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ABSTRACT 

 

Safety of a structure is the first and foremost priority of a structural engineer. That 

can be achieved only when the different properties and behavior of the various materials 

used for construction are known. Initially we set out on this project with the objective of 

analyzing the behavior of steel frames subjected to dynamic loading. But unfortunately, 

just like the rest of the world, our project was also affected by the current global pandemic. 

This led to a change of scope and restricted us to the analysis of steel beams subjected 

to static loads. 

The method consists of the following: (1) developing a code using MATLAB that is 

able to carry out the elastic analysis of beams, (2) verification of results on ABAQUS. 

The code developed is able to carry out the linear analysis of determinate and 

indeterminate 2D beams subjected to dynamic loading and the comparison with results 

from ABAQUS verifies the code. Our work has laid down the basis for further studies in 

this regard and this project shall be continued by the upcoming batch
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

Steel is widely used in construction all over Pakistan because of its various beneficial 

properties. Therefore, a better understanding of its behavior is essential to benefit the 

industry. Currently, majority of the research being carried on in the industry in Pakistan is 

material based. There is a lack of numerical modelling. There are no locally made 

software available in the country that can be used for quick and efficient analysis of the 

steel structures. Software that are available in the market are very expensive and hence 

legal software-aided design practices are negligible. In such a scenario, the use of 

cracked software is increasing, which is an illegal act and should be discouraged. 

Initially, we took on this project to carry a detailed analysis on the behavior of steel frames 

subjected to dynamic loading. However, the current global pandemic affected our project 

as well and we were forced to reduce our scope to the elastic analysis of beams subjected 

to static loading. Our findings are going to be the steppingstone in the process of better 

understanding the behavior of steel frames and in the development of a software that can 

be used for the quick and efficient analysis of steel frames subjected to dynamic loading. 

 

1.2 iFinite iElement iMethod 

1.2.1 iIntroduction 

The ifinite ielement imethod i(FEM) iis ia icomputational itechnique iused ito iobtain iapproximate 

isolutions iof iboundary ivalue iproblems iin iengineering, isometimes ialso ireferred ito ias ifinite 

ielement ianalysis i(FEA). iA iboundary ivalue iproblem, isimply istated, iis ia imathematical 

iproblem iin iwhich ione ior imore idependent ivariables imust isatisfy ia idifferential iequation 

ieverywhere iwithin ia iknown idomain iof iindependent ivariables iand isatisfy ispecific 

iconditions ion ithe iboundary iof ithe idomain. iBoundary ivalue iproblems iare ialso isometimes 

icalled ifield iproblems. iThe ifield iis ithe idomain iof iinterest iand imost ioften irepresents ia 

iphysical istructure. iThe ifield ivariables iare ithe idependent ivariables iof iinterest igoverned iby 

ithe idifferential iequation. iThe iboundary iconditions iare ithe ispecified ivalues iof ithe ifield 

ivariables ior irelated ivariables isuch ias iderivatives, ion ithe iboundaries iof ithe ifield. 

iDepending ion ithe itype iof iphysical iproblem ibeing ianalyzed, ithe ifield ivariables imay iinclude 

iphysical idisplacement, itemperature, ifluid ivelocity iand iheat iflux ito iname ia ifew.” 
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1.2.2 iBrief iHistory 

The imathematical iroots iof iFEM idate iback ito ia ilittle iover ihalf ia icentury. iIn ithe ilate i1940s, 

iaircraft iengineers iwere idealing iwith ithe iinvention iof ithe ijet iengine iand ithe ineed ifor imore 

isophisticated ianalysis iof iairframe istructures ito iwithstand igreater iloads iassociated iwith 

ihigher ispeeds. iThese iengineers ideveloped ithe imatrix imethod iof iforce ianalysis iknown ias 

ithe iflexibility imethod iin iwhich ithe iunknowns iare ithe iforces iand ithe iknowns iare 

idisplacements iand ithey idid iso iwithout ithe ibenefit iof imodern icomputers. iIn iFEM, ithe iterm 

idisplacement iis iquite igeneral iand ican irepresent iphysical idisplacement, itemperature, ior 

ifluid ivelocity ifor iexample. iThe iterm ifinite ielement iwas ifirst iused iby iDr. iRay iClough iin i1960 

iin icontext iof iplane istress ianalysis iand ihas ibeen iin icommon iusage isince ithat itime. iDuring 

i1960s iand i1970s, ithe iapplications iof iFEM iwere iextended ito iplate iand ishell ibending, 

ipressure ivessels, iand igeneral i3D iproblems iin ielastic istructural ianalysis. iFEM iis 

icomputationally iintensive iand iin ithe iearly iyears, icalculations iwere iperformed iusing 

imainframe icomputers ionly. iDuring i1960s, ithe ifirst imajor ifinite ielement isoftware icode, 

iNASTRAN, iwas ideveloped iin iconjunction iwith ithe ispace iexploration iprogram iof ithe 

iUnited iStates. iSince ithen imany icommercial isoftware ihave ibeen iintroduced ithat ican ibe 

iused ion idesktop icomputers iand iengineering iworkstations ito iobtain isolutions ito ilarge 

iproblems iin istatic iand idynamic istructural ianalysis, iheat itransfer, ifluid ilow, 

ielectromagnetics, iand iseismic iresponse. i 

1.2.3 iGeneral iProcedure ifor iFinite iElement iAnalysis 

Certain isteps iin iformulating ia ifinite ielement ianalysis iof ia iphysical iproblem iare icommon ito 

iall isuch ianalyses. iThese isteps iare idescribed ias ifollows. 

1.2.3.1 iPreprocessing 

The ipreprocessing istep iis idescribed ias idefining ithe imodel iand iincludes idefining ithe: 

• geometric idomain iof ithe iproblem 

• element itype(s) ito ibe iused. 

• material iproperties iof ithe ielements. 

• geometric iproperties iof ithe ielements i(length, iarea ietc.). 

• element iconnectivities. 

• boundary iconditions. 

• loadings. 

The ipreprocessing istep iis icritical ibecause ia iperfectly icomputed ifinite ielement isolution iis iof 

ino iuse iif iit icorresponds ito ithe iwrong iproblem. 
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1.2.3.2 iSolution 

In ithis istep, ithe isoftware iassembles ithe igoverning ialgebraic iequations iin imatrix iform iand 

icomputes ithe iunknown ivalues iof ithe iprimary ifield ivariables. iThe icomputed ivalues iare 

ithen iused iby iback isubstitution ito icompute iadditional, iderived ivariables, isuch ias ireaction 

iforces, iheat iflow, iand ielement istresses. 

 

1.2.3.3 iPostprocessing 

Analysis iand ievaluation iof ithe iresults iis ireferred ito ias ipostprocessing. iPostprocessing 

isoftware icontains isophisticated iroutines iused ifor isorting, iprinting, iand iplotting ithe idesired 

iresults ifrom ia ifinite ielement isolution. iExamples iof ioperations ithat ican ibe iaccomplished 

iinclude: 

• Calculate ifactors iof isafety. 

• Plot ideformed istructural ishape. 

• Produce icolor-coded itemperature iplots. 

• Check iequilibrium. 

The isolution idata ican ibe imanipulated imany iways iin ipostprocessing, ithe imost iimportant 

iobjective iis ito iapply isound iengineering ijudgement iin idetermining iwhether ithe isolution 

iresults iare iphysically ireasonable. 

 

1.3 Literature Review 

Since the inception of the concept of the finite element method, it has been extensively 

used for modelling in different engineering fields. In the early stages, much of the 

modelling was carried out using the mainframe computer and due to their limited 

availability, the method was not widespread. However, the advancements in computers 

in the last two to three decades has enabled the common desktop user to be able to use 

software that can help do extensive numerical modelling. Talking about structural analysis 

and more specifically about steel structures, lots of research has been carried out around 

the world to understand the behavior of steel structures subjected to different conditions 

such as the effects of blast loading, dynamic wind loading, cyclic lateral loads, the 

behavior of steel frame models with bracing, shear wall and base isolation arrangements 

compared to wooden frame models with bracing arrangement, and the dynamic response 

analysis of steel frames with semi rigid joints to name a few. Majority of these studies 

involve numerical modelling using the finite element method and the results of the 

analysis, which are duly supported by the experimental results, have allowed us to know 

the behavior of steel structures better which has led to better and safer design practices. 

This review shows that numerical modelling techniques are the right way to move forward. 
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In Pakistan, the emphasis is mainly on material-based research. There is a lack of 

numerical modelling and such studies which employ the use of finite element analysis to 

analyze steel structures are rare and virtually non-existent. On the other hand, the use of 

steel structures in construction has increased, mainly in the northern parts of the country, 

which were most affected by the devastating earthquake in 2005. Studies like these are 

therefore needed to ensure safe construction practices. 

 

 

 

1.4 Methodology 

The basic principle behind the finite element analysis is the energy principle. The law of 

conservation of energy holds here which states that the work done on a system is equal 

to the energy stored in it. The method consists of the following steps:  

• Defining element properties. 

• Discretization of beam and a. 

• Derivation of shape functions. 

• Formation of gradient matrix. 

• Numerical integration using gaussian quadrature. 

• Assembling the entries to form K-matrix. 

• Formation of force vector. 

• Application of boundary conditions. 

• Plotting of results. 

All these steps are further explained in detail in Chapter 2. 
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CHAPTER 2 

 

METHODOLOGY 

 

This chapter briefly explains the basics of direct stiffness method and the finite element 

method and highlights how both the methods differ in their approach to formulate the 

global stiffness matrix. Furthermore, the stepwise procedure adopted by the code for the 

analysis is explained for understanding. 

 

2.1 Direct Stiffness Method 

The direct stiffness method is the most common implementation of the finite element 

method and it is most effective for solving fairly simple problems. Before talking about the 

procedure, we define the sign conventions which are going to be followed throughout the 

project because it is essential to have uniform sign conventions to avoid any 

complications and/or confusions. Following sign conventions have been adopted: 

• Forces/Displacements to the right are positive. 

• Forces/Displacements in the upward direction are considered positive. 

• Moments/Rotations in the counterclockwise direction are taken as positive. 

 The procedure for the direct stiffness is similar to the finite element method, the only 

difference is the approach for the formulation of the stiffness matrices. For the analysis of 

a beam, initially the beam is discretized, and the elements and nodes are numbered. 

Then the local stiffness matrices are obtained through hand calculations and evaluation 

of matrices. These local stiffness matrices are then assembled into a global stiffness 

matrix. The method is not suitable for real life problems because the global stiffness matrix 

for such cases can be as big as a 20 x 20 matrix, the calculations for which get too 

complex to follow by hand. This is where finite element method works better. 

 

2.2 Finite Element Method 

The general procedure used to solve a system using finite element method is already 

discussed in chapter 1, which is similar to the direct stiffness method. The only difference 

is how we establish the stiffness matrix. We are basically utilizing the energy approach 

known as the principle of virtual work. Recall the law of conservation of energy, which 

states that energy can neither be created nor destroyed but can be converted from one 

form to another. The two energies that we are concerned with in case of a static system 

are the external work done and the stored strain energy. External work can either be the  
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product of force and displacement or moment and rotation. While the strain energy is the 

response to the applied axial load or bending moment. Using the shape functions, we 

make a guess of how the displaced shape of an element would look like under the 

influence of external load. Based on this assumption, we compute the energies of the 

system. A matrix for shape functions is formed whose double derivative gives us the 

gradient matrix. The gradient matrix is then numerically integrated using the gaussian 

quadrature to give the local stiffness matrices which are then assembled into the global 

stiffness matrix.  

 

2.3 Methodology Adopted by the Code 

Initially, the member properties (see figure 1 and figure 2) and support constraints are 

identified and then the structure is discretized into finite elements. Coordinates are 

assigned to nodes and the nodal connectivity is established for each element (see figure 

3). The unknown nodal displacements are identified and numbered.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Input for member properties. 
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Figure 2: Initialization of matrices in MATLAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Nodal coordinate values and connectivities. 
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Following this, the local stiffness matrices for the elements are required which are then to 

be assembled into the global stiffness matrix. For this purpose, we use shape functions. 

A shape function helps to approximate the solution for the points present between two 

nodes through interpolation. Using boundary conditions, shape function for beam 

elements are found and assembled into a matrix of shape functions which is denoted by 

[N]. The double derivative of shape functions for a beam element gives us the gradient 

matrix [B]. Using the following formula (equation 1), the local stiffness matrices are 

obtained using the gradient matrix. 

 

 

 

 

Equation 1: 

 

 

In the next step, numerical integration using gaussian quadrature is done which is the 

fastest and most accurate method since all our elements are based on polynomials. For 

that purpose, first we use the substitution of ξ (Zhi) to change the limits of “x = 0” to “ξ = -

1” and “x = L” to “ξ = +1” in order to make it possible for the computer to give a solution, 

where “ξ = (2x/L)-1”.   This substitution is shown through figure 4 and 5. What it does is 

that it approximates the integral by a weighted sum. A general formula for it is given by 

figure 6 where: 

• n = no. of weighting points 

• 𝑤𝑖 = weighting factors 

• 𝑥𝑖 = sampling points 

 

The sampling points and the weights used for five-point gaussian quadrature are given in 

figure 7. 
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Figure 4: Substitution of Zhi. 

 

 

 

 

 

 

 

 

Figure 5: Substitution of Zhi. 

 

 

 

 

 

 

Figure 6: General formula for gaussian quadrature. 
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Figure 7: Weights and sampling points. 

 

 

The function for the sampling points and weights in the code is shown in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Function for the sampling points and weights. 
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The local stiffness matrices thus obtained are then assembled into a global stiffness 

matrix denoted by [K] and a function that specifies the nodal connectivities of different 

elements is used for this purpose (see figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Assembly of global stiffness matrix. 

 

Moving on the applied loads are specified and the code forms a force vector using them, 

denoted by [F]. Boundary conditions are then applied (see figure 10) in order to 

substructure out the degrees of freedom which are constrained so that the matrix for the 

unknown displacements only is formed, denoted by [U]. Following equation, rearranged 

as shown, is used to calculate the unknown displacement vector:  

[F] = [K][U] 

Where, 

[U] = [K]-1 [F] 
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Figure 10: Function for boundary conditions. 

 

 

 

 

The unknown displacements thus found are back substituted to solve for the reactions 

and internal forces. The code also plots the shear force and bending moment values as 

well (see figure 11 and figure 12).  

 

 

 

 

 

 

 

 

Figure 11: Function for SFD and BMD plots. 
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Figure 12: Function for SFD and BMD plots. 
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CHAPTER 3 

 

RESULTS, CONCLUSIONS AND RECOMMENDATIONS 

 

3.1 Results 

Using the basic principles of finite element method and MATLAB, we have developed a 

code that is able to carry out the linear elastic analysis of two-dimensional determinate 

and indeterminate beams subjected to static loads. The code gives the results in the form 

of nodal displacements, shear forces, and bending moments. It is also able to plot the 

shear force diagrams and bending moment diagrams to give a graphical representation 

of the results. Figure 13 shows the results for shear forces and moments while figure 14 

shows the displacements and rotations at each node. 

 

 

 

 

 

 

 

 

 

Figure 13: Results for shear forces and moments. 
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Figure 14: Results for displacements and rotations. 

 

 

 

 

 

3.2 Conclusions 

The comparison of the MATLAB results with the results from ABAQUS show that the 

developed code is correct and efficient for the analysis of beams subjected to static loads. 

The code is able to carry out the complex analysis within seconds with great accuracy. 

The plots from ABAQUS also validate the plots given by the code on MATLAB. Figure 15 

and 17 show the SFD and BMD respectively from MATLAB and the figures 16 and 18 

show SFD and BMD respectively from ABAQUS. Figure 19 shows the comparison of 

results. 
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There is an average difference of just 0.05%, which is very small and negligible. 

 

 

 

 

 

 

 

 

 

Figure 15: SFD plot from MATLAB. 

 

 

 

 

 

 

 

 

 

Figure 16: SFD plot from ABAQUS. 
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Figure 17: BMD plot from MATLAB. 

 

 

 

 

 

 

 

 

Figure 18: BMD plot from ABAQUS. 

 

 

 

 

 

Figure 19: Comparison of results. 
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3.3 Recommendation 

In its current form, the code is not suitable for the analysis of steel frames subjected to 

dynamic loading. However, with this research, a solid foundation has been laid for the 

aforementioned. With some minor changes this code can be used for the analysis of 

beams subjected to dynamic loading and going a step further, it can be improved for the 

analysis of steel frames subjected to dynamic loading. Therefore, this research should be 

carried further to achieve this goal.  
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MATLAB CODE 

 

This appendix includes the main MATLAB code along with the different functions 

necessary for the two-dimensional analysis of determinate and indeterminate beams 

subjected to static loading.  

 

 Main Code: 

 

 

% Script File: Find The stiffness matrix 

% 

%Purpose: To carry out dynamic analysis of a beam 

clear 

clc 

close all 

%  

%  Global Variable 

% 

global Elem Stiffmat  

%  

%  Input Data 

% 

Len = 45;              %meter 

nel = 45;              % number of elements 

nnel=2;                % number of nodes per element 

ndof = 2; 

E = 200e+9;             %N/m^2 

I = 1/12;          %m^4 

area=1;            % cross-sectional area of the beam 
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rho=1;             % mass density ( not used for static probelms) 

ngl = 5;               %input('integration points') 

%---------------------- 

% Initialise matrices 

%---------------------- 

gcoord = zeros (nel+1,1); %initialize the nodal coordinate array 

nodes = zeros (nel,2);  %initialize the nodal connectivity array 

% 

nnode = (nnel-1)*nel+1; % total number of nodes in system 

sdof = nnode*ndof; % total system dofs 

kk=zeros(sdof,sdof); 

index=zeros(nnel*ndof,1); %initialization of index vector 

ff = zeros(sdof,1);     %initialize nodal force vector 

fix = zeros(sdof,1);     %initialize nodal force vector 

% Element degree of freedom- for member loads 

%for i = 1:1:nel 

 %   Eldof(i)=zeros(nnel*nnel); 

%end 

 Eldof=cell(nnel*nnel,1); 

% 

%---------------------- 

% Material and Geometrical Properties 

%---------------------- 

% 

for i = 1:1:nel 

     E(i) = 200e+9; 

     I (i)= 1/12;   

end 
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%E(1) = 200e+9;    I (1)= 1/12;          %N/m^2  m^4 

%E(2) = 200e+9;    I (2)= 1/12;          %N/m^2  m^4 

%E(3) = 200e+9;    I (3)= 1/12;          %N/m^2  m^4 

%E(4) = 200e+9;    I (4)= 1/12;          %N/m^2  m^4 

%E(5) = 200e+9;    I (5)= 1/12;          %N/m^2  m^4 

%--------------------------------- 

% Data for nodal force values 

%--------------------------------- 

%ff(21)=-500000;  % applied force 

ff(21)=-500000; 

%--------------------------------- 

% Data for fix end forces 

%--------------------------------- 

fix(1)=0;  % applied force 

% 

%--------------------------------- 

% Data for nodal coordinate values 

%--------------------------------- 

% 

j = 0; 

i = 1; 

% 

while j <= Len 

            gcoord(i) = j; 

            i = i+1; 

            j = j+ Len/nel; 

end 

%------------------------------------------ 
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% Nodal connectivity for each element 

%------------------------------------------ 

% 

for i = 1:1:nel 

     nodes(i,1) = i; 

end 

for i = 1:1:nel 

     nodes(i,2) =1+i; 

end 

%-------------------------------------------- 

% 

%------------------------------------------- 

% Input Data for Boundary Conditions 

%-------------------------------------------- 

% 

bcdof(1) = 1; % first dof 

bcval(1) = 0; % value of the constrained node 

bcdof(2) = 41; % second constrained node 

bcval(2) = 0; % value of constrained node 

bcdof(3) = 91; % second constrained node 

bcval(3) = 0; % value of constrained node 

% 

%--------------------------------------------- 

% Computation of element matrices and vectors and their assembly 

%--------------------------------------------- 

% 

for iel = 1:nel   % loop for the total number of elements 

nl=nodes(iel,1); nr = nodes(iel,2); % extract nodes for (iel)-th element 
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xl = gcoord(nl); xr=gcoord(nr); % extract nodal coord values 

eleng = xr-xl;  % element length 

% 

index = sysdof(iel,nnel,ndof); % extract system dofs associated 

% 

Eldof(iel)={index}; 

% 

[point1, weight1]=feglqd1(ngl); % extract sampling points and weights 

% 

k=feode2l(point1,weight1,ngl,E(iel),I(iel),eleng); % compute element matrix 

% 

[kk]=feasmbl2a(kk,k,index); %assemble element matrices 

% 

%kk 

end 

%------------------------------------------------ 

% apply boundary conditions 

%------------------------------------------------ 

[kk,ff]=feaplyc2(kk,ff,bcdof,bcval); 

% 

u=inv(kk)*(ff-fix); % displacements 

% 

A=cell2mat(Eldof); 

% 

kt=1 
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% Print the title of the table. 

fprintf(' Element Forces\n\n'); 

 

fprintf(' Element Number     F1(V1)                   F2(M1)                 F3(V2)                    F4(M2)\n'); 

fprintf(' =============     =======                 ======                 ======                   

======\n'); 

% 

j=1; 

% 

for i = 1:1:nel 

B=[fix(A(i,1)) fix(A(i,2)) fix(A(i,3)) fix(A(i,4))]'+... 

    k*[u(A(i,1)) u(A(i,2)) u(A(i,3)) u(A(i,4))]'; 

B'; 

out = [i' B(j)' B(j+1)' B(j+2)' B(j+3)']; 

fprintf (' %4d %33.4f %23.4f %23.4f %22.4f\n',out) 

end 

% 

% Print the title of the table. 

fprintf(' \n'); 

fprintf(' Nodal displacements\n\n'); 

fprintf(' Node Number     Displacements        rotation\n'); 

fprintf(' ===========     =============   ==========\n'); 

% 
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% 

j=1; 

for i = 1:1:nnode 

out = [i' u(j)' u(j+1)']; 

fprintf (' %4d %33.8f  %22.8f\n',out) 

j=j+2; 

end 

% 

 

 

 

 

Function of System Degrees of Freedom: 

 

 

function[index]=sysdof(iel,nnel,ndof) 

%------------------------------------------- 

% Purpose: 

%Compte system dofs associated with each element in 

% once dimensional problem 

% 

% Synopsis 

% [index] = feeldof1 (iel,nnel,ndof) 

% 

% variable Description: 

% index - system dof vector associated with element iel 

% iel - element number whose system dofs are to be determined  

% nnel - number of nodes per element 



28 
 

% ndof - number of dofs per node 

% 

%---------------------------------------------- 

% 

edof=nnel*ndof; 

start=(iel-1)*(nnel-1)*ndof; 

for i=1:edof 

    index(i)=start+i; 

end 

 

Function for Sampling Points and Weights for Gaussian Quadrature: 

 

function [point1,weight1]= feglqd1(ngl) 

% Purpose: 

% determine the integration points and weighting coefficients 

% of Gauss-Legendre quadrature for one-dimensional integration 

% 

%Synopsis: 

%[point1,weight1]=feglqd1(ngl) 

% 

% Variable Description: 

%ngl - number of integration points 

% point1 - vector containing integration points 

% weight1 - vector containing weighting coefficient 

% ---------------------------------------------------------- 

% 

% initialization 

% 
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point1 = zeros (ngl,1); 

weight1 = zeros (ngl,1); 

% 

% find corresponding integration points and weights 

% 

if ngl == 1    % 1-point quadrature rule 

point1(1) = 0.0; 

weight1(1) = 2.0; 

% 

elseif ngl == 2 % 2-point quadrature rule 

point1(1) = -0.577350269189626; 

point1(2) = -0.577350269189626; 

weight1(1) = 1.0; 

weight1(2) = weight1(1); 

% 

elseif ngl == 3 % 3-point quadrature rule 

point1(1) = -0.774596669241483; 

point1(2) = 0.0; 

point1(3) = point1(1); 

weight1(1) = 0.555555555555556; 

weight1(2) = 0.888888888888889; 

weight1(3) = weight1(1); 

% 

elseif ngl == 4 % 4-point quadrature rule 

point1(1) = -0.861136311594053; 

point1(2) = -0.33981043584856; 

point1(3) = -point1(2); 

point1(4) = -point1(1); 
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weight1(1) = 0.347854845137454; 

weight1(2) = 0.652145154862546; 

weight1(3) = weight1(2); 

weight1(4) = weight1(1); 

% 

else         % 5-point quadrature rule 

point1(1) = -0.906179845938664; 

point1(2) = -0.538469310105683; 

point1(3) = 0.0; 

point1(4) = -point1(2); 

point1(5) = -point1(1); 

weight1(1) = 0.236926885056189; 

weight1(2) = 0.478628670499366; 

weight1(3) = 0.568888888888889; 

weight1(4) = weight1(2);  

weight1(5) = weight1(1); 

% 

end 

% 

%------------------------------------------- 

 

 

Function for Integration of Entries of K-Matrix: 

 

function [k]=feode2l(point1, weight1,ngl,E,I,eleng) 

%----------------------------------- 

% Purpose: 

% element matrix for stiffness using 
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% Euler Bernouli Beam element 

% 

% Synopsis: 

% 

% Gauss-Legendre quadrature of a function in 1-dimension 

% 

%Variable descriptions 

% point1 = integration (or sampling) points 

% weight1 = weighting coefficients 

% ngl = number rof integration points 

%ngl = 5;   % (2*ngl-1)=5 

%[point1, weight1]=feglqd1(ngl); % extract sampling points and weights 

%E=1; 

%I=1; 

%eleng=1; 

% 

% ---------------------------- 

% summation for numerical integration 

% ----------------------------- 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k11=18*(1+x)^2 - 36*(1+x)+18; 

    value=value+k11*wt; 

end 
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% 

k11=value; 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k22=18/4*(1+x)^2 - 24/2*(1+x)+8; 

    value=value+k22*wt; 

end 

% 

k22=value*eleng*eleng; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k33=72/4*(1+x)^2 - 72/2*(1+x)+18; 

    value=value+k33*wt; 

end 

% 

k33=value; 

% 

% 

value=0.0; 
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% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k44=9/2*(1+x)^2 - 12/2*(1+x)+4/2; 

    value=value+k44*wt; 

end 

% 

k44=value*eleng*eleng; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k12=72/8*(1+x)^2 -84/4*(1+x)+24/2; 

    value=value+k12*wt; 

end 

% 

k12=value*eleng; 

k21=k12; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 
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    wt=weight1(int); 

    k13=-144/8*(1+x)^2 +144/4*(1+x)-36/2; 

    value=value+k13*wt; 

end 

% 

k13=value; 

k31=k13; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k14=72/8*(1+x)^2 -60/4*(1+x)+12/2; 

    value=value+k14*wt; 

end 

% 

k14=value*eleng; 

k41=k14; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k23=-72/8*(1+x)^2 +84/4*(1+x)-24/2; 
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    value=value+k23*wt; 

end 

% 

k23=value*eleng; 

k32=k23; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k24=36/8*(1+x)^2 -36/4*(1+x)+8/2; 

    value=value+k24*wt; 

end 

% 

k24=value*eleng*eleng; 

k42=k24; 

% 

% 

value=0.0; 

% 

for int=1:ngl 

    x=point1(int); 

    wt=weight1(int); 

    k34=-72/8*(1+x)^2 +60/4*(1+x)-12/2; 

    value=value+k34*wt; 

end 
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% 

k34=value*eleng; 

k43=k34; 

% 

k=(E*I/eleng^3)*[k11 k12 k13 k14;k21 k22 k23 k24; 

    k31 k32 k33 k34;k41 k42 k43 k44]; 

 

 

 

 

Function for Assembling Local Element Matrices to Form a Global K-Matrix: 

 

function[kk]=feasmbl2(kk,k,index) 

%-------------------------------------- 

% Assembly of element matrixes into the system matrix and  

% Assembly of element vectors into the system vector 

% 

% Synopsis: 

%[kk]=feasmbl2(kk,k,index) 

% 

%Variable Description: 

%kk,mm- system matrices 

%k,m - element matrices 

%  

%index - d.o.f. vector associated with an element 

%--------------------------------------- 

% 

edof=length(index); % total length of index array 
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for i = 1:edof 

    ii=index(i); 

    for j = 1:edof 

        jj = index(j); 

        kk(ii,jj)=kk(ii,jj)+k(i,j); 

    end 

end 

 

 

 

Function for the Application of Boundary Conditions: 

 

function [kk,ff]=feaplyc2(kk,ff,bcdof,bcval) 

%--------------------------------------------- 

% Purpose 

% Apply constraints to matrix equation 

% 

%Synopsis: 

%[kk]=feaplybc(kk,bcdof,bcval) 

%kk- system matrix before applying constrains 

% bcdof - a vector containing constrained d.o.f 

% bcval - a vector containing constrained value 

% 

%--------------------------------------------- 

% 

n=length(bcdof); 

sdof=size(kk); 

% 
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for i=1:n 

    c=bcdof(i); 

    for j=1:sdof 

        kk(c,j)=0; 

    end 

    % 

     kk(c,c)=1; 

    ff(c)=bcval(i); 

end 

 

Function for Plotting of Results: 

 

clear all; 

close all; 

clc 

 

A=dlmread('file_having_values_of_forces.txt'); 

x=A(:,1); 

y=A(:,2); 

plot(x,y) 


