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ABSTRACT

This thesis presents numerical modelling of discretized simply supported beam under dynamic
loading. The beam problem can be efficiently evaluated by devising an analytical problem and
then by suitably selecting a computational algorithm for the numerical solution of dynamic
problem. The simple beam is envisaged as an assembly of nodes with connected elements in which
the mass is lumped at convenient nodes locations. Kinetic and kinematic structural laws are
established under the restriction of small displacements in nodal forms. Impact loading,
constituting high-intensity dynamic pressures and causing a global dynamic response, is

considered.
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CHAPTER 1

INTRODUCTION

1.1 Practical motivation
Impact phenomena can be noticed in several aspects of life. Impact is an active and ever growing

field of study it includes a wide variety of engineering problems such as military ballistic events,
Impact resistance structural design against terrorist attack essential for the purpose of assessing the
safety of nuclear, chemical and other industrial plants. Impact has a number of applications in the
field of civil engineering, so design for impact is required. Highway structures, for example, may
suffer damage due to vehicular impact, vibration of railways tracks due to cyclic impact loading
causes damage to the railway track. Although, for numerous civil engineering structures, the risk
of damage due to impact may be remote, but for sensitive structures impact must be considered

during the design phase as the results of failure would be serious or possibly disastrous.

The ability to know the behavior of civil engineering structures under impact loads is needed for
the purpose of assessing the safety. Significant attention has been given to civil engineering
structures regarding their response under impact in recent years. Moreover, economic pressures

result in lighter constructions, implying that the results of impact are likely to be crucial.



1.2 Historical background
The Second World War is viewed as a watershed in the development of structural impact. Before

the end of WW2 in 1945, the scientific basis of the field unfolded by many intellectuals. The
purpose of this section is to refer to various key contributions of the past upon which the principles

of analytical mechanics were founded.

Even though the principles of statics had been correctly formulated by the scholars of ancient
Greece, Aristotle's ideas (c. 350 BC), which distinguished between "natural motions" and "violent
motions", were prevailed for a long time in the history of mechanics. Thus, a precise view of
dynamics did not come into view until the end of the Middle Ages and the beginning of the modern

era, when the field began to flourish.

Undoubtedly, most influential among the forefathers of dynamics is Newton. Proceeding of
Galileo, Descartes and Huygens, Newton generalized the concept of force to include attraction of
planets, actions of magnets and so forth; introduced the notion of mass; formulated the principle
of the parallelogram of forces and the law of action and reaction, which have become inestimable
vehicles for the writing down of equations of motion for dynamical systems. In his Principia
(1686), he formalized the laws of motion, clearly establishing the vector nature and role of

momentum as a measure for quantity of motion.

10



1.3 Thesis objective
Impact is a large field which encompasses a broad range of engineering problems including elastic

dynamic behavior of structures, stress wave propagation, ballistics and crash impact test of
vehicles. The impacted structural system may be devised for a variety of materials such as

concrete, brittle and elastic metals, brick and composites.

In this thesis, attention has been focused upon the response of two dimensional simple beam to
impulsive and short-term pulse loadings of intensity such that beam undergoes elastic deformation.
This can be achieved by application of the laws of structural dynamics, mathematical modelling

and laws of motion.

While the thesis above defines the general theme and strategy of the work, certain more specific

objectives may be set down. They are:

1. To formulate analytical solution by employing nodal network concepts to set up the laws
of kinetics (equations of motion) and of kinematics (geometry of motion) founded upon
D'Alembert's principle in matrix form. To set up nodal network of lumped masses
connected to one another by massless elements with stiffness lumped at nodes.

2. To develop a computer program on MATLAB that evaluates the dynamic response of an
elastic beam under impact loading based on previously developed analytical equations and
exact mathematical formulations for the numerical i.e. Runge Kutta method for solving n
ordinary differential equations.

3. To model impact problem using commercial software (Abaqus) using the same perimeters
i.e. impact mass, structural mass, initial conditions (initial velocity), boundary conditions
(support conditions) as used for the MATLAB program.

4. To compare the results obtained from both MATLAB code and Abaqus model.

11



1.4 System modeling
The first stage involves formulation mathematical programming procedures for dynamic structural

problems. Mathematical programming is a discrete variable form of optimization. It is based on
principle that the model response can be effectively described by a finite number of variables. In
this work, consideration is given exclusively to two dimensional elastic beam element but the same

can be used for skeletal structures such as plane and spatial frames.

1.5 Structural modelling
The beam structure is modelled as a two dimensional planner beam with n number of nodes

connected with mass less beam elements. This arrangement results in the nodal network system

for beams. So nodes are positioned at:

1. At connections between two or more members

2. At the junction of a member with the support

3. At points where the geometrical or mechanical properties change
4. At the site of the structural masses

5. Where concentrated forces are applied

1.6 Mass modelling
The convenient and simple method for defining the mass properties of a structure is that of a

lumped mass model, the actual distribution of mass is considered as a number of concentrated
point masses connected by massless elements. For a lumped mass model to be adopted, the mass
should be distributed as a finite number of concentrated point masses, however their magnitude
and positioning requires sound judgment and experience. For the lumped mass model of the elastic
beam it is assumed that the centroid of each concentrated mass is located at a node which is

associated with a number of kinematically possible displacements, or degrees of freedom, two

12



translations and one rotation. No consideration is given to the effects of damping because of its

insignificance in regards to the class of problem investigated in the thesis.

1.7 Load modelling
Generally for impact problems structural systems subjected to short-term, high intensity dynamic

pressures, usually known as pulse loads. But In the problem impacts is modelled by giving impact

mass and initial velocity to a convenient node for the sake of simplicity.

13



CHAPTER 2

Literature review

2.1 Introduction
Theory of Structures deals with the behavior of structural elements like beams, columns, frames,

and plate and shell elements subjected to loads or other forces which induce stress and deform the
shape of structural elements. The analysis of structural elements involves the principles described
by the Theory of Structure, under specified loading conditions and other factors like pressure
variations temperature, or support movements. The bending moment diagram for the description
of stress state of a beam based on structural analysis which involves the understanding of structural
theory. The knowledge of Theory of Structure is necessary to relate the applied loads, reaction
forces to the bending moment of the beam. The internal stress distribution in a member can be
conveniently described in terms of 'stress resultants'. In a three dimensional analysis of a structure,
there are two shear forces, two bending moments, a twisting moment and a thrust. Another aspect
is Structural deformation it is not described throughout the continuous length of structural element,
however the practice is to consider the value at selected points along the length of element. In
structural analysis it is usually convenient to describe the state of stress or deformation in terms of
forces and displacements at specific points known as 'nodes'. These are generally the critical points
in the structure where there is maximum stress of deflection i.e. ends of members, or the joints.
The information about the forces or displacements at the nodes of a structural element is enough
to describe the state of stress within the element providing the relationships between forces and
displacements are established. The Force-displacement concepts state that the structure must be in
equilibrium as a whole and every part of it under the action of forces. For example, if a beam is
isolated from a structure, it should be in equilibrium under the action of internal stress resultants

and external forces. There are six conditions of equilibrium i.e. the sum of forces in three

14



perpendicular axis must be zero and the summation of moments about three perpendicular axes
must be zero. Another important principle is Compatibility principle, it states that the parts of a
structural element must always deform in a conformable way. The parts of a structural element
must set together in continuity. At certain points in a structure, the continuity of a member, can be
interrupted by a 'release’. This release imposes a zero value on one of the stress resultants. A hinge
is an example of a release. Releases are introduced as imaginary devices in a structure under
analysis. The release will allow a discontinuity to develop, including a release will reduce the

number of compatibility equations by one.

2.2 Force — Displacement relationship
In structural analysis the state of stress or deformation in terms of forces and displacements at

'nodes' and the structure should satisfy equilibrium and compatibility.

2.3 Static determinacy
When the structure nodal forces can be calculated directly from the equilibrium conditions the

structure is statically determinate.

2.4 Kinematic determinacy
When the structure deflections can be calculated directly from the compatibility conditions the

structure is kinematically determinate.

15



2.5 Kinematic indeterminacy
The degree of kinematic indeterminacy is the minimum number of movements (degree of freedom

DOF) with which the kinematic configuration of the overall structure can be defined. For example

for a planner beam there are 3 movements for each node’'

For studying nearest possible behavior of a structure there should be multiple nodes (which means

multiple degree of freedoms) and more complex system.

2.6 Multi degree-of-freedom system
When external forces act on a multiple -DOF -system, the system undergoes forced vibration. For

a system with 'n' degrees of freedom, the governing equations of motion are a set of 'n' coupled

ordinary differential equations of second order

In such cases, a more modal analysis can be used to solve the problem analysis
. >
[m] X +[k]x = F (undamped system)

The convenient and simple method for defining the mass properties of a structure is that of a
lumped mass model, the actual distribution of mass is considered as a number of concentrated
point masses connected by massless elements. For a lumped mass model to be adopted, the mass
should be distributed as a finite number of concentrated point masses, however their magnitude

and positioning requires sound judgment and experience.

16



CHAPTER 3

METHODOLOGY

3.1 ANALYTICAL SOLUTION

3.1.1 Principle

To find out analytically the dynamic

Responsof a beam subjected to

Impact, one has to devise a

Analytical Solution. For this purpose,

We devised the a solution based

On the theory of free vibrations,

Laws of structural dynamics,

Flexibility influence coefficients

(For finding out flexibility and stiffness matrix)

And Runge Kutta method for solving

Ordinary Differential Equations of any order.

Mass (weight/length)

Y A 4

|
A Length L (a)A

(nl) (n2) (n3) (n4) (n5)

Y o0—0—0<X

(b)

~1 | [~

f11 f12 f13 (o)

~ [ [“

£21 22 23 ()

~1 [ 7

£31 32 33 (o
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3.1.2 Analytical model introduction
The analytical solution follows a node — element model characterized by,

* A node-element model in which masses are lumped at nodes having certain

values of stiffness calculated by flexibility influence co-efficient method.

* A description of structural network is obtained by series of massless elements

connected with nodes, each node having specific mass (lumped mass system).

* Deformations (displacements and velocities) at nodes are obtained from stiffness

or flexibility analysis.

» The accuracy of results is dependent on the number of nodes in model and their

spacing.

3.1.3 Inputs
The analytical solution of beam problem requires following inputs:

e Length of beam

e Modulus of Elasticity

e Moment of inertia

e Initial displacement in meters
e Initial velocity

e Impactor mass

Units: Analytical solution requires the user to put all the data in consistent units.

18



3.1.4 Mass distribution
Consider figure (a) and (b), the beam has length “L” with “M” as the mass of the beam and mass

per length unit of the beam is w/L. The overall mass of the beam is lumped at nodes. Each node
carries a mass of wL/3 (total mass/ number of nodes). As the mass at supports does not take part

in motion, the nodes at supports are not assigned any massso their mass is neglected in analysis.

ml=m2 =m3 = WL/3

0 0 m3

The impactor mass is added to the central node where “Mi” is the Impactor Mass, so the
final mass matrix is

ml 0 0
0 m2+Mi O

0 0 m3

3.1.5 Flexibility matrix
Flexibility Method (Flexibility Influence coefficients):

* The flexibility method provides a means of analysing statically indeterminate structures
» Flexibility coefficients are displacements calculated at specified positions, and directions,

in a structure due to a single unit load replacing a redundant force in the structure.

19



Evaluation of flexibility coefficients:

» Referring to figures (c), (d), (e), flexibility influence co - efficient (displacements) by the
application of Castigliano's theorem or use the principle of virtual work. In either case a
convenient form is

fi =] MOM/dF; ds/El

Where

+ fi=displacement required

* M = function representing the bending moment distribution

» Fiis a force, real or virtual, applied at the position and in the direction designated by i.

» The flexibility coefficients fj; provides the displacements at selected points in the structure
due to unit values of the associated, redundant, forces.

» The evaluation of flexibility coefficients requires the integration of the product of two
bending moment distributions over the complete structure (table of The product integrals

can also be used see appendix A)

11 f12 f13
F=|f21 f22 f23
£31 f32 £33

20



3.1.6 Stiffness matrix
Stiffness matrix is obtained simply by taking inverse of the flexibility matrix.

K=F'
11 f12 f13
K=1/|f21 f22 f23
f31 f32 £33

3.1.7 Free vibration response of multi degree of freedom system
A beam represented as a lumped mass system, as shown in figure (b) the governing system of

equations emerges as a set of Ordinary differential Equations. The order of Ordinary Differentials

Equations depends upon the degree of freedom.
[M]x(t) + [K]x(t) = F (undamped system)
For the beam problem refer to figure (a),
For free vibration response the governing equations are given by
F=0

0 m2+Mi 0| [X2(D k21 k22 k23[[x2(t) |=

0 0 m3J %3 (v k31 k32 k331 |x3 (b 0

[ml 0 0 ] x1 (1) ‘ [kll k12 k13] x1 (0 [o]
-

ml x1(t) +k11x1(t) +kl12x2(t) +kI3x3(t) =0

m2+Mi X2 (t) +k21x1(t) +k22x2(t) +k23x3(t) =0

m3 %3 (t) +k31x1(t) +k32x2(t) +k33x3(t) =0

RUNGE KUTTA METHOD FOR SOLVING SYSTEM OF ODE s:

The coupled Ordinary Differential Equations of second order, as written above the O D E has six

variables (3 displacements and 3 accelerations). Since RK method only works for first order

differential equations it is convenient to convert the second order differential equation in first order

differential equations.
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The system of equations above can be expressed as a set of six coupled first-order differential

equations and then solved using RK method.

yl =xI1 y2 =xl1 y2 =xI1
y3=x2 y4=x2 v4 =X2
y5S=x3 y6 =x3 y6 =X3

mly2(t)+kllyl(t) +kI12y3(t) +kI3y5() =0

m2+Miy4 (t) + k21 y1 (t) +k22y3(t) +k23y5(t) =0

m3y6 (t)+k31yl(t) +k32y3(t) +k33y5() =0

The system of first order ordinary differential equations written above can be solved for the initial
condition

Initial displacement y (0) =0

Initial velocity =y (0) = 0.1 m/s (impact velocity at central node 3)

Time span =10 s

Time step = 1s

yL@® =y2(1)

k11+y1 (t) k1 xy3(t) k13+y5 (t)
mil ml mil

y2 () =

y3(® =y4()

k21xy1 (t) k22xy3 (t) k23*y5 (t)
m2+Mi m2+Mi m2+Mi

Y5O =yo(

4=

_ k31xy1(t) k32+y3 (t) k33y5 (t)
m3 m3 m3

y6 (V)
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The solution by RK method yields a resultant Row matrix with one row and six columns for each
time step. The 1% and 2™ columns are the displacement and velocity at node 2, the 3™ and 4
columns are the displacement and velocity at node 3 (central node), the 5™ and 6™ columns are the
displacement and velocity at node 4 respectively for a single time step. The number of results in
the form of Row matrix depends upon the time span and time step i.e. for a time span of 0 to 10s

the result would be 10 Row matrix,1 Row matrix for each 1s time step.

4 A

u2 v2u3 vi u4 v4

- J

3.1.8 Eigen values and Eigen vector
For determining the mode of vibration and mode shapes of mass spring system Eigen Value

Theorem can be conveniently applied.
[M]%(t) + [K]x(t) =0
By assuming harmonic solution for the free vibration response
X (t) = @ sin (ot + 0)
Where, “0” is phase angle and “®” is the frequency of free vibration.
X (t) = - o*® sin (ot + 0)
Substituting the solution into governing equation of motion
- [M] ©? @ sin (wt + 0) + [k] @ sin (ot + 0)
[K] @ = [M] o’ @
[K-Mo’] ®=0
By Crammers rule for a homogenous system of linear equations
MV =0 (M is a given Matrix and V is an un-known vector) has a non-zero solution if and only if
Det [M] =0
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Det [K-M 0?]=0
The roots (solutions) of the above equation gives the frequencies i.e. [01? 2% ®3?] of the possible

mode shapes in the system.
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3.1.9 Example:
Consider the beam as shown in figure (a) has the length of 4m, width x depth (50mm x 50 mm),

the modulus of elasticity of steel beam is 210 GPa and density is 7850 kg/m?. An impactor with a
mass of 150 collides at the mid span of beam such that the initial velocity is 0.1 m/s.

MASS MATRIX:

As density = mass/volume

Mass = density x volume

Mass = 7850 x (4 x 0.05 x 0.05) = 78.5 kg

If we divide the beam into 4 elements, element length is equal to 1m.

Mass per unit length = 78.5/4

Mass per unit length = 19.625 kg

Mass at each node (wWL/3) = (19.625 x 4)/3

Mass at each node = 26.167 kg

26.167 0 0
M = 0 26.167 0
0 0 26.167

Mass matrix considering impact

26.167 0 0
M= 0 26.167 + 150 0
0 0 26.167
FLEXIBILITY MATRIX:

The flexibility matrix is given by
f11 f12 f13

F=|f21 f22 f23
f31 f32 £33

By the application of Castigliano's theorem (using table of product integrals see appendix A)
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f; = | MOM/oF; ds/El

11 f12 f13
F=|f21 f22 f23
f31 f32 £33

6.86e — 06 8.38e —06 5.33e—06
=|8.38e — 06 1.22e — 05 8.38e —06
5.33e— 06 8.38e—06 6.86e—06

STIFFNESS MATRIX:
K=F"

11 f12 f13
K=1/|f21 f22 f23
f31 f32 £33

K= 1-1031184 1499904 -—-1031184

421848 —1031184 1078056

1078056 —1031184 421848 ]

FREE VIBRATION RESPONSE:

System of second order O D E s

m1 0 01 X1 (D) k11 k12 k1371([x1 () 0
0 m2+Mi 0] |X2() |[+]|k21 k22 k23||x2() [=]0
0 0 m3] %3 (t) k31 k32 k331 |[x3 (0 0

RUNGE KUTTA METHOD FOR SOLVING SYSTEM OF ODE s:
The system of equations above can be expressed as a set of six coupled first-order differential

equations:

yl =xI1 y2 =xI1 y2 =xl1
y3=x2 y4=x%x2 v4 = X2
yS=x3 y6 =x3 y6 = X3

mly2 () +kl1yl () +kI12y3() +kI3y5(t) =0

m2+Mi y4 () + k21 y1 () +k22y3 () +k23y5() =0
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m3y6 (1) +k31yl (t) +k32y3(t) +k33y5() =0

Solving boundary value problem

Initial displacement y (0) =0

Initial velocity =y (0) = 0.1 m/s (impact velocity at central node 3)
Time span =10 s

Time step = 1s

yL@® =y2(1)

1078056+y1 (t) —1031184+*y3 (t) 421848+y5 (t)
26.167 26.167 26.167

y2 (1) =

y3(® =y4()

—-103118 *y1 () 1499904+y3 (t) —1031184+*y5 (t)
26.167+150 26.167+1 26.167+1

Y5O =yo(

= -

6 (1) = 421848+y1 (t) —-1031184+y3 (t) 1078056%y5 (t)
Y 26.167 26.167 26.167
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Solution:

T sec U2 (n2) m
0 0

1 0.0032
2 0.0012
3 -0.0026
4 -0.0022
5 0.0015
6 0.0027
7 -8.4e-05
8 -0.0027
9 -0.0013
10 0.0021

V2 (n2) m/s

0.0250

0.0017

-0.0700

-0.0059

0.1037

0.0116

-0.1195

-0.0163

0.1151

0.01779

U3 (n3)m

0.004

0.0019

-0.0033

-0.0034

0.0019

0.0042

-2.5e-05

-0.0043

-0.0018

0.0034

V3 (n3) m/s

0.1

0.01

-0.0910

-0.0480

0.0640

0.0680

-0.025

-0.0754

-0.0179

0.0668

0.0577

U4 (n4) m

0.0032

0.0012

-0.0026

-0.0022

0.0015

0.0027

-8.4e-05

-0.0027

-0.0013

0.0021

V4 (nd)

m/s

0.0250

0.0017

-0.0700

-0.0059

0.1030

0.0117

-0.1195

-0.0164

0.1151

0.01779

The table shows the velocities and displacement at each node (2, 3 and 4) during each time step

of 1 second.
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DISPLACEMENT AND VELOCITY PLOTS:

DISP (m)

VELOCITY (m/s)

0.006

0.004

0.002

-0.002

-0.004

-0.006

0.15

0.1

0.05

-0.05

-0.1

-0.15

DISPLACEMENT VS TIME

TIME (s)

e (U)n0de2  =m===(u)node3 === (u)noded

VELOCITY VS TIME

TIME (s)

e (V)n0de2 =====(v)node3 === (v)node4d
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EIGEN VALUES AND EIGEN VECTOR:

By Eigen Value Theorem,
[M]% () + [K]x () =0

26.167 0 0
M= 0 26.167 + 150 0
0 0 26.167

K= 1-1031184 1499904 -—1031184

421848 —1031184 1078056

1078056 —1031184 421848 ]

1078056 —1031184 421848 26.167 0 0
[K-M 2] =[-1031184 1499904 —1031184|-0?| 0 176167 0
421848 —1031184 1078056 0 0 26.167
256 —244 1 26.167 0 0
[K-M 0] =421848 [-2.44 356 —244|-0®| 0 176167 0
1 —244 256 0 0 26.167
w2
I[2.56 — (52-)26.167 —2.44 1 ]I
| —2.44 3.56 — (42‘1’;8 ) 176.167 —2.44 I
1 —2.44 2.56 — (=2 )26.167J

421848
Now, Det [K-M ©2] =0

The determinant will result in a polynomial equation and the roots (solutions) of the equation are
the frequencies of modes of vibration.

o1 =20.1972 rad/s

2 = 158.3594 rad/s

3= 255.7863 rad/s
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For mode shapes

[K-Mo’] ®=0

w2

I[2.56 - (421848 )26.167
I —2.44 356 — (
I
| 1
d 11 d 21
Where ®1=[d 12|; O2=|d 22|; O3=
® 13 d 23
[ 0.4947
Mode shape 1 (® 1)=1{ 0.7145 |;
| 0.4947
[ —0.7071
Mode shape 2 (@ 2)=| 0.0000 | ;
[ 0.7071
[—0.6997
Mode shape 3 (@ 3)=| 0.1439] ;
[—0.6997

421848

—2.44 1 1
w2 I
)176.167 —2.44 | D=0
—2.44 2.56 — (—=—)26.167|
421848
@ 31
® 32
@ 33
0.6923
Normalized Mode shape 1 1
0.6923

-1
Normalized Mode shape 2 [ 0 ]
1

-1
Normalized Mode shape 3 [ 0.2056 ]
-1
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MODES SHAPES PLOTS

, MODE s(1)

MODE s(2)

MODE s(3)
0.5
O //\
-0.5 1 2 : 3
-1 _
-15
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3.2 MATLAB MODEL

3.2.1 MATLAB Introduction:

MATLAB is a numerical computing software with built in programming language. MATLAB
allows implementation of algorithms, matrix manipulations, creation of user interphase, plotting

of functions and interacting with programs written in other programming languages.

BENEFITS:

e Built in algorithms

e FEasy debug

e Use external libraries

e Extensive visualization and date analysis

e FEasy and efficient computation

e Simple and easy to understand programming language

3.2.2 MATLAB model introduction
The elastic beam model (code) is based to the previously developed Analytical solution

which means:

* A node-element model in which masses are lumped at nodes having certain

values of stiffness calculated by flexibility influence co-efficient method.

* A description of structural network is obtained by series of massless elements

connected with nodes, each node having specific mass (lumped mass system).

* Deformations (displacements and velocities) at nodes are obtained from stiffness

or flexibility analysis.

» The accuracy of results is dependent on the number of nodes in model and their

spacing.

3.2.3 Inputs
The following inputs are to be given when you run the program.
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e Mass per unit length

e Length of beam in meters
e Number of elements

e Modulus of Elasticity

e Moment of inertia

o Initial displacement

e Initial velocity

e [mpactor mass

13

14 imass = input{'Enter wvalue of m kg/m:>")

A mass = 26.167

16 fLen-= input {'Enter Length of beam:>")

= Len = 4

18 fElem = input('Enter no. of slements:>')

HEL B Elem 5 %

20 3E = input { 'Enter modulus of Elasticity N/m"2 )
A E =:2.,1%18*11

22 %1 = input('Moment of intertia m*4:3>')

Edei=r I & 5. 208*107--7

24 uo= input {"'Initial displacement meters:>")
250 us = 0

28 Fuodot= input('Initial velocity m/s:>")
A uodot = 0.1

28 3 Impactor= input{'Impactor mass kg:>")

Foge e Impactor = 150

3.2.4 Units
MATLAB code requires the user to put all the data in consistent units. In our MATLAB model

we have used SI units (N, m, and kg).
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3.2.5 Mass matrix

Diagonal matrix having values of lumped mass at each node and lumped mass + impact mass at
central node.

B Editor - FAFinal Code\DynamicAnalysis.m

| DynamicAnalysisn | DalembertEgqm 0 | 4 |

9 3Mass on- Standard node (except middle one)
40

41— m = mass*Len/El=m;

42

43 % 2-Generate mass matrix

44

45— [Hlfor i = 1:1:Elem-1

46 — [-] for j = 1:1:Elem-1

47 — if (i==3)&(i~=Elem/2)

48 — Masamat (i,j) = m;

48 — elgeif (i=—3)E&(i—Elem/2)

o1 ¥ S Massmat (i,J) = miImpactor;
L end

52

L I end

Bl - end

55

3.2.6 Flexibility matrix

The flexibility matrix is obtained by the application of the principal of virtual work (table of
product integrals)
fi = | MOM/OF; ds/El

B Editor - FAFinal Code\DynamicAnalysis.m

| DynamicAnalysis.mn 0 | DalembertEg.m I

58 % 3—Generate Stiffness matrix

27

T

T B

a0 —

el — a = i* (Len/El=m) ;

B2 — b= Ten — ar

63 — c = j* (Len/Elem) ;

a4 — d-=-T.em — Cr

&5 — M1 = 1* (b/Len)/ (E*I)}*a:

86 — M2 = 1% {c/Len)*d:

&7 — Flexmat (i,3) = [1/3— (a-c)"2/(6%a*d))* (M1*MZ*Len) ;
=8 — elseif ix>j

g9 — a = i* (Len/El=m) ;

o= b= Len — a

TR c = j* (Len/Elem) ;

i i d-=— T.=n — G

i e M1 = 1*b/E/I/Len*a:

i e M2 = 1l*c/Len*d:;

75 — Flexmat (i,3) = [1/3— (a-c)"2/(6%a*d))* (M1*MZ*Len) ;
FE = Flexmat (j,i) = Flexmat(i,j):
o e end

T8

Tl I end

B0 = end

51
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3.2.7 Eigen values And Eigen vectors

Stiffness matrix is obtained by directly inversing the flexibility matrix.

Eigen values and vectors are calculated by using a built-in Function “[V, D] =eig ().

The V vector is a matrix containing Eigen Vectors.

The Eigen vectors are then normalized and plotted.

The D vector is a diagonal vector with diagonal elements as the squares of frequencies of

modes of vibrations.

The modal frequencies are obtained by taking square root of the diagonal elements of vector “D”.

a2 % Write Stiffness and flexibility matrices
23

54 — Flexmat;

85 — Stiffmat = inv(Flexmat) ;

g6

87 % 4-Find Eigen values and eigen vectors

g8

= Dynmat = Flexmat® Massmat;

S0

Ol = [V,D] = eig(Dynmat):

g2

93 Vectors and "D"
54

95

98 % separating eigen vectors
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3.2.8 Solving system of O D E s for displacements:

Applying initial conditions

(Initial displacement = 0, initial velocity = 1)

Solving ODE to obtain displacement and velocity profiles for the specified timespan.

[t, y] = ode45 (odefun, tspan, y0);

Where tspan = [t0 tf],

Integrates the system of differential equations y'=f (t, y) from t0 to tf with initial conditions yO0.

Each row in the solution array y corresponds to a value returned in column vector t.

L T R e T R R L I
. 1N1S5 SUDIoOUutlne 135 uscd To WILEE
% gyatem of firat order differential eguatio

-] function £ = DalembertEg (L, v)

= global EFlem Stiffmat Massmat

T = zeras [2¥[Elem-1) 1) ;.

[ R R [ ) R e I S R
I

= 1=2:
= e dd
— m=1;
i n=1;:
10
38 il for i-= 1:1:2% (Elam-1)
3E— £{i}y=0;
Fh = if (rem(i,2)~=0}
34 = £(1} = v(3):
Ih = E Lt B i
i — glseif (rem(i,2)=—0)
T for 1 = 1:1:[Elem-1)
134 % Generating v matrix (dynamic) containing displacements and velocities
135
126 = [E, ¥] = ode4S ('DalembertEqg', tspan, yo):
137
138 % 6-Finding Shear Forces at Nodes and support Reactions
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3.2.9 Results (graph plots)

Sy e

s

Figure 5.1 shows mode shapes
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% (1) in meters % (1) in meters

% (t) in meters

v () in m/sec v [t} in m/sec

v (t) in m/sec

=
[ ]
i

oAV
_D_UE 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 g 9 10
t{in sec)
U_UE T T T T . T T T T T
['_] -
_0_05 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 [ 3 9 10
t{in sec)
U_UE T T T T T T T T T
o AMWVAWWMAWWAWAAAA
_U_US 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 g 9 10
t(in sec)

Figure 5.2 shows Displacements at 1, 2 and 3 Nodes

t (in sec)
1 T T T T T T T T T

t {in sec)

Figure 5.3 shows Velocities at Nodes 1, 2 and 3
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Maments () N-m

Maments (1) N-m

Moments (1) N-m

10

10

t {in sec)

Figure 5.4 shows Moments at Nodes 1, 2 and 3
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Shear (t) in N Shear () in N

Shear (t) in N

1 | | | | | | 1 |
0 1 2 3 4 5 6 7 B g 10
t (in sec)
x 10°
0 1 2 3 4 5 6 7 8 9 10
t (in sec)
x 10°

t (in sec)

Figure 5.5 shows Shear Forces at Nodes 1, 2 and 3
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Reacrion in N

Reacrion in M

1 2 3 4 5 B [ B
t (in sec)

10

t in sec)

Figure 5.4 shows Reaction Forces at Nodes 1, 2 and 3
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3.3 ABAQUS MODEL

3.3.1 Abaqus introduction

Abaqus is a complete and powerful environment for solving complex real life problems providing
realistic solutions allowing the users to explore the real-world behavior of product, nature, and

life.

This sophisticated Abaqus product provides efficient solutions for most challenging and sophisticated

engineering problems. Its applications cover a broad spectrum of industrial applications. Its high robustness,

accuracy, and performance are amalgamate with easy to use pre and post processor.

Pre-processing Evaluation and Post-processing
(Modeling) Simulation (Visualization)

Abaqus/CAF or Abaqus/Standard or Abaqus/CAE or
other products Abaqus/Explicit other products

Figure 3.1 shows Abaqus methodology
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BENEFITS:

Allows linear and non-linear modelling

Allows modelling using diverse materials like rubbers, thermo-plastics, powder metals, human
tissue, soil, composites, and more.

Allows modelling complex assemblies’ joint behavior, Flexible multi-body dynamics.
Allows efficient modelling of problems related to Crack, impact, and crash events.

Allows fast and efficient complex and large-scale analyses.

3.3.2 Model introduction
Abaqus uses a finite element model for solving real life, complex engineering problems requiring
large-scale analyses. The finite element model is characterized by:

¢ A Finite-element model in which meshing procedure creates a network of line elements
connected with nodes in material continuum.

e Mass of the model is a continuous mass which depends upon density, and geometry of
model.

e Deformations (displacements and velocities) at nodes are obtained from finite element
method.

e The accuracy of results depends upon how fine or coarse is the applied mesh.

44



3.3.3 Inputs

For beams, Abaqus finite element analysis requires the following data:

e Beam dimensions and geometry

e FElements lengths, connecting nodes and location of nodal points
e Mass characteristics

e Boundary conditions

¢ Loading conditions or initial conditions

e Analysis type options

3.3.4 Units
Abaqus does not have any built-in system of units. It requires the user to put all the data in

consistent units. In our Abaqus model we have used SI units (N, m, and kg).

Figure 3.2 shows ELASTIC BEAM MODEL (ABAQUS)
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3.3.5 Beam geometry
The first step for finite element analysis of beam is defining its geometry, to make Abaqus problem

conformable with the MATLAB model. We modelled the beam as a 2-Dimensions planner
element with deformable wire element as a base feature as we had to keep beam in elastic range.

The length of beam is 4 m and its width and height are 0.05 m each.

3.3.6 Mesh (element length and nodes)
The meshing procedure creates a network of line elements connected with nodes. The number of

elements and nodes in a model depends upon how fineness or coarseness of the applied mesh. For
simple problems without changing geometry including thickness or change in boundary conditions
for individual elements a coarse mesh is preferred because it provides efficient results within lesser
computational time. Fine mesh is used for more complex system as it provides accurate results but
requires more computation and time. For this problem a coarse mesh is applied with global seed
size of 1 m (element length 1 m) which divides the beam into 4 element of 1 m and the elements
are connected to each other with nodes. There are 5 nodes in total for this model 3 in between

members and 2 connection the elements with supports.

e Purple colour: nodes

e Orange colour: elements
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3.3.7 Mass properties
Abaqus assigns a same continues mass to all the elements of beam based on the density specified

to the model. In this example density of steel p = 7850 kg/m? is used. Beam dimensions are already
provided (4 x 0.05 x 0.05) m the software will calculate and assign mass to the beam. As we have
to carry out elastic analysis therefore beam is modelled as elastic beam with elasticity is E = 2.1 x
10" N/m? (210GPa) and 0.3 Poisons ratio.

m=pxv

m = 78.5 kg/m

3.3.8 Boundary conditions
The boundary conditions are applied by deploying simply supported beam conditions. The left

support is setup as pinned support and the right support is setup as roller support.

3.3.9 Initial conditions
Abaqus model requires boundary conditions depending upon the type of problem. Generally

impact problem is modelled on Abaqus by defining an impactor (with a particular mass and initial
velocity) colliding with a stationary body with its own mass and boundary conditions. But for this
example to make it comparable to the MATLAB the central node of beam was given initial velocity
of 0.15 m/s in negative y direction and a point mass of 150 kg added to the central node equal to

the impactor mass. The added mass acts as a structural mass at central node.
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3.3.10 Analysis type options
The final step is to specify the type of analysis procedure to be carried out. For this problem

dynamic explicit analysis was adopted because it is computationally efficient for analysis of impact
problems with short time period for dynamic response. For the elastic beam impact analysis the

time period was selected as 10 sec with 0.05 as the time step increment.
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3.3.11 Results

The figure below shows the result for elastic beam model for Test no 1:

Testno 1

M =150 kg

V=0.75m/s

p =7850
kg/m?

E=2.1x
10711 N/m

sq.

L=4m

Lx W (0.05
x 0.05)m

sq.

6:24-1  TueJan 2 20 ndard Time 2020

Figure 3.3 shows Test no.1 performed with Abaqus
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Test data
Three tests are conducted on both Abaqus and MATLAB by increasing the impact mass and

velocity successively, while keeping other perimeters constant (length, moment of inertia,
elasticity and density). The impact mass is increased by 50 kg during each succession and the
impact velocity is increased by 0.5 m/s. The impact mass and velocity was decided such that the

beam remains in elastic zone

The test data is given below in tabular form.

Inputs Test 1 Test 2 Test 3
Mass/length 26.167 kg/m 26.167 kg/m 26.167 kg/m
Total Length 4m 4 m 4 m

No. of elements 4 4 4

Elasticity modulus

2.1 x 10711 N/m sq.

2.1 x 10711 N/m sq.

2.1 x 10711 N/m sq.

Moment of Inertia

5.208 x 10"-7 m™4

5.208 x 107 m™4

5.208 x 107 m™4

Impact mass

150 kg

200 kg

250 kg

Initial Velocity

0.75 m/s

1 m/s

1.5 m/s

The time span for analysis is 10 seconds and time step is 0.05 seconds for both Abaqus model and

MATLAB program, meaning the analysis will results in 200 values (displacements or velocities)

for each analysis. The time period is kept comparable on purpose.
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In both Abaqus and MATLAB models the node location is kept identical so that the displacements
and velocities at these nodes can be compared. In both models node 1 is located at the extreme left
and then node 2 is located at a distance of 1m from node 1, node 3 is located at a distance of 1m
from node 2, node 4 is located at a distance of 1m from node 3, node 5 is located at the extreme

right ta distance of Im from node 4.
ABAQUS MODEL:

Test 1: Impact mass = 150 kg; Initial velocity = 0.75 m/s

0ODB: test-1new.odb  Abaqus/Explisit 6:14-1 TusJan 21 cistan Standard Time 2020

S 1 1]

2
PS stMuLiR
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MATLAB MODEL:

(nl) (n2) (n3) [ (n3)

w ) N Yy v
FY A ol u{b}‘

4.2 Comparison of results

Test 1: Impact mass = 150 kg; Initial velocity = 0.75 m/s

The results are shown for test 1 only as the results for other tests shows similar trends but with higher
magnitude.
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Displacement Comparison between Abaqus and MATLAB model for (node 2 and 4)

0.03
0.02
0.01 \ /
Il
g 0 LY AU ] DU L LY R A U L
a 3 i el S t A (D N @ [odi & Bo |= . g H & \ o \‘ﬂ S )
=TT
0.02 ‘
-0.03
e ADaqUs ==@===NATLAB
Model Max Displacement (m) Max Disp (cm) | At time step (s) % Error
Abaqus 0.0222095 2.220 6.20013 5.72
MATLAB 0.0234706984662625 2.347 6.75005
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Displacement comparison between Abaqus and MATLAB model for node 3

0.04

0.03

i

-0.03

Disp (m)
o

-0.04

e ADaQUs === \atlab

Model Max Displacement (m) Max Disp (cm) | At time step (s) % Error

Abaqus 0.0314882 3.155 6.20013 2.18

MATLAB 0.0322486412939452 3.224 6.75005
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Velocities Comparison between Abaqus and MATLAB model for (node 2 and 4)

s |

‘ "’r i ,I‘ "M'vw‘ \"\ il "a A

0

Disp (m)

-0.5

e ADA(US e Matlab

Model Max Velocity (m/s) Max Velo (cm) | At time step (s) % Error
Abaqus 0.712076 71.2076 2.25007 8.18
MATLAB 0.770372643571549 77.0372 2.65003
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Velocities Comparison between Abaqus and MATLAB model for (node 3)

1.00E+00
8.00E-01

-
= [1TVT VRGN

-8.00E-01
-1.00E+00

il

e ADA(US e \]atlab

The maximum velocity is the initial velocity = - 0.75 m/s at t = 0 seconds. The table shows the maximums
velocity at some time step when the analysis runs for a specific time span.

Model Max Velocity (m/s) Max Velo (cm) | At time step (s) % Error
Abaqus 0.744984 74.4984 0.150164 1.77
MATLAB 0.731793232291336 73.1793 4.05017
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Reaction force at support Comparison between Abaqus and MATLAB model

A AR
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o
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As we can see from the graph results of supports reactions using Abaqus and MATLAB show significant
differences. Also the results for shear force, moments show significant differences, and so there is needs
for re-evaluation.
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Index Description

1] Increment 0 Basze State

1 Mode 1:Value= 1049.5 Freq= 51360 (cycles/time)
For modal analysis 2 Mode  2:Value= 50886, Freq= 35902 (cycles/time)

3 Mode 3: Value = 1.52980E+05 Freg = 62250 (cycles/time)

Abaqus results

Mode 1

Mode 2

Mode 3

MATLAB results for modal analysis

o
o

nat_freg 1 =

20.15972

Delta (in meters)
)
o0
|

1 1
1.2 1.4 1.6 1.8 2 22 24 26 28 3
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i
-

=%

-y
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=
T
|

158.8554

1 1
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i
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-

nat freg 3 =

1 1
1.2 1.4 1.6 1.8 2 22 24 26 28 3
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i
-

Delta (in meters)
=
1

255.7863

=y

The results of modal analysis from Abaqus and MATLAB show significant differences. So it needs to be
re-evaluated.



CHAPTER 5

CONCLUSIONS

5.1 Conclusions
* The comparison shows that the results for velocities and displacements from both

procedures i.e. Abaqus simulation and MATLAB model are comparable. The slight
differences are possibly due to the fact that the Abaqus model is based on finite element
model in which mass of the beam is continuous mass. Whereas in case of MATLAB node

element model the mass of the beam is lumped at nodes.

» The results for support reactions, shear force, moments, Eigen values and modes shapes
are not comparable, they show significant difference, this implies that MATLAB code

requires revision concerning these results.

5.2 Future prospects
The next phase would be to fix the issues regarding support reactions, shear forces, moments,

Eigen values and modes shapes and to verify the results by experimentation using some
standardize equipment. The MATLAB program we coded for elastic simply supported beam can
be extended to elastic-plastic behavior of the beam. Also it can be improved to account multi
degree of freedom systems such membrane, shell and 3D elements. It can be extended to cater for
more complex loading conditions i.e. seismic loading. It can be extended to study vibration

phenomenon such as the vibration of railways tracks due to cyclic impact loading.
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APPENDIX A

o Start Session

Create Model Database

| 453 With Standard/Explicit Model

BEAM MODEL IN ABAQUS B4 With CFD Model

E= with Hectromagnetic Model

1. Open Abaqus CAE and create a [ OpenDatsbase = Run Script
pen A Abaqus/CAE

@ Start Tutorial
Model Database by selecting 6.14

Recent Files
1 C/SIMULIAY. /hhhih/finalbeam.cae

the hlghllghted Option (Wlth ;C-a' /deformable_beam_new.odb

3 G/ ftest-1new. odb

4 G/ ftest-Tnew. cae

Standard/EXphClt MOdel) 5 Cif... /test-1new. cae The Abaqus Saftiare iz a product of Dagzault Systémes Simulia Gorp, Frovidence, B, US4,

Abagus, the 30 loge, SIMULIA, and CATIA are trademarks or registered trademarks of Dassault
Fyskemes or ikz zubsidiariez in the U2 andior other countrics.

2 Dazsault Systimes, 2014

?S sSIMULIG Thiz preduct includes zoftivars tat iz Copyright (C] 1934 - 2006 by Jeraen van dar Zif.
2- Far 1ddit ion cancerning Sk ersis = e LRt Hoticezin
the Installation and Licensing Guide Far this product,

-Eiﬁ.hﬂgders (1) A &% Create Part *
= Modef 'I

2. Select “Part” module from the

MName: | beamZ2d

model tree. Click create and

[z Materlals Medeling Space
“Create Part” table will appear B Caibiatns O30 @ 20 Planar () Axisymmetric
: ; ﬂ’;‘* Sections
name the part i.e. “beam2d” in this | ﬁ;]g imﬁla Type Ko
i ssembly
) ‘ . : chv[?u Steps (1) (®) Deformable
case. Select the “Modelling Space B Field Output Request: () Discrete rigid | -
B History Output Reque. O Analytical rigid S
depending upon the type of s Tie B - :
: - Bp ALE Adaptive Mesh C
problem you want to model 1.e“2D T Interactions Base Feature
{ : E Interaction Properties
» : _ i () Shell
planner” in our case. Select the . i Contact Controls
: ;1*(_‘" Contact Initializations ® Wire
type of beam based on its : ~4if Contact Stabilizations i) Paint
: ]| Constraints
behaviour i.e. “Deformable”. B connector Sections
© F Fields
Select the approximate size. [y Amplitudes T
: - [ Loads Approximate size: | 20

D,—,\ BCs :
s Predefined Fields v Cancel
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3. Select the highlighted line feature and sketch the beam of required length i.e. 4m in our

casc.

Press “Done” and beam is

4 X Drag the mouse horizontally in a viewport to magnify the view

formed in the workspace.
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ﬁ Models (1) ‘ <+ Edit Material %
E' Model-1 Mame: | steel7250
Al :
- esinayl Material BEehaviors

e [IEEEE

E} Calibrations

Description: 7

ﬂ:r,'» Sections
E‘ Profiles
%3 Assembl}r General Mechanical Thermal Electrical/Magnetic  Other | | o
D[D'- S-tEFIS |:1:| Density
% Field GUtFIUt REqUEEt! Distribution: | Uniform - )

% History Qutput Reque

IE Time Points Mumber of field variables: a5

Data

[] Use ternperature-dependent data

Mass
Density

1
4. Select “Material” module

from the model tree. Click ~ Material Behaviors
Density

s

create and “Create” to

create material of beam.

General Mechanical Thermal Electrical/Magnetic  Other |
Define the density by Elastic
Type: .Isotropic F | Suboptions
Clicking “General” tab and [} Usé temperature-dependent d.ata
Nurmber of field variables: | ol|
put the value of density in Moduli time scale (forviscoelasticig): [ Long-term ||
[[] Mo compression .
table. [ No tensian
Data
Young's Poisson's
Define the elasticity and Modulus Ratio

1 21611 {03

Poisons ration by clicking

“Mechanical” tab and

put the values in table.
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5.

Select “Profile” module from the model
tree. Click create and “Create Profile”
table will appear name the profile i.e.
“profile beam” in this case. Then select
the shape of beam. After selecting the
shape of beam “Edit Profile” table will
appear put the values of shorter
dimensions of the beam i.e. width and

height.

B2 Models (1) n =
= Medel-1 = — ) c&" EE -

E!% Parts (1) -y \_FEGLE Frofile

|, beamidcl Mame: | Profilebeam

# |[#e Materials (1)

&% Calibrations .Shape

ﬂ'ﬁ* Sections Box

E’ Pipe

'ﬂﬁ Aszembly Circular

90 Stps 1

- B= Field Qutput | | Hexagonal

- Bt History Outp{ | Trapezoidal

5 Time Points | ||

B ALE Adaptive | L

ﬁ Interactions B §

% Interaction Py | Arbitrary

Generalized

ﬂli Contact Cont
;1?’ Contact Initia

i Contact Stabi .

'ﬂ] Constraints

i @ Connector Sections

B Models (1) Al cm
= Model-1 . j? =
Sl Parts (1) | & it Profile
[ beamdd

# [Pz Materials (1)
- &% Calibrations
ﬂ} Sections

-+ O

= ﬁ Assemnbly

Mame: Profilebeam

Shape: Rectangular

i ofE Steps (1)
- B= Field Output R
History Cutpu

I,
L

Time Points

ALE Adaptive 4
Interactions
Interaction Prg -
Contact Contr

OK

W -t-—-—t-—-—-4--=

Contact Imitializations
Contact Stabilizations

RN EHAE T

=

T

el
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= Meadel-1
from the model tree. Click = Parts (1) & Create
. [ beamad
create and “Create section” r£ Bz Materials (1)
& Calibrations Category  Type

Select “Section” module A5 Models (1) A ::E
| (R =

Mame: | Sectionbeam

table will appear name the ;< ction: O Solid
o . & #F Profiles (1) (O Shell | Truss
section i.e. “section beam” .
2 ﬁ Assembly @ Beam
) ] i+ ofm Steps (1)
in this case. Check beam as - B= Field Output Ry f
. - Ba History Output () Other
a category and continue. ; I TPl
B ALE Adaptive BT
: T Interactions =
"2 Interaction Properties a4

& Edit Beam Section

MName: Sectionbeam

“Edit Beam Section” Type  Beam

Table will appear press ok. Section integration: (@) During analysis (C) Before analysis
Beam Shape
Profile name: : Profilebeam B @'

Profile shape:

Basic  Stiffness  Fluid Inertia

< .
Matenal name: | steel7830 sl E
Section Poisson's ratio: _ﬂ..i
Ternperature variation:

(®) Linear by gradients

() Interpolated from temperature points

oK Cancel
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7. Select the “section assignment”

tool as highlighted in the figure.
Select the beam in the working
space the beam will turn “red”

and press done.

Finally the beam will turn
“green” meaning beam has been
assigned section with density
and elasticity defined in

previous steps.

oy 4
A

VIR

= X Select the regions to be assigned » section ( £ Create s[RI

= x| Select the regions to be assigned a section ( Create set: [Haed

) end
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= Model-1

= s Parts (1)
@ beam2d
M P2 Materials (1)
ﬁ} Calibrations
3 & | (1}
[ & Profiles (1)
Elﬁ Assembly
T
-2 Position Constrain
& Features
h Sets
: . Mg Surfaces
’@ Connector Assigne
4z Engineering Featul

)

12 [Bend




4 Models (1)

8. Select the “Instances”

= Model-1
3 [y Parts (1) 4 Create Instance
# beam2d
FI‘Ol’n “Assembly 3 & Materials (1) Create instances from:
&} Calibrations (O] Parts: O Models
0 % Sections (1) Parts
2 & Profiles (1)
Module” and click 248 Assembly
&
P Position Constrair
# & Features (1)
Create and “Create Instance” b7 sets
N Surfaces Instance Type

£ connector Assign
94 Engineering Featu
¥0f Steps (1)
B> Field Output Request Note: To change a Dependent instance’s

(® Dependent (mesh on part)

O Independent (mesh on instance)

Table will appear check

B History Output Requ mesh, you must edit its part's mesh.
b Time Pomt‘s [ Auto-offset from other instances
Bo ALE Adaptive Mesh @

“Dependent (mesh on part) “ T, Interactions

E Interaction Properties

Apply Cancel

And press ok beam instance

Would be created. Al Madae gy 2

= Model-1
=2 Parts (1)
. [ beam2d
[7& Materials (1)
5_} Calibrations
i 58 Sections (1)
i B Profiles (1)
E ﬁ Assembly
' beam2d-1
. fi® Position Constrain
32 Features (1)
Efy sets (1)
. M Surfaces
: @ Connector Assignt
H wﬁg Engineering Featu

®

+
=
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9. Select the “Assign Beam
Orientation” tool as
highlighted in the figure.
Select the beam in the working
space the beam will turn “red”

and press done.

The beam will be assigned

orientation.

lick OK to confirm input 25 simuLia



i
-

= Eile Model Viewport View §eedgdaptlvity Feature Tools Plug-i

10. From the main tool bar DTEmE g b UL
: oy,
select the “mesh” option as . .
Model  Results Module: |5 Mesh v Model: |, Model-1
highlighted by “red box”. £5 Model Databev, [+ 3 *‘ [,
=l ﬂ Medels (1) A & k
| Model-1 .
Then from drop down e 'Y}
i) beamn2d @m‘ %
menu select the “element 4 Bz Materials (1) l o
£} Calibrations @
LSRR T # & Sections (1) B
type option 7 8§ Profiles (1) ], e
=l ﬁ Assembly ‘_1' I_'i'_,
Element type table will & @ Instances (1) v
beamad-1 |
fi¢ Position Constrain .
appear check “standard” @& Features (1) W, Gy
and “linear | e fient Tope
options in the |~ Element Library Family

family of beam,

and click ok.

(®) Standard () Explicit Acoustic

Geometric Order Coupled Temperature-Displacement

(® Linear () Quadratic _ as

Line
] Hybrid formulation
Elernent Controls

Bearn type: (@) Shear-flexible () Cubic formulation

ealing factors: Linear bulk viscosity: | 1

B21: A 2-node linear beam in a plane.

Note: To select an element shape for meshing,
celect "Mesh-> Controls” from the main menu bar.
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11. Select the “Assign Beam
Orientation” tool as
highlighted in the figure.
Global seeds table will
appear select the
“Approximate global size”

i.e. 1 selected in this case

means lm meaning beam

Of 4m is divided into 4

Elements of 1m each.

Select the mesh part option and click ok.

=
Module: |z

il
e =

'y
L 15

| Mesh | Model: o Model-1 Object:OAssembly@Part:l: beam2d

Sizing Controls

Approximate global size: |1

Curvature control

Minirmurn size control

70

Maximum deviation factor (0.0 < h/L < 1.0); ;0.1
{Approximate number of elements per circle: 8)

® By fraction of global size (0.0 < min < 1,0) | 0.1

@] By absolute value (0.0 < min < global size) D.01

| ]

Cancel

#= X| OK to mesh the part? Neo



12. From the main tool bar select the
“view” option as highlighted by
“red box”. Then from drop down
menu select the “Part display
option” table will appear in the

mesh tab check

“Show node label” and “show element label options™ | & show native mesh

and press ok.

— Abaqus/CAE 8.14-1 [Viewport: 1]
[E File Model Viewport Seed _hajg:ﬂl Adaptivity Feature

DEE=S § RS

Model  Recults Medule: EG:Mesh ‘v Model:

& Model Databa;f;i: = R S

= 48 Models (1) A i s

¢ B Model-1

l# Part Display Options >

General Datum  Mesh

Meshed Geometry

i [~ Show bottom-up geometry
[] Show non-bottorn-up geometry

i (®) In the Mesh madule only
) In all part-related modules

Show node labels
Show elermnent labels

71



13. Select the “Assign
boundary condition”
tool as highlighted in
the figure. Create
“Boundary condition
table” will appear name
the type of support i.e.

pin support in this case.

Check “mechanical” as a category
and “displacement rotation” as
type of selected step and continue.

Then select the node you want to

assign support condition the

selected point will become “red”

and click done. “Edit Boundary

Condition” manager will
Appear check Ul and U2 to
Constraint those translations

And click ok

Pin support is created at the
Node.

o Create Boundary Condition

Mame: | pinnsuppor]

Step: | Initial

Category Types for Selected Step
(®) Mechanical Symmetry/ Antisymmetry/Encastre
F Displacement/Rotation
Velecity/Angular velocity
Acceleration/Angular acceleration

O Electrical/Magnetic
() Other

Connector displacement
Connector velocity
Connector acceleration

4= |3 | Select regions for the boundary condition ( Create set: | ol | 3
B

[.l-ﬁ = pinnsupport

e Displacement/Rotation

(= Initial

% == 1 Set-1

7 C8YS: (Global) [ L
=y, e

'v 1

e
= kA U2
i

R, o [ UR3

e Ly

[xlzi ,T\‘

e W

MNote: The displacement value will be
maintained in subsequent steps,

oK Cancel |
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45 Create Predefined Field

14. Select the “Create predefined field” tool as s Name: | initialvelocit]
Stepr | Initial

highlighted in the figure. Create “Create

Category Types for Selected Step

predefined field” will appear name the type o
() Other Geostatic stress
of field i.e. initial velocity in this case. Check , g, Hardening

“mechanical” as a category and “velocity” as

type of selected step and continue. Then

select the node you want to assign initial
velocity, then selected point will become
“red” and click done. “Edit Predefined
Field Condition” manager will

Appear put the value of velocity in

downward direction and click ok

% Edit Predefined Field
Initial velocity will be assigned to the Name: initialvelocity

Type:  Velocity
NOde. 5= Step:  Initial

Region: Set-3

Distribution: .Llniform
Definition: | Translational only
Vi

V2:|-0.15

Cancel
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15. Select “Inertia” from “Engineering Features” module of

the model tree.
Click create and “Create inertia”
Table will appear name the inertia
Mass i.e. “Inertia-1” in this case.
then select the node to which
you want to assign impact mass.
Then “Edit Inertia” table will
appear input the impact mass

and click ok.

& & Profiles (1)
'Sﬁ Aszembly
. B Instances (1)
' beam2d-1
. i Position Const
i EI & Features (1)
@ Sets (5)
- By Surfaces
: ; @ Connector Ass
i '-ﬁE Engineering F
a[E3
E Cracks
E Springs/Da

3, Fasteners

(42 Models (1)
E Model-1
= s Parts (1)
. [ beama2d
# 72 Materials (1)
: &% Calibrations
@ T Sections (1)
i B Profiles (1)
-'.%I ﬁ Assembly
. B [G Instances (1)
- beam2d-1
it Position Constraints
[ & Features m
B & Sets (5)
& Surfaces
; ﬁ Connector Assignime
aﬂg Engineering Features
‘&
: E Cracks
g Springs/Dashpots
- &

o= Create Inertia >

Name: |[REES]

Type

Point mass/inertia

Monstructural mass

Heat capacitance

Cancel

2= Edit Inertia
Mame: Inertia-1
Type:  Point Mass/Inertia
Region: Set-4
Magnitude Damping
Mass

@Isotropic: 15&

() Anisotropic:

Rotary Inertia

[ Specify off-diagonal terms

C5Vs: (Glohal)

B A

Note: Values will be applied per point.

oK
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Module:

< step ~

16. In “step module” select the S =] e

==| fl Name:  5tep-1

11040

“Create step” tool select L el ek i Y

11040

--------- * | —
The type of analysis procedure By,

. .. B | -

“General” and “dynamic explicit” 74 T N procedure type: | Generol 12
Dynamiic, Implicit o
.
And continue. Dynamic, Temp-disp, Explicit

| Geostatic

Heat transfer

Mass diffusion

Soils hd
= <

o

17. In “Job module” select the —_

Name: finalbeam

“Create Job” tool select name the job and finally submit Source: | Model

for analysis
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18. Final results are shown after successful analysis.

# lob Manager

Name

} finalbeam

Create... Edit...

Type
Full Analysis

Model-1

Copy... Rename...

MNone

Delete...

>
Write Input
[Data Check

Monitor..,

Results

Dismiss
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