliances according to their requirements through web page user interface.

1.1.1 Virtual Machine

The virtual machine is software which allows the different operating systems to run as a

guest over the host operating system by using a virtualization layer called the hypervisor.

It is a very helpful technique when a user wants to run an application on his computer

which is not compatible to his host operating system. Virtual machine allows a user to

install guest operating system of his liking over which he can install the applications. For

3

example, a user can install the Microsoft Windows 7 as a guest operating system over the

Ubuntu 14.04 LTS host operating system by using virtual machine software such as the

‘virt-manager’. With the installation of the Microsoft Windows 7, the user can install the

Microsoft Windows specific software such as the Microsoft Office 2010. Now he can use

the Microsoft Excel and Word data processing software and at the same time retain the

Ubuntu 14.04 LTS as the host operating system. The virtual machine creates a

virtualization layer between the host and the guest operating systems and allocates virtual

hardware resources to the guest operating system. The guest operating system does not

know about the presence of the host operating system between itself and the hardware

layer. It works in similar fashion as it is directly installed on the hardware. The virtual

machine provides the virtual hardware to the guest operating system like virtual CPU,

virtual memory, and virtual network interfaces. The virtual hardware is mapped to the

real hardware. For example the virtual hard disk is stored in a file in the real hard disk.

The virtual machine can be directly access remotely using its virtual network interface.

1.1.2 Virtual Appliance

The virtual appliance is defined as the image file of a virtual machine which contains pre-

configured operating system and a single application. The basic idea behind the creation

of a virtual appliance is that application will be delivered and operated in an easy and

simplified manner [9]. To achieve this purpose, only necessary components of operating

system which are required in the execution an application are included. They can be

installed as a virtual machine which is running on some virtualization programme such as

virt-manager, VMWare, Citrix,and so on. The deployment of virtual appliance also take

care of the issues related to the installation and configuration of drivers. A single file is

delivered to the user, who can download it and run its intended application. In this way

resources which are required for maintenance of virtual machine also reduced. The

virtual appliances have proven record of excellence in the deployment and maintenance

of network applications. It is also helpful in Software as a Service (SaaS) model due to its

simplicity of deployment and execution.

4

The virtual appliances are divided into two categories, i.e., closed virtual appliances

and open virtual appliances. In first case the virtual appliance is configured and

distributed as indestructible unit. In second case clients and customers have option to

modify the virtual appliance. The developer can deliver the updated packages to the

customers or can provide the interface on web server from where clients can directly

configure the virtual appliance according to its needs and requirements. They are either

directly provided to the customer in the form of a file or they can download it from the

source website. The common file format which is vogue is Open Virtualization Format

(OVF). Many popular virtualization vendors like Oracle, Microsoft, Ubuntu and so on

supports it. The OVF documentations are published by the Distribution Management

Task Force (DMTF). The file extension is “.ovf” The virtual appliances can be packaged

and distributed as an OVF which is an open standard format. It allows the virtual

appliances to be run on virtual machines. The OVF is not vendor specific. Large variety

of processors and hypervisors this format as mentioned earlier. They are created and

distributed as a ready-to-use system. It is just like a out of box solution. User only needs

to download the single file and run its own virtual environment. All necessary operating

system to run that application is already configured in it. This approach is really helpful

in the cloud environment, where ready-made solutions are required.

1.1.3 Streaming

Streaming is modus operandi of unremitting presentation and deliverance of data from

source to receiver. Media player launches audio or video file before complete video file

has been downloaded from source server. Streaming as a delivery process is separate

entity from media itself. If a client first downloads a same video file and then run it on

the media player at his leisure time, it is not called streaming of the video. Delivery

mechanisms are spontaneously fall into the category of either streaming or non streaming

media. For example the television and the radio are inherently falls into the category of

streaming media whereas the books and the CDs are inherently non-streaming media.

5

1.2 Motivation

Virtual appliances include variety of software and hardware emulations like routers,

switches, firewalls, WAN optimization controllers, and software solutions. They are

network based software appliance running on virtual machines. The virtual appliance

developer could produce a package of application with the intended operating system and

publish it across multiple platforms for use on for its use on pay-as-go-basis. Main

advantage of VA is that they offer consolidation strategies by employing single software

device to perform the functions which are generally performed by physical devices [22].

Moreover the cost of acquiring software-based virtual appliance could be lesser than the

cost of procuring hardware-based physical devise having similar functionality and in

various cases the cost of virtual appliance would be one-third of the cost of hardware

appliance. The user can leverage the functionality and flexibility offered by the

hypervisor to acquire and execute a system without any need to have second physical

appliance. Therefore organizations could employ cost saving strategies by deploying

more virtual appliances with the same cost with which they would install hardware

appliances. The deployment of virtual appliances particularly benefits those

organizations which have already disseminated serve virtualization technology at its

remote offices and data centers. The large applications could be packaged into virtual

appliance and then streamed them to the user through network. For instance a

professional spreadsheet rental service could stream the spreadsheet application to the

user whenever user needed to create, edit, or print the spreadsheet workbook. A state of

the art virtual appliance streaming service would allow the user to swiftly access the

application without any need to first download its codec and libraries.

1.3 Problem Statement

Existing virtual appliance streaming services are not suitable to be used in a current

network environment facing high latency, jitter, and low bandwidth challenges. There is

need to develop a new procedure to facilitate ceaseless streaming of virtual appliances

over networks

6

1.4 Thesis Organization

The remaining portion of thesis is composed as follows: Chapter 2 is related to previous

research oriented work and supportive study concerned with the streaming of virtual

appliances over network. The Chapter 3 encompasses proposed architecture and research

methodology for virtual appliances streaming. The Chapter 4 is related to the assessment

of performance evaluation results. The Chapter 5 concludes the research and discusses

about future work.

2 LITERATURE REVIEW

In this chapter we have presented the overview of the researches and techniques for

the streaming of virtual appliance over network.

2.1 Profiling of Pieces:

The profile base execution pre-fetch approach focused on the creation of profiles of

virtual machine image and the workload pair [6]. The streaming of virtual appliance

depends upon the prefetching of pieces based on those profiles. Important phase in the

creation of profile is the identification of those pieces of software which are not likely to

be accessed by the user and to blacklist them for prefetching at the client end. Only those

pieces will be entered into the profile that has been identified in at least one execution of

the software. These profiles are specific to the virtual machine image and its workload.

The workload was executed once or more times from the booting to the shutdown phase

to identify the pieces which were accessed during the running of software. The time and

order of appearance of were also recorded. Then the pieces were arranged in a list from

earliest to the latest containing piece index, its average appearance time, and the number

of executions in which it was identified. The profile is thus the ordered list of those

pieces. The drawback of this approach is that important information may be lost during

the averaging procedure. Moreover these profiles are associated with specific virtual

machine image/workload pair and are not general purpose profiles. Therefore these

7

cannot be universally used on different types of workloads to figure out common access

sequence. Prefetching the wrong pieces may not only stall the execution of software and

also resulted in the clogging of the network.

2.2 Prefetching State Access:

According to prefetching approach, the key to successful streaming of virtual

appliance depends up accurate prefetching hints [15]. These hints can be obtained by

analyzing the access traces from the previous executions of the software. It proposed the

creation of task-specific virtual appliance with focused work flow. The execution of

virtual appliance commenced with the arrival of subset of the initial working set. As the

execution progressed the missing state has to be demand fetched from the cloud. It

resulted into stalls in system. A large number of stall may be perceived by the user as an

irresponsive system. It tries to avoid such stalls by prefetching the VA state that will be

expected to be accessed in the future course of action. Such predictions are made on the

information collected through the prior execution of the virtual appliance. The

insufficient prefetching knowledge may results into interruption during system execution.

Sometimes correct prefetching knowledge may not be available in time to curtail the

interruptions effectively.

3 DESIGN GOALS

Before the explanation of the working and architecture of CVAS, the design goals are

taken into consideration:

3.1 Modular Construction of VA:

Our objective is to convert large-sized virtual appliance into small sized virtual packs

for their swift transmission over real network. With current bandwidth capacity of real

8

networks, the large-sized virtual appliance would take from few minutes to several hours

to download to client end.

3.2 Large-sized Virtual Appliances:

The size of virtual appliance is growing with the passage of time. Currently the size of

virtual appliance varies from hundreds of megabytes to gigabytes and this trend is

expected to continue in future. We therefore targeted the large-sized virtual appliance in

our study.

3.3 Single-task oriented Virtual Packs:

We proposed the construction of single-task oriented virtual pack for ease of

development and streaming. We concentrated on the uniqueness of virtual packs instead

of imposing rigid constraints. The producer of virtual appliance would provide single task

functionality in each virtual pack. According to principle of factor sparsity the 80% of the

users only utilize 20% functionality of the software. Therefore single-task oriented virtual

pack could cater the needs of large number of users.

3.4 Equal-sized Virtual Packs:

We targeted the creation of equal-sized instead of variable-sized virtual packs. The

equal sized virtual packs are easy to handle and transmit over networks. It consumes less

processing power of the streaming server and networking nodes. The creation of variable

sized virtual packs would complicate the virtual pack construction process and therefore

we left that question for future research.

9

3.5 The Swift Transmission of Virtual

Appliances over Network:

We focused on the issue of swift transmission of virtual appliance over network. Our

objective is to allow the hypervisor to access the virtual appliance as it is stored on the

local host. The creation of scalable service oriented system is beyond the scope of this

topic.

3.6 Streaming of Complete Virtual Pack:

Video streaming could tolerate the delivery failure of few frames to the users end. It

does not seriously affect the running of the video as a whole. But to run the software it is

necessary that complete image file will be delivered to the client end. Therefore we

focused on the streaming of complete virtual pack before the execution begins.

4 CVAS STREAMING MODEL

Motivating force behind the concept of Ceaseless Virtual Appliance Streaming

(CVAS) is to facilitate the interactive user friendly streaming of virtual appliances as

comparable to video streaming. Therefore we proposed and developed a new virtual

appliance streaming model that is based on the fundamental principle of video streaming.

4.1 Video Streaming:

Video file is consisted of sequence of still frames to be displayed one after the other to

produce a moving image effect [7]. The video frames are independent entities and

10

damage or lost of some frames does not affect the running of video as a whole and only

lost portion of the video may simply be unavailable to the viewer. As frames are

independent entities, media player start running the video with the receiving of first few

frames whereas rest of the frames may be in the network pipeline. If frames are received

at higher rate than playback window, the excessive number of frames may be stored at

buffer for future run. [8]. Media player does not require downloading entire file before

running the video.

4.2 Virtual Appliance Streaming:

The streaming of virtual appliance over network cannot be attainable in the similar

fashion as the video streaming. The basic difference is that a video is consisted of

autonomous frames whereas virtual appliance is an image file of a virtual machine (VM).

If a single chunk of image file is not received at client end, it could not function [9].

CVAS makes the streaming of the virtual appliance’s image file feasible by first

fragmenting it into small sized modules or chunks called virtual packs (VP) and then

forwarding the required virtual packs to the client end. The virtual appliance which we

have taken to illustrate the CVAS concept is the image file of the virtual machine of a

single application of computer game and supporting operating system components. The

game has composed of four phases but the user cannot play all of them at a time [10]. He

must run the phases in a set of sequence from phase 1 (startup stage) to phase 4 (finishing

stage) as shown in Fig. 1.

11

Fig. 1 Phases of gaming virtual appliance played shown by filled boxes

The parallel set of phases is also available to the user from which only one can be

chosen. For instance after phase 1 user can select either phase 2A or 2B but not both. The

phases of game played by the user are shown with filled rectangles in Fig. 1. It shows that

user played only four phases of games out of total eight stages. According to the “law of

vital few” it is wastage of network resources to transmit all eight stages to the client end.

The CVAS project would convert the larger VA into eight independent smaller modules

or VPs. Each virtual pack contains only one phase of the game. Each VP is a complete set

of VM image fie independent of other VPs. To achieve this objective, a fundamental

modification is required in the basic programming code of the computer game. As each

VP contains only a portion of the game, it reduces the size of file that is to be transmitted

at a single time. Therefore, the transmission of a VP consumes lesser bandwidth and

processing power of internal nodes of network as compared to the entire VA file [11]. At

the completion of a particular phase, user has been given option to advance to the next

phase or to logout from the system. Accordingly, the subsequent phase may also consist

of parallel phases. This phase selection process would continue till the game has been

completed or the user would consumes all of his life lines. This process has similarity

with the video files containing specific number of frames arranged in sequential order.

12

By employing traditional method of playing online games, user has to download the

entire game before running it on the system. Depending upon network speed it takes from

several minutes to few hours in order to download the entire game from server side. But

by using CVAS project the user does not require to download the entire game at a time.

He requires only the first phase of the game to start with. It is similar to the streaming of

video file where only initial set of frames are required by the media player to play the

video. Now instead of transferring the larger VA only the VP consisting of the first phase

of the game has been delivered to the client end. Therefore user can start the execution of

the virtual appliance by just receiving the smaller portion of the larger VA. When user

reaches at the end of the Phase-1 and before moving on to the next phase there comes a

decision point (DP) about the selection of the next phase as shown in Fig. 2. It depends

upon whether the next phase is consisted of two or more parallel stages or is a single

entity. If the coming phase is a single entity then streaming server would simply delivers

the VP of the next stage. The matters become complicated when the next phase is

consisted of parallel stages and user have to decide in the previous phase about the

particular phase he wants to execute in future.

Fig. 2 Decision points (DPs) used to predict future user action.

13

To illustrate the concept, the DPs are placed at the end of each phase as shown in Fig.

2. For instance, if user have chooses decision point “DP-2A” at the end of Phase 1 then

streaming server will send the VP containing phase 2A and so on. User will receive only

that phase of the game which he opted for. It reduces the size of the file for its efficient

delivery over the network.

4.3 CVAS Hypothesis:

We assume that producers of VA encapsulate a task specific workflow in each VP.

Therefore each VP would be unique in nature. This single task hypothesis restrains to

some extent the variety of interactions that a user will have with the VA. Nevertheless,

VAs can offer variability in its functionality. For example, as described in our computer

game VA example, there are different scenarios or phases, each having its own audio,

video, and graphic data. Moreover, some VAs may use multiple processes to execute a

task, and a large number of these processes could be multi-threaded. Therefore VA would

be simply constructed on the principle of uniqueness instead of rigid constraints. For the

swift booting of the system the RAM image may also be included along with the disk

image by the producer of the VA. It is observed that less state is being accessed when

RAM image is included instead of non inclusion of RAM image. We focused on larger

VA instead of smaller ones as we expected that the size of the VAs will grow in size in

future. To make the construction and streaming of VAs simple we do not focus on agility

requirements like power consumption or scalability.

As observed earlier VA is an image of VM [17]. But instead of one large VA, several

smaller VPs have to be created each containing portion of the VA. The VPs can be sub-

divided into packets or wads for their rapid transmission over networks [18].

14

Fig. 3 Selection of virtual packs on basis of decision points

After the establishment of secure communication link between server and client using

TCP/IP connection, the streaming server would forward the initial state towards the client

end encapsulating the login and booting threads. On the successful completion of the

booting stage, the client would send to the streaming server information related to its

current state of action. On the basis of this information, the streaming server selects the

appropriate VP. As shown in Fig. 3, a larger VP has been divided into four smaller VPs.

Each VP is a module of specific functionality. Once that process is completed, all wads

or chunks of that virtual pack are transmitted to the client side for execution. In this way

user does not need to download larger VA and he can execute the smaller VPs as per

requirement. As the VA is sent in the form of virtual packs containing an image file of

virtual machine, there would be no compatibility issues arises on the user end. It

substantially reduces the size of virtual appliance file because the streaming server

transmits only the intended small sized VP to the user instead of larger VA file. After

applying compression the size of file already containing only one phase of the game is

further reduced. It needs lesser bandwidth to transmit smaller files. Smaller the size of

packet, the lesser is the time it requires to arrive at the destination. If the data size is

larger than the maximum transmission unit (MTU) of the particular network then the data

15

will be fragmented into smaller packets which consume time. In case of lost of larger

amount of data there will be more to resend. The sending of small sized VP increased the

process of VA streaming. The same is the case of video streaming where small amounts

of frames are quickly required to start playing the video. The size of wads would be in

proportion to the window size of the TCP to lower the overhead of acknowledgement.

4.4 Design Assumptions:

It is assumed that the developer or producer will encapsulate a task-specific and

focused work flow in every virtual appliance [14]. But this assumption restrains the type

and limit of interaction between the virtual appliance software and the user. Furthermore,

many virtual appliances may use numerous processes for the implementation of a task,

and a number of these processes possibly are multi-threaded. It increases the complexity

in the prefetching of the required virtual appliance state.

The decision points would be interpreted correctly by the streaming server. Incorrect

decision point interpretation would result into transfer of undesired VP to the user [15].

There should be some mechanism to transfer the desired portion of the software either

automatically or through some interaction on part of the user [16]. In either case it may

result in clogging of the network with junk material. The network bandwidth may be

consumed for transferring undesired and unrequested data.

The streaming server could perfectly weigh against the current user actions with the

VP that would be probably required in the future. Before user would finish the execution

of current VP, the packaged file of next VP must be transmitted to client end for smooth

user-system interaction. Otherwise there will be delay between the executions of

adjoining VPs. It adversely affects the user-software interaction.

16

5 ARCHITECTURE

CVAS architecture has leveraged the advantages of client-server model as shown in

Fig. 4. Both the client and server exploit the Linux-based QEMU-KVM (quick-emulator

kernel-based virtual machine) virtualization module to stream VA. Virtualization is

supported by QEMU when executing under Xen hypervisor or employing KVM module

in Linux. QEMU is selected as it is open source and generic virtualizer and machine

emulator. As an emulator, QEMU can execute operating systems on heterogeneous

machines by employing dynamic translation. On the other hand, when utilized as

virtualizer, it realizes near native performance by directly running the guest code on host

machine. When employing KVM, the QEMU can virtualizes x86 and ESA/390 guests.

The KVM offers complete virtualization solution for Linux operating system on x86

having virtualization extensions such as AMD-V or Intel VT. It is made up of loadable

kernel module called kvm.ko which offers virtualization and processor-specific module,

kvm-amd.ko or kvm-intel.ko. Through KVM we can operate multiple VM containing

unmodified Windows or Linux images. The mainline QEMU encapsulates the userspace

component of KVM to facilitate the hardware virtualization of numerous processors.

Kernel component of KVM is embedded in mainline Linux to run VM. The user session

can be established between the client and server through open source libvirt application

programming interface (API). It is preferred because it supports multiple different

hypervisors such as qemu-kvm, Xen, VirtualBox, VMware ESX/GSX, Microsoft Hyper-

V, IBM PowerVM, Bhyve, and Virtuozzo hypervisors. Through libvirt we managed and

control remote VM on streaming server using virsh tool. Another reason for using libvirt

in CVAS project is that it can also be accessible from Microsoft Windows clients along

with Linux OS. On the server side qemu-kvm run multiple VAs simultaneously as they

are images of VMs. A database of VAs is maintained at server side from where the user

can select the VA of his choice through libvirt on web. But user would get the VP instead

of VA as all the VAs are fragmented into VPs. The VPs are transparent to user. For ease

of management and make the system simple, we fragmented VAs into equal sized VPs. It

17

is easy to manage and transmit VPs of equal sizes as compared to variable sizes VPs. The

variable-sized VPs may need memory management for queues and results in delays.

Therefore streaming server stored the equal-sized VPs as their construction and

transmission is less complicated and unproblematic as compared to variable-sized VPs.

The construction and management of variable-sized VPs are left for future research.

Simultaneously the VPs are further fragmented into equal sized wads or packets to

further reduce the size of file during transmission phase.

Fig. 4 CVAS Architecture

5.1 Client Architecture:

A small modification at qemu-kvm on client side enables us to access the virtual

appliance from our cloud based streaming server. The client could demand the

appropriate virtual packs instead of the complete virtual appliance file. The VP image

18

would be accessed through libvirt API and for this purpose the virsh command line and

GUI virtual machine manager (VMM) utilities would be available at client side. When

the client is paused due to any reason, the user would be notified through client GUI.

During delays at buffering, user could utilizes his time in some other productive manner.

5.2 Server Architecture:

The process of selection, transmission, and control of appropriate VPs is embedded in

our streaming server. The VA is fragmented into appropriate number of fixed-sized VPs

through recoding and modular programming by the producer. The limitation is that non-

destructive type VAs cannot be handle in the same manner. Therefore, in case of non-

destructive VAs, the complete VA image file would be transmitted from server to client

for its execution. Each VP could be accessed through its interface by exploiting open

source libvirt API for the establishment of TCP session between client and intended VP.

Opendedup data deduplication compression technique is applied on our Linux-based

streaming server to avoid the storage of redundant and duplicate copies of data. On the

selection of appropriate VP trough libvirt API, the server would spontaneously send the

whole image file of the VP without any delay. The selection of the VP through DP relies

upon client instead of server. It simplified the decision making process.

6 EXPERIMENTAL EVALUATION

To conduct the experimental evaluation we installed the prototype version of CVAS

on Linux server and offer quick streaming service to the Linux hosts. Our primary

assessment standard is the buffer time and the number of interruptions during the

execution of software.

19

6.1 Experimental Setup:

The central idea behind the CVAS is to create a user friendly streaming system that

would provide good performance on low bandwidth networks and general purpose

computing devices like PC. Therefore the CVAS has been evaluated and tested over the

4-mbps shared bandwidth network. The Internet connection speed varies from country to

country and lies between less than 1 mbps to over 16 mbps. The network speed of 4 mbps

could represent the large user base especially of developing countries. We conducted our

experiments on client side hardware system with minimal specifications.

The computing system used for the CVAS experiment is general purpose system is in

vogue and possesses by general user instead of high profile users as illustrated in Fig. 5.

Out of total 2 GB main memory available at client end, we set aside 1 GB as virtual

memory to accommodate Linux operating system. We take the leverage of Linux-based

qemu-kvm hypervisor for the execution of virtual packs over host machines. The

remaining 1 GB of main memory has been utilized by host operating system. The host

operating system may be Windows or Linux.

Description System Specifications

Clock Speed 3.60 GHz

Cache 3 MB

Cores / Threads 2 / 4

TDP Power 54

Primary Memory 2 GB

Virtual Memory 1 GB

Secondary Storage 250 GB

Virtual Storage 60 GB

Physical Bus Extension 32 bits

Network Download Speed 4 mbps shared

Table 1: CVAS system and network specifications

20

The working of CVAS was tested on minimal 4-mbps shared bandwidth networks but

with the increment in bandwidth capacity, the performance of the system increases. The

CVAS is assumed to be used by a general purpose users, therefore the system

specifications and network settings were laid down keeping that objective in view.

6.2 Experimental Virtual Appliance:

We have chosen the Microsoft Office suit to build an experimental virtual appliance.

Over 1 billion people used Microsoft Office worldwide therefore it is a commonly run

software. Its desktop components include Word, Excel, Access, PowerPoint, etc. The

selection of Microsoft Office served the dual purpose. It is large-sized and non-

compatible to the Linux operating system. The installation of Microsoft Office requires 3

GB of secondary memory along with 1 GB of primary memory on 32 bits system and 2

GB of primary memory on 64 bits system. In order to execute the Microsoft Office over

Linux, we converted it into a virtual appliance. When converted into virtual appliance, it

could be run over virtual machine taking the leverage of Linux based qemu-kvm

hypervisor.

Instead of creating a large-sized virtual appliance which is consisted of complete set of

Microsoft Office suit, we fragmented it into small sized virtual packs as shown in Fig. 6.

For this purpose we made “Not Available” all the desktop applications of Microsoft

Office saving the one which we need to create the virtual pack. The virtual packs thus

created included Excel, Word, PowerPoint, and Access. Each of them is task oriented and

offers explicit functionality which is not possibly provided by its sibling virtual pack. For

instance the virtual pack consisting of Excel spread sheet facilitates the mathematical

calculations, graphical tools, tables, and Visual Basics. On the other hand virtual pack

consisted of Access application is utilized by users for the management of database

system in order to store, update, retrieve, and manage data. For the installation and

running of virtual packs on diverse architectures, the application software and customized

21

operating system were tied together to create a packaged image file of virtual machine.

That image file was stored by the streaming server as a virtual pack. The virtual packs

were interconnected through content coupling.

CVAS Experimental Virtual Appliance

Description Type
Buffer Time

Hr:Min:Sec

Interruptions

Hr:Min:Sec

Word VP 00:01:49 00:00:00

PowerPoint VP 00:01:53 00:00:00

Excel VP 00:01:55 00:00:00

Access VP 00:01:58 00:00:00

Office Suit VA 00:03:25 00:00:00

Table 2 Buffer Time and Interruptions Time during execution of VA and VPs

Figure 7 shows the list of virtual appliance and virtual packs that we tested on the

CVAS. We used GNS3 emulator on Linux system to simulate the network consisted of

qemu-based VMs. Another advantage of employing GNS3 is that it offers large number

of ready-made virtual appliances and allows creating new VAs according to the

requirements. We then streamed the VA and VPs to the client end and recorded the data

related to the buffer time and number of interruptions during the process. When we

streamed the complete virtual appliance, there was buffering delay of 3 minutes and 25

seconds before the execution started. But once the virtual appliance was entirely streamed

to the client end; there were zero interruptions during its executions. The reason was that

the virtual machine’s image file contained complete functionality along with the

customized operating system that had been received at the client end. After the

completion of task we streamed the four small-sized virtual packs one after the other.

When we streamed the virtual packs instead of large-sized virtual appliance the buffer

time reduced to between 1 minute and 49 second to 1 minute and 58 seconds. There were

approximately 52 percent reduction in buffer time. The major advantage of CVAS system

22

is that once the execution has been started, there would be no interruptions as we faced

during the execution of profiling and prefetching streaming approaches.

6.3 Comparison of the CVAS with the

Profiling and the Prefetching of

Access State Approaches

To facilitate the streaming of VAs over network, the VMTorrent put forward the idea

of profile-based prefetching of the VM images from the cloud to the host machine. It

advocated the creation of a packaged VM image and specific workflow profiles. To attain

that objective they run workflow at least once on VM image from boot to shutdown to

sort out those pieces which were appeared in at least one profile run and made a profile of

ordered list of those pieces. They blacklisted those pieces which were never appeared in

any run. The profile was taken as criteria to predict the way user will execute the VM

image. But this approach has limitations. Important information would be lost during the

profiling process. Users execute the VM image differently for each workflow. As the

profiles are specific to workflow and VM image, these are not general profiles to be

applied for all types of workflows.

vTube advocated the idea of prefetching VA state to the host machine that is predicted

to be used in future course execution. Instead of historical traces of the VM execution in

past, it relies on the current state of VM execution and the amount of available

bandwidth. It is in contrast to the VMTorrent profiling approach where static profiles

were build which rely on VM image and workflow combinations. But the vTube

approach is not devoid of limitations. The inaccurate prefetching hints would result in

system stalls and network clogging with undesired data chunks. It seriously affects the

overall performance of the streaming process.

23

6.3.1 Lesser Buffer Time:

We created the big-sized virtual appliance equivalent to 3 GB. It was then modulated

into small-sized and task-oriented virtual packs. These virtual packs were streamed to the

client on-demand instead of the entire virtual appliance. It is observed that CVAS

consumed less buffer time before the start of VA execution as compared to above-

mentioned prior streaming approaches. As shown in Fig. 7, the CVAS has utilized 1

minute and 53 seconds before the execution of the virtual pack started. VMTorrent had

consumed 4 minutes and 25 seconds to start the execution of virtual appliance, while

vTube delayed for 16 minutes and 33 seconds for the same purpose.

Fig. 5 Comparison CVAS, Profiling, and Pre-fetching streaming approaches

Less buffer time resulted in timeliness execution of VA over network. The CVAS

consumed 6.9% of time when compared to 19.2% by VMTorrent and 73.9% by vTube.

The applications having less buffer time are quick to start and considered as user friendly.

24

6.3.2 Zero Interruptions during Execution:

Once the execution of the virtual appliance stared at the client end, zero interruption

was experienced from the boot-up to the shutdown phase. The zero interruption

experience was the result of the streaming of virtual pack (i.e. packaged virtual machine

image file) containing task oriented functionality and supported operating system. As all

the necessary functionality is prefetched, the software function smoothly without

hinderance.

6.4 Comparison of CVAS with Onboard

Native Application:

It is noted that the CVAS system performs almost in equivalence to the native

application installed on the host machine. The native application is more efficient

because it has shorter span of delay time. But once the buffering phase has been

completed the CVAS provides performance on the same level as native application as

shown in Fig. 8.

Fig. 6 Similarity between CVAS and native application execution.

25

The user has to wait for 0.20 minutes before the native application is started. Whereas

in case of CVAS, the delay during buffer time is 1.5 minutes which is 1.30 minutes

higher than native application. Though the CVAS system has taken more time to buffer

than the native application but it is cost effective solution for proprietary software. To

install and execute application on a native system, the user has to buy the license which

bears cost. Sometimes software is required for a shorter span of time and to purchase the

license for little period of time is not feasible solution. Whereas virtual appliance is

available on a cloud computer owned by a third party. It is more appropriate to streaming

that VA from the cloud server on the basis of pay as you go contract. The procurement,

maintenance, and up-gradation of VA would be the responsibility of the cloud provider.

It greatly reduces the cost of utilizing the software. VA stored on the cloud can be

streamed to any host machine installed at remote location provided the availability of

Internet connection. Whereas native machine would be executed on the host machine at

which it is installed. Therefore CVAS offers flexibility in the execution of different types

of VA over diverse hardware architectures.

7 CHALLENGES OF THE CVAS

SYSTEM

Major challenge before CVAS system is the fragmentation or modulation of big-sized

virtual appliance into small-sized task-specific virtual packs. It requires modification in

the source code of the software application. For proprietary applications the source code

is not publically available for modifications. Even in case of open source software, high

technical expertise would be required to fragment the software code into well structured

and functional modules or virtual packs. Moreover some software applications are

indestructible and cannot be fragmented further. Linking of modules also requires special

knowledge of programming.

26

8 THE FUTURE RESEARCH &

DIRECTIONS

The CVAS system is applicable where virtual appliance can be readily disjointed into

independent task-specific virtual packs. The linking and message passing between virtual

packs is an important phenomenon which needs cautious implementation. But this is not

true for every type of virtual appliance. For example virtual appliance does not work well

if after broken down into task-specific virtual packs, there is no mechanism to get results

from one virtual pack into sister virtual pack. To make it easy it is assumed there is

automobile engineering virtual appliance having two interrelated components, i.e., engine

design unit and body design unit. Both components are complementary to each other. The

engine’s design must match with the body design otherwise automobile design could not

be completed. For example a 2000 cc engine design cannot be matched with the body of

800 cc automobile. According to engineering practices engine is designed first and then

body is manufactured to accommodate the engine. The vehicle body’s weight, its

dimensions, and its seating capacity all depends upon the engine design. If two

independent virtual packs are created, i.e., one for the engine design module and another

for the body design module, then there must be some linkage mechanism to get

information about the engine design from the engine virtual pack into the body virtual

pack. The research to find out solution to the problem is open for future studies.

9 CONCLUSION

The significance of cloud based virtual appliance is growing with new innovation in

virtualization technology. Streaming of large-sized virtual appliances would address the

issue of proprietary rights of the software and cost and maintenance issues on client end.

But it is not feasible to stream large sized virtual appliances in a single go. Even with

27

better network connections it would be cumbersome to download large virtual appliances

and sometimes the downloading would not be successful at all. It would be frustrating if

that happens time and again. The essence of the CVAS system is modulation of virtual

appliance into task-oriented virtual packs. The on-demand prefetching of virtual packs

greatly reduces the transmitting time, and bandwidth consumption of the network. The

burden on the processing power of internal nodes also reduces with the reduction in size

of data. The CVAS has taken into consideration of this principle of sparsity to devise a

mechanism where user will get only those components of the software which is needed

by him. To achieve this objective some modifications in the source code of the software

are required for modularization. The user can begin the execution of the virtual appliance

with the reception of initial virtual pack. The CVAS system thus works like the streaming

of video where media player could start playing video when it gets frames equivalent to

its playback window size. The users do not wait for lengthy download times. The CVAS

system works without interruptions like the native host application once the initial buffer

time elapsed.

Bibliography

[1] W.E. Dong, W. Nan, L.Xu, “QoS-Oriented Monitoring Model of Cloud

Computing Resources Availability,” Computational and Information Sciences

(ICCIS), 2013 Fifth International Conference on, Pages: 1537 -

 1540, DOI: 10.1109 / ICCIS.2013.404, 2013

[2] G. Kecskemeti; G. Terstyanszky; P. Kacsuk, “Virtual Appliance Size

Optimization with Active Fault Injection ”, IEEE Transactions on Parallel and

Distributed Systems, Pages: 1983 - 1995, DOI: 10.1109/TPDS.2011.309, Year:

2012, Volume: 23, Issue: 10

[3] C. Y. Huang; C. S. Kuo; S. P. Luan, “Evaluation and Application of Bounded

Generalized Pareto Analysis to Fault Distributions in Open Source Software”,

IEEE Transactions on Reliability, Year: 2014, Volume: 63, Issue: 1 Pages: 309 -

 319, DOI: 10.1109 / TR.2013.2285056

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Kecskemeti.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Terstyanszky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20Kacsuk.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://dx.doi.org/10.1109/TPDS.2011.309
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.C.%20Y.%20Huang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.C.%20S.%20Kuo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20P.%20Luan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6750070

28

[4] R. Nossenson; S. Polacheck, “On-Line Flows Classification of Video Streaming

Applications”, Network Computing and Applications (NCA), 2015 IEEE 14th

International Symposium on, Pages: 251 - 258, DOI: 10.1109/NCA.2015.51

[5] G. Kecskemeti; G. Terstyanszky; P. Kacsuk; Z. Nemeth, “Towards

Efficient Virtual Appliance Delivery with Minimal

ManageableVirtual Appliances”, IEEE Transactions on Services Computing,

Year: 2014, Volume: 7, Issue: 2, Pages: 279 - 292, DOI: 10.1109/TSC.2013.12

[6] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, and D. Rubenstein.

VMTorrent: Scalable P2P Virtual Machine Streaming. In Proceedings of

CoNEXT12, Nice, France, December 2012.

[7] M. I. Islam; J. I. Khan, “Video Splicing Techniques for P2P Video Streaming”,

Distributed Computing Systems Workshops (ICDCSW), 2015 IEEE 35th

International Conference on, Year: 2015, Pages: 72 - 76, DOI: 10.1109 /

ICDCSW.2015.23

[8] J. Wu; C. Yuen; N. M. Cheung; J. Chen; C. W. Chen, “Enabling Adaptive High-

Frame-Rate Video Streaming in Mobile Cloud Gaming Applications”, IEEE

Transactions on Circuits and Systems for Video Technology, Year:

2015, Volume: 25, Issue: 12, Pages: 1988 - 2001, DOI: 10.1109 / TCSVT .2015.

2441412

[9] P. Orosz; T. Skopkó; P. Varga, “Towards estimating video QoE based

on frame loss statistics of the video streams”, Integrated Network Management

(IM), 2015 IFIP/IEEE International Symposium on, Year: 2015, Pages: 1282 -

 1285, DOI: 10.1109 / INM.2015.7140482

[10] M. Banerjee; S. R. Roy; C. Kumar, “Feature Oriented Programming: A step

towards flexible composition of modular programming” Recent Advances in

Information Technology (RAIT), 2012 1st International Conference on, Year:

2012, Pages: 369 - 373, DOI: 10.1109 / RAIT.2012.6194448

[11] Kaijun Fan; Bingyin Xu; Guofang Zhu; Jie Gao, “Fast peer-to-peer real-

time data transmission for distributed control of distribution network”, Electricity

Distribution (CICED), 2014 China International Conference on, Year: 2014,

Pages: 1041 - 1045, DOI: 10.1109 / CICED.2014.6991864

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Nossenson.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Polacheck.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7371416
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7371416
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Kecskemeti.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20Terstyanszky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.P.%20Kacsuk.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Z.%20Nemeth.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4629386
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6828820
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20I.%20Khan.QT.&newsearch=true

29

[12] X. Fu; X. Li; Y. Zhu; L. Wang; R. S. M. Goh, “An intelligent analysis

and prediction model for on-demand cloud computing systems”, Neural

Networks (IJCNN), 2014 International Joint Conference on, Year: 2014,

Pages: 1036 - 1041, DOI: 10.1109 / IJCNN.2014.6889875

[13] N. P. Cardo, “Logjam: A scalable unified log file archiver”, High Performance

Computing, Networking, Storage and Analysis (SC), 2011 International

Conference for, Year: 2011, Pages: 1 - 9, DOI: 10.1145 / 2063348.2063379

[14] M. Schots; C. Werner, “Using a Task-Oriented Framework to Characterize

Visualization Approaches”, Software Visualization (VISSOFT), 2014 Second

IEEE Working Conference on, Year: 2014, Pages: 70 -

 74, DOI: 10.1109/VISSOFT.2014.20

[15] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and M. Satyanarayanan,

“vTube: efficient streaming of virtual appliances over last-mile networks,” in

Proc. of the 4th annual Symposium on Cloud Computing. ACM, 2013.

[16] S. K. Soni; R. Arora; A. S. Rodge, “Referer’ based Predictive Caching and

session prefetching for Browser”, India Conference (INDICON), 2014 Annual

IEEE, Year: 2014, Pages: 1 - 6, DOI: 10.1109/INDICON.2014.7030529

[17] N. Sabahat; A. A. Malik; F. Azam, “Size estimation of open source board-

based software games”, 2015 International Conference on Open Source Systems

& Technologies (ICOSST), Year: 2015, Pages: 126 - 131, DOI: 10.1109 /

ICOSST. 2015. 7396414

[18] Zhaojuan Yue; Xiaodan Zhang; Yongmao Ren; Jun Li; Qianli Zhong, “The

performance evaluation and comparison of TCP-based high-speed transport

protocols”, Software Engineering and Service Science (ICSESS), 2012 IEEE 3rd

International Conference on, Year: 2012, Pages: 509 - 512, DOI: 10.1109 /

ICSESS.2012.6269516

[19] Jen-Ho Yang; Ya-Fen Chang; Chih-Cheng Huang, “A user authentication scheme

on multi-server environments for cloud computing”, Information,

Communications and Signal Processing (ICICS) 2013 9th International

Conference on, Year: 2013, Pages: 1 - 4, DOI: 10.1109/ICICS.2013.6782791

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016294
http://dx.doi.org/10.1109/INDICON.2014.7030529
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jun%20Li.QT.&newsearch=true

30

[20] Anish Babu S.; Hareesh M. J.; John Paul Martin; Sijo Cherian; Yedhu Sastri.

"System Performance Evaluation of Para Virtualization, ContainerVirtualization,

and Full Virtualization Using Xen, OpenVZ, and XenServer”. Advances in

Computing and Communications (ICACC), 2014 Fourth International Conference

on.

[21] Gabor Terstyanszky; Gabor Kecskemeti; Peter Kacsuk; Zsolt Nemeth. “Towards

Efficient Virtual Appliance Delivery with Minimal Manageable

Virtual Appliances”. IEEE Transactions on Services Computing. Year:

2014, Volume: 7, Issue: 2. Pages: 279 - 292, DOI: 10.1109/TSC.2013.12

[22] Changhua Sun; Le He; Qingbo Wang; Ruth Willenborg. “Simplifying Service

Deployment with Virtual Appliances”. Services Computing, 2008. SCC '08. IEEE

International Conference on. Year: 2008, Volume: 2, Pages: 265 -

 272, DOI: 10.1109/SCC.2008.53

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Anish%20Babu%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hareesh%20M.%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.John%20Paul%20Martin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sijo%20Cherian.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yedhu%20Sastri.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6906035&newsearch=true&queryText=virtualization
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6906035&newsearch=true&queryText=virtualization
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6901615
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6901615
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6901615
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gabor%20Terstyanszky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gabor%20Kecskemeti.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Peter%20Kacsuk.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zsolt%20Nemeth.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6470612&queryText=virtual%20appliance&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6470612&queryText=virtual%20appliance&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6470612&queryText=virtual%20appliance&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4629386
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6828820
http://dx.doi.org/10.1109/TSC.2013.12
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Changhua%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Le%20He.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qingbo%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ruth%20Willenborg.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4578533&queryText=virtual%20appliance&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4578533&queryText=virtual%20appliance&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4578428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4578428
http://dx.doi.org/10.1109/SCC.2008.53

