
1

WAPlized Transmission of Voice Transformed Text Messages
Using

POP3 Protocol Implemented in .Net Framework

Undergraduate Degree Project BESE-V
By

Capt Asif Saeed-ur-Rehman
Capt Afsar Hussain Qureshi (Project Leader)

Capt Niamat ullah Khan
Capt Bakhtyar Khan Durrani

Project supervised by
Mr. Nabeel Khan

Dissertation to be presented as partial requirement for the award of
B.E Degree in Software Engineering

Military College of Signals
National University of Sciences and Technology, Rawalpindi

2

We dedicate this humble effort to the

 mother of

 Captain Bakhtyar Khan Durrani

 And

 father of

 Captain Asif Saeed-ur-Rehman

 who breathed their last on 6th April 2002 and 23rd March 2003 respectively.

 May ALLAH rest their souls in eternal peace. (Ameen)

3

ACKNOWLEDGEMENTS

We have no words at our command to express our deepest sense of gratitude to

ALLAH ALMIGHTY who blessed us with knowledge, courage and strength to complete

the project within stipulated time frame .

Rich tributes to our loving parents whose valuable prayers, salutary advices and

emboldening attitude kept our spirits alive to strive for knowledge, which enabled us to

reach this milestone.

We owe our deepest gratitude to our supervisor Mr Nabeel Khan for his valuable

suggestions, positive criticism and prompt guidance. Without him it would have been

almost impossible for us to accomplish this task successfully.

We extend our appreciations to all faculty members of the department for their

cooperation and timely guidance during our studies in the university. Not mentioning the

names of Dr Saeed Murtaza, Dr Nazre Haider, Brigadier S M S Tariq, Lieutenant Colonel

Mofassir ul Haque and Major Wasique will be an injustice in this regard.

Last but not the least, we are grateful to our lady wives and adorable kids who

remained patient and forthcoming, and seldom complained of our regular and long

duration absences from sweet homes. Without their supportive attitude the dream of

completing the project wouldn't have realized.

4

ABSTRACT

This document has been prepared as a dissertation of final year degree project to

be presented to MCS/NUST in partial requirement for the award of BE degree in the

discipline of Software Engineering.

 The document discusses the transmission of voice transformed text messages. It

includes the reasons for undertaking the project, the requirement analysis, the design and

implementation phases. The aim of the project was to implement a semi-automated

messaging system providing a variety of features. It also highlights the salient features of

the technologies employed to complete the project.

 The research and subsequent design and development of this project was carried

out by Capt Asif, Capt Afsar, Capt Niamat and Capt Bakhtyar under the supervision of

Mr.Nabeel Khan.

5

CONTENTS

DEDICATION i

ACKNOWLEDGEMENTS ii

ABSTRACT iii

1. INTRODUCTION 1

 1. Background 2

2. Operational Summary 2

 3. Tools/Technologies Used 3

4. Features Available 3

5. Limitations/Boundaries 4

6. Future Enhancements 4

7. System Requirements 5

 7.1 Hardware Specifications 5

 7.2 Software Specifications 5

2. .NET FRAMEWORK 6

1. Introduction 7

2. Key Features of .NET Framework 8

 2.1 Common Language Runtime 8

 2.2 Managed Execution Process 10

 2.2.1 Designing and writing source code 10

 2.2.2 Compiling code to MSIL 11

 2.2.3 Compiling MSIL to native code 11

 2.2.4 Executing the code 12

 2.3 Common type system 12

 2.4 .Net framework class library 13

 2.5 Cross-language interoperability 14

 2.5.1 Language interoperability overview 14

2.5.2 Common language specification 16

 2.6 .Net framework security 16

3 .Net framework in context 17

4. Automatic memory management 17

6

5. Allocating memory 18

6. Releasing memory 18

7. Overview of ADO.NET 19

3. POP3 21

 1. Introduction 22

 2. How does a POP3 mail server work? 22

 3. Basic operation 23

 4. States 24

 4.1 The AUTHORIZATION state 24

 4.2 The TRANSACTION state 25

 4.3 The UPDATE state 25

 5. Optional POP3 commands 25

 6. Scaling and operational considerations 26

 7. Algorithm for retrieving mail 27

 8. Advantages of POP3 email 27

4. MESSAGING APPLICATION PROGRAMMING INTERFACE 29

 1. Introduction 30

 2. MAPI services and windows 30

 2.1 Flexibility 31

 2.1.1 The tiered implementation of MAPI services 31

 2.2 Consistency 32

 2.3 Portability 32

 3. Messages 33

 3.1 Text messages 33

 3.2 Formatted documents and binary files 33

 3.3 Control messages 34

4. MAPI applications 34

 4.1 Electronic mail clients 35

 4.2 Message aware applications 35

 4.3 Message enabled applications 36

7

5. Other types of message applications 37

6. MAPI architecture 39

7. The MAPI client 40

 7.1 Messages and attachments 40

 7.1.1 The message header 41

7.1.2 The Message body 43

7.1.3 Message attachments 43

 7.2 Storage folders 45

 7.3 Addresses 46

8. The MAPI server 48

 8.1 Message transport 49

 8.2 Message stores 50

 8.3 Address books 51

9. The MAPI spooler 51

5. TELEPHONY APPLICATION PROGRAMMING INTERFACE 54

 1. Introduction 55

2. The telephony API model 55

 2.1 Lines 56

 2.2 Phones 57

3. TAPI and the WOSA model 57

4. Typical configurations 57

 4.1 Phone-based configurations 58

 4.2 PC-based configurations 59

 4.3 Shared or unified line configurations 60

8

 4.4 Multi-line configurations 61

5. Telephone line services 62

 5.1 Plain Old Telephone Service (POTS) 63

 5.2 Digital T1 lines 63

 5.3 Integrated Services Digital Network (ISDN) 63

 5.4 Private Branch Exchange (PBX) 64

6. TAPI architecture 64

 6.1 Assisted telephony services 64

 6.2 Basic telephony services 65

 6.2.1 The basic telephony line device API set 65

 6.3 Supplemental telephony services 66

6.3.1 Supplemental telephony API for line devices 66

 6.3.2 Supplemental telephony API for phone devices 67

 6.4 Extended telephony services 68

7. TAPI hardware considerations 68

 7.1 Basic data modems 68

 7.2 Voice-data modems 68

 7.3 Telephony cards 68

6. SPEECH APPLICATION PROGRAMMING INTERFACE 70

1. Introduction 71

2. The model/architecture 71

 2.1 Automatic speech recognition 72

 2.1.1 Shared 73

2.1.2 InProc recognizer 74

 2.2 Text-to-Speech 74

2.2.1 Possible applications for Text-to-Speech 75

3. SAPI's strengths 75

 4. SAPI's Weaknesses 76

7. WIRELESS ACCESS PROTOCOL 77

1. Introduction 78

2. Why WAP is necessary? 78

 2.1 Ensure interoperability 78

9

 2.2 Encourage and foster market development 79

 2.2.1 The market is different 79

2.2.2 The network is different 81

2.2.3 The device is different 81

3. WAP specification 82

4. WAP solution benefits 84

 4.1 Delivers an appropriate user experience model 84

 4.2 Leverages proxy technology 85

 4.3 Addresses the constraints of a wireless network 85

 4.4 Provides a secure wireless connection 86

 4.5 Optimized for handheld wireless devices 87

 4.6 Implements new wireless functionality 87

 4.7 Enables application development using existing tools 88

 4.8 Adapts new standards for the industry 88

5. How developers benefit from using WAP-based solutions? 89

6. How subscribers benefit from using WAP-based solutions? 91

8. DESIGN AND IMPLEMENTATION 93

1. Use case diagram 94

2. Use case description 95

3. Sequence diagrams 98

4. Collaboration diagrams 103

5. Architecture design 108

6. Flow chart 109

7. Testing 111

8. Software testing methods (procedural) 111

8.1 Test case design 111

8.2 White-box testing 112

 8.3 Basis path testing 112

 8.4 Control structure testing 113

 8.5 Black-box testing 114

9. Testing principles 114

 10. Modular testing 114

 10.1 Login 114

 10.2 Main screen / Window 116

 10.3 Administrator record 119

 10.4 Customer record / Customer profile 123

 10.5 Mail retrieval 127

10

 10.6 Text to speech conversion 127

9. REMOTE ACCESS 129
1. Introduction 130

 2. Links available 130

CONCLUSION 132

ILLUSTRATIONS 133

APPENDIX ‘A’ 151

BIBLIOGRAPHY 158

11

Chapter 1

INTRODUCTION

12

1. Background
 Most of the technological development witnessed by today’s common man is the

logical outcome of the ongoing conflict between necessity and luxury. A scientific

service which eluded the man of eighties as a dream has been transformed into reality and

need for a man who has stepped into the 21st century. Internet and it’s allied facilities and

applications is an example worth quoting in this regard which has confined the

inhabitants of this world as members of a global village. Access to any sort of

information in any form is no more a dream. Email has widely substituted the

conventional means of message delivery in a time saving and cost effective way.

Integration of mobile devices has added a new dimension to web and its applications. The

user no longer wants to be dependent on a desktop PC, fixed telephone and an ISP to

remain in touch with the latest happenings around the globe. The fact is more true for the

persons whose nature of job demands constant travelling to remote areas lacking the

above cited necessities together with a contradictory need to remain in contact with their

enterprise and stake holders.

A need has been felt to develop an application for providing email access and

sharing of information to the individuals living in remote areas devoid of basic Internet

infrastructure. This very need forms the basis of our motivation to undertake this project,

that too, employing the .NET FRAMEWORK, the technology of tomorrow. Talking in

pure technical terms, the successful completion of our project has enabled the developed

application to first go to the email server, download the email using POP3 algorithm and

manage that email in to the database according to the user name and then make a call to

that user to relay the mail in either voice or text format.

2. Operational Summary
 The system is initialized with the administrator logging in. The administrator gets

online through any ISP (Internet Service Provider) and establishes connection with the

concerned POP3 (Post Office Protocol 3) compliant mail servers. The mails of the

registered customers are retrieved through MAPI (Messaging Application Programming

Interface) and stored in the local database, developed in SQL server 2000. The customer

is then contacted through TAPI (Telephony Application Programming Interface). After

validating the customer, his mails are transmitted in voice format through SAPI (Speech

13

Application Programming Interface), if the customer is subscribed to a line telephone.

Whereas , in case the customer is subscribed to a mobile service, he has a choice to

receive the mail either in voice or text format. For this, the application will employ

WAP (Wireless Access Protocol).

3. Tools/Technologies Used

Following tools/technologies were employed to complete the project:-

• .Net Framework

• Post Office Protocol Version 3.0

• Messaging Application Programming Interface

• Speech Application Programming Interface

• Telephony Application Programming Interface

• Wireless Access Protocol

• SQL Server 2000

• ASP

4. Features Available

 The salient features of the project are cited below:-

• Users can retrieve their mail in voice form on mobile phone, fixed phone.

• The application facilitates the following categories of individuals to

retrieve their mail in voice form:-

 Persons on move

 Persons living in remote areas

• Administrator can view administrator's and customer's profile and can

make necessary amendments.

• Administrator has the provision of carrying out all file operations like

opening and saving a file supported by full fledged text editor.

14

• Administrator can compose and send the mail.

• Administrator can get print out of customer profile.

• The application is complimented by remote access feature. This has been

done by developing and launching a website. The main purpose of the

website is to allow users to update their profile especially their password.

This ensures user's privacy which is of paramount importance in systems

like this.

5. Limitations/Boundaries

Following are the boundaries/limitations of the project:-

• Application is limited to POP3 compliant mail servers only.

• The application supports only text to voice conversion and not the image

and data conversion.

• Limited connectivity for mobile phone users.

• Application supports one client at a time.

• The application allows users to use only the default voice in TTS

speaking mode.

• Application is semi-automated.

6. Future Enhancements

• With the use of multiple modems the application can support multiple

customers simultaneously.

• TTS speaking mode can be further enriched to provide a choice to

customers to select different voices.

• Application can be fully automated thereby keeping the role of

administrator to the bare minimum.

7. System Requirements

15

7.1 Hardware Specifications

• Processor Minimum 600Mhz
• RAM Minimum 128MB
• Hard Disk Minimum 20 GB

7.2 Software Specifications

• Operating System Microsoft Windows 2000 Professional or
 Advanced Server 2000
• .NET Framework
• SQL Server 2000
• IIS
• Platform core SDK
• Speech SDK
• DirectX SDK

16

Chapter 2

.NET FRAMEWORK

17

1. Introduction

The .NET Framework is a new computing platform designed to simplify

application development in the highly distributed environment of the Internet. The .NET

Framework has two main components: the common language runtime and the .NET

Framework class library.

The common language runtime is the foundation of the .NET Framework. We can

think of the runtime as an agent that manages code at execution time, providing core

services such as memory management and thread management, while also enforcing

strict safety and accuracy of the code. In fact, the concept of code management is a

fundamental principle of the runtime. Code that targets the runtime is known as managed

code; code that does not target the runtime is known as unmanaged code.

The .NET Framework class library is a comprehensive, object-oriented collection

of reusable classes that we can use to develop applications ranging from traditional

command-line or graphical user interface (GUI) applications to applications based on the

latest innovations provided by ASP.NET and Web Services.

The .NET Framework also provides several runtime hosts, which are unmanaged

components that load the common language runtime into their processes and initiate the

execution of managed code, thereby creating a software environment that can exploit

both managed and unmanaged features. The .NET Framework SDK not only provides

several runtime hosts, but also supports the development of third-party runtime hosts.

Internet Explorer is an example of an unmanaged application that hosts the

runtime (in the form of a MIME type extension). Using Internet Explorer to host the

runtime enables us to embed managed components or Windows Forms controls (the

.NET version of a Microsoft® ActiveX® control) in HTML documents.

18

2. Key Features of .NET Framework

Section Description

Common Language

Runtime

Explains what the common language runtime is, what it

does, and the benefits it provides

Managed Execution

Process

Describes what happens during managed execution

Common Type System Identifies the types supported by the runtime.

Introduction to the .NET

Framework Class Library

Introduces the library of types provided by the .NET

Framework, which expedites and optimizes the development

process and gives you access to system functionality.

Cross-Language

Interoperability

Explains how we can ensure that managed objects written in

different languages can interact with each other.

.NET Framework

Security

Describes mechanisms for protecting resources and code

from unauthorized code and users.

Table 1: Key Features of .NET Framework

2.1 Common Language Runtime

The common language runtime provides a code-execution environment that

manages code targeting the .NET Framework. Code management can take the form of

memory management, thread management, security management, code verification and

compilation, and other system services.

Managed components are awarded varying degrees of trust, depending on a

number of factors that include their origin (such as the Internet, enterprise network, or

local computer). This means that a managed component might or might not be able to

perform file-access operations, registry-access operations, or other sensitive functions,

even if it is being used in the same active application.

19

The runtime enforces security in a way that enables users to trust that although an

executable attached to an e-mail can play an animation on screen or sing a song, it cannot

access their personal data, file system, or network. The security features of the runtime

thus enable legitimate Internet-deployed software to be exceptionally feature-rich.

The runtime also enforces code robustness by implementing a strict type- and

code-verification infrastructure called the common type system (CTS). The CTS ensures

that all managed code is self-describing. The various Microsoft and third-party language

compilers generate managed code that conforms to the CTS. This means that managed

code can consume other managed classes, types, and objects, while strictly enforcing type

fidelity and type safety.

In addition, the managed environment of the runtime ensures that the most

common types of software issues are solved or eradicated completely. For example, the

runtime automatically handles object layout and manages references to objects, releasing

them when they are no longer being used. This automatic memory management

eliminates the two most common application errors, memory leaks and invalid memory

references.

The runtime, coupled with the CTS, also accelerates developer productivity. For

example, programmers can use their favorite development language, being absolutely

assured that they can still take full advantage of the runtime, the class library, and

components written in other languages by other developers. Any compiler vendor who

chooses to target the runtime can do so. Language compilers that target the .NET

Framework make the features of the .NET Framework available to existing code written

in that language, thus greatly easing the migration process for existing applications.

Although the runtime is designed for the software of the future, it also supports

software of today and yesterday. Interoperability between managed and unmanaged code

enables developers to continue to use necessary COM components and DLLs.

20

The runtime is designed to enhance performance. A feature called Just-In-Time

(JIT) compiling enables all managed code to run in the native machine language of the

system on which it is executing.

Finally, the runtime can be hosted by high-performance, server-side applications,

such as Internet Information Services (IIS) and Microsoft® SQL Server. This enables us

to use managed code to write our business logic, while still enjoying the superior

performance of the industry's best enterprise servers.

2.2 Managed Execution Process

The managed execution process includes the following steps:

• Designing and writing source code. To obtain the benefits provided by

the common language runtime, you must use one or more language

compilers that target the runtime.

• Compiling code to Microsoft intermediate language (MSIL). Compiling

translates your source code into MSIL and generates the required

metadata.

• Compiling MSIL to native code. At execution time, a just-in-time (JIT)

compiler translates the MSIL into native code.

• Executing the code. The common language runtime provides the

infrastructure that enables execution to take place as well as a variety of

services that can be used during execution.

2.2.1 Designing and writing source code

To obtain the benefits provided by the common language runtime, we must use

one or more language compilers that target the runtime, such as Visual Basic, C#, Visual

C++, JScript, or one of many third-party compilers such as a Perl or COBOL compiler.

21

Because it is a multi-language execution environment, the runtime supports a

wide variety of data types and language features. The language compiler we use

determines which runtime features are available, and we design our code using those

features. Our compiler, not the runtime, establishes the syntax our code must use. If our

component must be completely usable by components written in other languages, our

component's exported types must expose only language features that are included in the

Common Language Specification (CLS).

2.2.2 Compiling code to Microsoft intermediate language (MSIL)

 When compiling to managed code, the compiler translates our source code into

Microsoft intermediate language (MSIL), which is a CPU-independent set of instructions

that can be efficiently converted to native code. MSIL includes instructions for loading,

storing, initializing, and calling methods on objects, as well as instructions for arithmetic

and logical operations, control flow, direct memory access, exception handling, and other

operations. Before code can be executed, MSIL must be converted to CPU-specific code

by a just in time (JIT) compiler. Because the runtime supplies one or more JIT compilers

for each computer architecture it supports, the same set of MSIL can be JIT-compiled and

executed on any supported architecture.

When a compiler produces MSIL, it also produces metadata. Metadata describes

the types in our code, including the definition of each type, the signatures of each type's

members, the members that our code references, and other data that the runtime uses at

execution time.

2.2.3 Compiling MSIL to native code

Before Microsoft intermediate language (MSIL) can be executed, it must be

converted by a .NET Framework just-in-time (JIT) compiler to native code, which is

CPU-specific code that runs on the same computer architecture as the JIT compiler.

22

Because the runtime supplies a JIT compiler for each supported CPU architecture,

developers can write a set of MSIL that can be JIT-compiled and executed on computers

with different architectures.

2.2.4 Executing the code

The common language runtime provides the infrastructure that enables managed

execution to take place as well as a variety of services that can be used during execution.

Before a method can be executed, it must be compiled to processor-specific code. Each

method for which Microsoft intermediate language (MSIL) has been generated is JIT-

compiled when it is called for the first time, then executed. The next time the method is

executed, the existing JIT-compiled native code is executed. The process of JIT

compiling and then executing the code is repeated until execution is complete.

During execution, managed code receives services such as automatic memory

management, security, interoperability with unmanaged code, cross-language debugging

support, and enhanced deployment and versioning support.

2.3 Common type system

The common type system defines how types are declared, used, and managed in the

runtime, and is also an important part of the runtime's support for cross-language

integration. The common type system performs the following functions:

• Establishes a framework that enables cross-language integration, type

safety, and high performance code execution.

• Provides an object-oriented model that supports the complete

implementation of many programming languages.

23

• Defines rules that languages must follow, which helps ensure that objects

written in different languages can interact with each other.

The common type system supports two general categories of types, each of which is

further divided into subcategories:

• Value types. Instances of value types are stored as the representation of

their value. Value types can be built-in (implemented by the runtime), user

defined, or enumerations.

• Reference types. Instances of reference types are stored as a reference to

the value's location. Reference types can be self-describing types, pointer

types, or interface types. The type of a value can be determined from

values of self-describing types. All self-describing types derive from a

base type, System.Object. Self-describing types are further split into arrays

and class types. The class types are user-defined classes, boxed value

types, and delegates.

2.4 .Net framework class library

The .NET Framework includes classes, interfaces, and value types that expedite

and optimize the development process and provide access to system functionality. To

facilitate interoperability between languages, the .NET Framework types are CLS

compliant and can therefore be used from any programming language whose compiler

conforms to the common language specification (CLS).

The .NET Framework types are the foundation on which .NET applications,

components, and controls are built. The .NET Framework includes types that perform the

following functions:

• Represent base data types and exceptions.

• Encapsulate data structures.

24

• Perform I/O.

• Access information about loaded types.

• Invoke .NET Framework security checks.

• Provide data access, rich client-side GUI, and server-controlled, client-

side GUI.

The .NET Framework provides a rich set of interfaces, as well as abstract and

concrete (non-abstract) classes. We can use the concrete classes as is or, in many cases,

derive our own classes from them. To use the functionality of an interface, we can either

create a class that implements the interface or derive a class from one of the .NET

Framework classes that implements the interface.

2.5 Cross-language interoperability

The common language runtime provides built-in support for language

interoperability. However, this support does not guarantee that code we write can be used

by developers using another programming language. To ensure that we can develop

managed code that can be fully used by developers using any programming language, a

set of language features and rules for using them called the Common Language

Specification (CLS) has been defined. Components that follow these rules and expose

only CLS features are considered CLS-compliant.

2.5.1 Language interoperability overview

Language interoperability is the ability of code to interact with code that is written

using a different programming language. Language interoperability can help maximize

code reuse and, therefore, improve the efficiency of the development process.

Because developers use a wide variety of tools and technologies, each of which

might support different features and types, it has historically been difficult to ensure

25

language interoperability. However, language compilers and tools that target the common

language runtime benefit from the runtime's built-in support for language interoperability.

The common language runtime provides the necessary foundation for language

interoperability by specifying and enforcing a common type system and by providing

metadata. Because all languages targeting the runtime follow the common type system

rules for defining and using types, the usage of types is consistent across languages.

Metadata enables language interoperability by defining a uniform mechanism for storing

and retrieving information about types. Compilers store type information as metadata,

and the common language runtime uses this information to provide services during

execution; the runtime can manage the execution of multi-language applications because

all type information is stored and retrieved in the same way, regardless of the language

the code was written in.

Managed code benefits from the runtime's support for language interoperability in the

following ways:

• Types can inherit implementation from other types, pass objects to another

type's methods, and call methods defined on other types, regardless of the

language the types are implemented in.

• Debuggers, profilers, or other tools are required to understand only one

environment the Microsoft intermediate language (MSIL) and metadata

for the common language runtime and they can support any programming

language that targets the runtime.

• Exception handling is consistent across languages. Our code can throw an

exception in one language and that exception can be caught and

understood by an object written in another language.

To ensure that your managed code is accessible to developers using any

programming language, the .NET Framework provides the Common Language

Specification (CLS), which describes a fundamental set of language features and defines

rules for how those features are used.

26

2.5.2 Common language specification

To fully interact with other objects regardless of the language they were

implemented in, objects must expose to callers only those features that are common to all

the languages they must interoperate with. For this reason, a set of language features has

been defined, called the Common Language Specification (CLS), which includes basic

language features needed by many applications. The CLS rules define a subset of the

common type system; that is, all the rules that apply to the common type system apply to

the CLS, except where stricter rules are defined in the CLS. The CLS helps enhance and

ensure language interoperability by defining a set of features that developers can rely on

being available in a wide variety of languages. The CLS also establishes requirements for

CLS compliance; these help us determine whether our managed code conforms to the

CLS and to what extent a given tool supports the development of managed code that uses

CLS features.

2.6 .Net framework security

The .NET Framework provides several mechanisms for protecting resources and code

from unauthorized code and users:

• ASP.NET Web Application Security provides a way to control access to a

site by comparing authenticated credentials (or representations of them) to

Microsoft Windows NT file system permissions or to an XML file that

lists authorized users, authorized roles, or authorized HTTP verbs.

• Code access security uses permissions to control the access, code has to

protected resources and operations. It helps protect computer systems from

malicious mobile code and provides a way to allow mobile code to run

safely. (Code Access Security together with the policies that govern it is

referred to as evidence based security.)

27

• Role-based security provides information needed to make decisions about

what a user is allowed to do. These decisions can be based on either the

user's identity or role membership or both.

3 .Net framework in context

Figure 1: .Net framework in context

4. Automatic memory management

Automatic memory management is one of the services that the common language

runtime provides during Managed Execution. The common language runtime's garbage

collector manages the allocation and release of memory for an application. For developers, this

means that they do not have to write code to perform memory management tasks when they

28

develop managed applications. Automatic memory management can eliminate common

problems such as forgetting to free an object and causing a memory leak, or attempting to

access memory for an object that has already been freed.

5. Allocating memory

When you initialize a new process, the runtime reserves a contiguous region of

address space for the process. This reserved address space is called the managed heap.

The managed heap maintains a pointer to the address where the next object in the heap

will be allocated. Initially, this pointer is set to the managed heap's base address. All

reference types are allocated on the managed heap. When an application creates the first

reference type, memory is allocated for the type at the base address of the managed heap.

When the application creates the next object, the garbage collector allocates memory for

it in the address space immediately following the first object. As long as address space is

available, the garbage collector continues to allocate space for new objects in this

manner.

Allocating memory from the managed heap is faster than unmanaged memory

allocation. Because the runtime allocates memory for an object by adding a value to a

pointer, it is almost as fast as allocating memory from the stack. In addition, because new

objects that are allocated consecutively are stored contiguously in the managed heap, an

application can access the objects very quickly.

6. Releasing memory

The garbage collector's optimizing engine determines the best time to perform a

collection based upon the allocations being made. When the garbage collector performs a

collection, it releases the memory for objects that are no longer being used by the

application. It determines which objects are no longer being used by examining the

application's roots. Every application has a set of roots. Each root either refers to an

object on the managed heap or is set to null. An application's roots include global and

29

static object pointers, local variables and reference object parameters on a thread's stack,

and CPU registers. The garbage collector has access to the list of active roots that the

just-in-time (JIT) compiler and the runtime maintain. Using this list, it examines an

application's roots, and in the process creates a graph that contains all the objects that are

reachable from the roots.

Objects that are not in the graph are unreachable from the application's roots. The

garbage collector considers unreachable objects garbage and will release the memory

allocated for them. During a collection, the garbage collector examines the managed

heap, looking for the blocks of address space occupied by unreachable objects. As it

discovers each unreachable object, it uses a memory-copying function to compact the

reachable objects in memory, freeing up the blocks of address spaces allocated to

unreachable objects. Once the memory for the reachable objects has been compacted, the

garbage collector makes the necessary pointer corrections so that the application's roots

point to the objects in their new locations. It also positions the managed heap's pointer

after the last reachable object. Note that memory is compacted only if a collection

discovers a significant number of unreachable objects. If all the objects in the managed

heap survive a collection, then there is no need for memory compaction.

To improve performance, the runtime allocates memory for large objects in a

separate heap. The garbage collector automatically releases the memory for large objects.

However, to avoid moving large objects in memory, this memory is not compacted.

7. Overview of ADO.NET

ADO.NET provides consistent access to data sources such as Microsoft SQL

Server, as well as data sources exposed via OLE DB and XML. Data-sharing consumer

applications can use ADO.NET to connect to these data sources and retrieve, manipulate,

and update data.

ADO.NET cleanly factors data access from data manipulation into discrete

components that can be used separately or in tandem. ADO.NET includes .NET data

30

providers for connecting to a database, executing commands, and retrieving results.

Those results are either processed directly, or placed in an ADO.NET DataSet object in

order to be exposed to the user in an ad-hoc manner, combined with data from multiple

sources, or remoted between tiers. The ADO.NET DataSet object can also be used

independently of a .NET data provider to manage data local to the application or sourced

from XML.

The ADO.NET classes are found in System.Data.dll, and are integrated with the

XML classes found in System.Xml.dll. When compiling code that uses the System.Data

namespace, reference both System.Data.dll and System.Xml.dll.

ADO.NET provides functionality to developers writing managed code similar to

the functionality provided to native COM developers by ADO.

31

Chapter 3

POST OFFICE PROTOCOL 3

32

1. Introduction

A standard protocol for transferring mail messages on demand from a mail server.

On certain types of smaller nodes in the Internet it is often impractical to maintain a

message transport system (MTS).For example, a workstation may not have sufficient

resources (cycles, disk space) in order to permit a SMTP server and associated local mail

delivery system to be kept resident and continuously running. Similarly, it may be

expensive (or impossible) to keep a personal computer interconnected to an IP-style

network for long amounts of time (the node is lacking the resource known as

"connectivity").

Despite this, it is often very useful to be able to manage mail on these smaller

nodes, and they often support a user agent (UA) to aid the tasks of mail handling. To

solve this problem, a node which can support an MTS entity offers a maildrop service

to these less endowed nodes. The Post Office Protocol - Version 3 (POP3) is intended

to permit a workstation to dynamically access a maildrop on a server host in a useful

fashion. Usually, this means that the POP3 protocol is used to allow a workstation to

retrieve mail that the server is holding for it.

 POP3 is not intended to provide extensive manipulation operations of mail on

the server; normally, mail is downloaded and then deleted. The term "client host" refers

to a host making use of the POP3 service, while the term "server host" refers to a host

which offers the POP3 service.

2. How does a POP3 mail server work?

 POP3 mail servers store incoming email messages on the server until we

download them. As messages are downloaded to our computer, they are deleted

(optional) from the mail server and stored on the computer. ISPs commonly provide at

least one (up to 10) POP3 email account as part of their Internet dial-up package, so

chances are we already have one or more POP3 email addresses such as

"ourname@ourisp.com".

33

3. Basic operation

 Initially, the server host starts the POP3 service by listening on TCP port 110.

When a client host wishes to make use of the service, it establishes a TCP connection

with the server host. When the connection is established, the POP3 server sends a

greeting. The client and POP3 server then exchange commands and responses

(respectively) until the connection is closed or aborted.

 A POP3 session progresses through a number of states during its lifetime.

Once the TCP connection has been opened and the POP3 server has sent the greeting, the

session enters the AUTHORIZATION state. In this state, the client must identify itself to

the POP3 server. Once the client has successfully done this, the server acquires resources

associated with the client's maildrop, and the session enters the TRANSACTION state.

In this state, the client requests actions on the part of the POP3 server. When the client

has issued the QUIT command, the session enters the UPDATE state. In this state, the

POP3 server releases any resources acquired during the TRANSACTION state and says

goodbye. The TCP connection is then closed.

 A server must respond to an unrecognized, unimplemented, or syntactically

invalid command by responding with a negative status indicator. A server must respond

to a command issued when the session is in an incorrect state by responding with a

negative status indicator. There is no general method for a client to distinguish

between a server which does not implement an optional command and a server which is

unwilling or unable to process the command.

 A POP3 server may have an inactivity autologout timer. Such a timer must be

of at least 10 minutes' duration. The receipt of any command from the client during that

interval should suffice to reset the autologout timer. When the timer expires, the session

does not enter the UPDATE state. The server should close the TCP connection without

removing any messages or sending any response to the client.

34

4. States

4.1 The AUTHORIZATION state

 Once the TCP connection has been opened by a POP3 client, the POP3 server

issues a one line greeting. This can be any positive response. An example might be:

 S: +OK POP3 server ready

 The POP3 session is now in the AUTHORIZATION state. The client must

now identify and authenticate itself to the POP3 server. Two possible mechanisms for

doing this are the USER and PASS command combination and the APOP command.

While there is no single authentication mechanism that is required of all POP3 servers, a

POP3 server must of course support at least one authentication mechanism.

 Once the POP3 server has determined through the use of any authentication

command that the client should be given access to the appropriate maildrop, the POP3

server then acquires an exclusive access lock on the maildrop, as necessary to prevent

messages from being modified or removed before the session enters the UPDATE state.

If the lock is successfully acquired, the POP3 server responds with a positive status

indicator. The POP3 session now enters the TRANSACTION state, with no messages

marked as deleted. If the maildrop cannot be opened for some reason (for example, a

lock can not be acquired, the client is denied access to the appropriate maildrop, or

the maildrop cannot be parsed), the POP3 server responds with a negative status

indicator. (If a lock was acquired but the POP3 server intends to respond with a negative

status indicator, the POP3 server must release the lock prior to rejecting the command.)

After returning a negative status indicator, the server may close the connection. If the

server does not close the connection, the client may either issue a new authentication

command and start again, or the client may issue the QUIT command.

 After the POP3 server has opened the maildrop, it assigns a message number to

each message, and notes the size of each message in octets. The first message in the

maildrop is assigned a message-number of "1", the second is assigned "2", and so on, so

that the nth message in a maildrop is assigned a message-number of "n". In POP3

35

commands and responses, all message-numbers and message sizes are expressed in

base-10 (i.e., decimal).

 The summary for the QUIT command when used in the AUTHORIZATION

state is given in appendix ‘A’.

4.2 The TRANSACTION state

 Once the client has successfully identified itself to the POP3 server and the

POP3 server has locked and opened the appropriate maildrop, the POP3 session is now

in the TRANSACTION state. The client may now issue any of the following POP3

commands repeatedly. After each command, the POP3 server issues a response.

Eventually, the client issues the QUIT command and the POP3 session enters the

UPDATE state.

 The POP3 commands valid in the TRANSACTION state are given in

appendix’A’.

4.3 The UPDATE state

 When the client issues the QUIT command from the TRANSACTION state,

the POP3 session enters the UPDATE state. (Note that if the client issues the QUIT

command from the AUTHORIZATION state, the POP3 session terminates but does

NOT enter the UPDATE state.)

 If a session terminates for some reason other than a client-issued QUIT

command, the POP3 session does not enter the UPDATE state and must not remove any

messages from the maildrop.

 The summary for the QUIT command when used in the UPDATE state is given

in appendix ‘A’.

5. Optional POP3 commands

 The POP3 commands mentioned above must be supported by all minimal

implementations of POP3 servers. The optional POP3 commands on the other hand

36

permit a POP3 client greater freedom in message handling, while preserving a simple

POP3 server implementation.

 The summary of optional commands is given in appendix ‘A’.

6. Scaling and operational considerations

 Since some of the optional features were added to the POP3 protocol,

experience has accumulated in using them in large-scale commercial post office

operations where most of the users are unrelated to each other. In these situations and

others, users and vendors of POP3 clients have discovered that the combination of using

the UIDL command and not issuing the DELE command can provide a weak version of

the "maildrop as semi-permanent repository" functionality normally associated with

IMAP. Of course the other capabilities of IMAP, such as polling an existing connection

for newly arrived messages and supporting multiple folders on the server, are not

present in POP3.

 When these facilities are used in this way by casual users, there has been a

tendency for already-read messages to accumulate on the server without bound. This is

clearly an undesirable behavior pattern from the standpoint of the server operator. This

situation is aggravated by the fact that the limited capabilities of the POP3 do not

permit efficient handling of maildrops which have hundreds or thousands of

messages.

 Consequently, it is recommended that operators of large-scale multi-user

servers, especially ones in which the user's only access to the maildrop is via POP3,

consider such options as:

• Imposing a per-user maildrop storage quota or the like. A

disadvantage to this option is that accumulation of messages may

result in the user's inability to receive new ones into the maildrop. Sites

which choose this option should be sure to inform users of impending

or current exhaustion of quota, perhaps by inserting an appropriate

message into the user's maildrop.

37

• Enforce a site policy regarding mail retention on the server. Sites are

free to establish local policy regarding the storage and retention of

messages on the server, both read and unread. For example, a site might

delete unread messages from the server after 60 days and delete read

messages after 7 days. Such message deletions are outside the scope of

the POP3 protocol and are not considered a protocol violation.

 Server operators enforcing message deletion policies should take care to make

all users aware of the policies in force. Clients must not assume that a site policy will

automate message deletions, and should continue to explicitly delete messages using the

DELE command when appropriate.

 It should be noted that enforcing site message deletion policies may be

confusing to the user community, since their POP3 client may contain configuration

options to leave mail on the server which will not in fact be supported by the server.

 One special case of a site policy is that messages may only be downloaded once

from the server, and are deleted after this has been accomplished. This could be

implemented in POP3 server software by the following mechanism: "following a POP3

login by a client which was ended by a QUIT, delete all messages downloaded during

the session with the RETR command". It is important not to delete messages in the event

of abnormal connection termination (i.e if no QUIT was received from the client) because

the client may not have successfully received or stored the messages.

7. Algorithm for retrieving mail

The algorithm to retrieve mail from POP server is given in appendix ‘A’.

8. Advantages of POP3 email

Most ISPs support POP3. After retrieval , the messages can be read offline.

Messages can be composed offline and sent, the next time connection to the Internet is

established. We can configure our mail client not to delete incoming mail from our POP3

account and keep a copy of our messages on the mail server. If we receive a lot of mail,

38

this is not a good idea since messages piling up at the mail server can easily exceed disk

storage quotas.POP3 accounts can be accessed from any PC and Internet connection at

any time. There are literally hundreds of other advantages using POP3 email accounts

mainly due to the flexibility of organizing, managing, and filtering our messages on our

computer.

39

Chapter 4

MESSAGING APPLICATION PROGRAMMING INTERFACE

40

1. Introduction

Before getting into the details of how the Messaging Application Programming

Interface (MAPI) works and how to write MAPI applications, we'll take a moment to

review the general architecture of Microsoft's messaging API and how this set of message

services fits into the overall Windows operating system. MAPI is more than a handful of

e-mail APIs. It is a defined set of message services available to all programs that run in

the Windows operating environment.

We'll also discuss the various kinds of applications and message types commonly

used under MAPI services. In this chapter, we will see the three general types of MAPI

messages: text messages, formatted documents and binary files, and control messages.

Each of these message types has a distinct set of properties and uses within the MAPI

framework. This chapter describes each of the message types and shows how we can use

them within the MAPI architecture.

There are also three common types of MAPI applications: e-mail clients,

message-aware applications, and message-enabled applications. Each of these application

types is defined and illustrated in this chapter. We will also see the relative strengths of

each type of MAPI application.

2. MAPI services and windows

The MAPI service set is more than a set of API commands and functions that we can

use to send e-mail from point to point. The MAPI interface is actually a carefully defined

set of messaging services available to all Windows programs. This pre-defined set has

three key attributes:

• Flexibility

• Consistency

• Portability

Because the MAPI service set contains these three characteristics, it has become the

de facto messaging interface standard for Windows applications. Access to MAPI

services is the same for all versions of the Windows operating system. But even though

41

Windows programs use the same methods for accessing MAPI services, MAPI services

can vary from system to system. Also, MAPI architecture allows software designers to

create their own service providers (SPs) to support the MAPI service set. These services

are also available within all existing flavors of the Windows operating system. Even more

important, the methods to access these message services is the same, regardless of the

version of Windows we are working with. This means that programs using MAPI

services that were written under Windows 98 will still be able to access those same

MAPI services under Windows 2000.

2.1 Flexibility

Probably the most important aspect of the MAPI service architecture is its

flexibility. Microsoft has implemented MAPI within the Windows Open Systems

Architecture (WOSA). This architecture is designed to allow customization at both the

client (user) side and the server (provider) side. In other words, we can use MAPI not

only to create our own end-user software to read, write, create, and send messages, but

also to construct custom server-side software to store and transport those same messages.

As part of the WOSA model, MAPI services are implemented in a tiered format.

2.1.1 The tiered implementation of MAPI services.

The first layer is the client layer. This is what the end-user most often sees. At this

level a set of well-defined services are available. These services are accessed when the

client layer makes a service request to the second layer-the MAPI DLL. The MAPI DLL

takes the service request from the client and forwards it on to the third layer in the tier-the

service provider. The service provider is responsible for fulfilling the client request and

sending the results of that request back to the DLL where it is then forwarded to the client

that made the initial request. Throughout the process, the DLL layer acts as a broker

between the client side and the server side.

The primary advantage of this layered implementation is the ease with which

users can interchange client and server components. Since the only constant required in

the mix is the DLL layer, any client can be matched with any server component to

provide a working message service.

42

2.2 Consistency

The MAPI service set contains a set of services that encompasses all the basic

messaging tasks:

• Message service logon and logoff.

• Reading, creating, and deleting text messages.

• Adding and deleting message binary file attachments.

• Addressing and transporting the completed messages.

The exact behavior and properties of each of these services are defined as part of

MAPI. This way, any program that uses MAPI services can be assured that there are no

special API variations to deal with when moving from one vendor's MAPI product to

another. This means the programs we write today using our current implementation of

MAPI services will function under other implementations of the MAPI service set.

2.3 Portability

This leads to the third strength of Microsoft's MAPI service set-portability.

Microsoft supports MAPI services on all versions of its Windows operating systems. If

we write a program for the Windows 95 version of MAPI services, that same program

can still access the MAPI services under any other version of Windows that supports our

executable program. This is a key issue when we consider how many versions of

Windows are currently in use and how quickly new versions of the operating system are

developed and deployed.

Not only will we be able to move our MAPI-related programs to various

Windows platforms, we can also allow programs to access MAPI services from more

than one platform at once. In other words, users of more than one version of Windows

can all be accessing MAPI services from a central location at the same time. Microsoft

has announced plans to move several of its service sets (MAPI included) beyond the

Windows operating environment, too. As this happens, Microsoft has pledged that the

same set of functions and routines used under the Windows environment will be available

in other operating systems.

43

3. Messages

The primary role of the MAPI service is to transport and store messages. This section

identifies three common message types supported by MAPI services:

• Text messages

• Formatted documents or binary files

• Control messages

The most basic message form is the text message, commonly thought of as e-mail.

Most electronic message systems also support the second type of message-formatted

documents or binary files. These are usually included as attachments to a text message.

The third message type is a control message. Control messages are usually used by

the operating system to pass vital information such as system faults, potential failure

conditions, or some other type of status information. Control messages can also be passed

between programs in order to implement a level of distributed processing in a computer

network.

3.1 Text messages

The text message is the most common MAPI message. In fact, all MAPI

messages have a default text message component. A text message contains the letters and

words composed by users to communicate with other message system users.

All MAPI service providers must supply a simple text message editor as part of

their MAPI implementation. All MAPI message providers support plain ASCII text

characters as a message body. Many also support rich-text messages that contain

formatting characters such as font and color.

3.2 Formatted documents and binary files

The second MAPI message type is the formatted document or binary file, which is

usually a file containing non-printable characters such as a spreadsheet, a word-

processing file, graphics, or even an executable program. Binary files are supported by

MAPI services as attachments to text messages. The MAPI service set allows multiple

44

attachments to a single text message. This means we can send several binary files to the

same e-mail address using a single message body.

All MAPI service providers support the use of binary attachments to a message

body. However, the transport of binary attachments across multiple message servers may

not be supported. For example, if we compose a message that contains attached binary

files, address it to an associate at a distant location, and attempt to send the message using

a service provider that supports only Simple Mail Transfer Protocol (SMTP) format, our

attached binary files will not be successfully transported to the recipient.

3.3 Control messages

The third type of MAPI message is the control message. Control messages are

usually used by the operating system to deliver system status information, such as a

component failure or other system-related problem. These messages are usually

addressed directly to the system administrator.

Control messages can also be used to pass data or other control information

between programs. Control messages of this type can contain requests for information

that is to be collected by one program and returned to another for further processing. Or

the control message can contain actual data to be manipulated by another program. Since

MAPI services can stretch across the LAN or across the globe, control messages can be

passed to systems halfway around the globe as easily as to systems across the room.

It is possible to designate one or more workstations on a network as batch job

computers. These machines wait for control messages that direct them to perform time-

consuming tasks, such as extended database searches or generating long reports, thus

freeing up users' workstations for more immediate business. Once the task is complete,

the batch job machine can send a completion notice via e-mail to the user who sent the

original request.

4. MAPI applications

Just as there are three types of MAPI messages, there are three general types of MAPI

applications:

45

• Electronic mail clients

• Message-aware applications

• Message-enabled applications

4.1 Electronic mail clients

Electronic mail (e-mail) clients are the most common form of MAPI application.

An e-mail client allows end-users direct access to the MAPI services supported by the

back-end service provider.

Typical services provided by a MAPI e-mail client include

• Message service logon and logoff.

• Reading, creating, and deleting text messages.

• Adding and deleting binary file message attachments.

• Addressing and transporting completed messages.

Electronic mail clients can also provide additional services to make it easy to

manipulate, store, and retrieve text messages and binary file attachments. Electronic mail

clients may also have additional features for addressing and transporting messages,

including the use of defined mailing lists and the capability to address messages as cc

(courtesy copies) or Bcc (blind courtesy copies).

4.2 Message aware applications

Message-aware applications are non-MAPI programs that allow users access to

MAPI services. Typically, this access is implemented through the addition of a send

option in a menu or button bar.

Message-aware applications usually treat e-mail services just like any other

storage or output location, such as disk drives, printers, or modems. In these cases, the

ability to send the standard output as an electronic mail message is an added feature for

the application. As MAPI services become a standard part of the Windows operating

system, message-aware applications will become the norm instead of the exception.

46

4.3 Message enabled applications

The last category of MAPI applications is message-enabled applications.

Message-enabled applications are programs that offer message services as a fundamental

feature. While message-aware applications provide message services as an additional

feature and can operate well without them. Message-enabled applications are specifically

designed to use message services and most will not run properly unless message services

are available on the workstation.

Here are some examples of message-enabled applications:-

• Computerized service dispatch. Customer calls are handled by

representatives at PC workstations where they fill out data entry forms

outlining the repair needs and the location of the service call. When the

data entry is complete, the program analyzes the information and, based

on the parts needed and the service location, routes an instant electronic

message containing the service request and a list of needed parts to the

repair office nearest to the customer.

• Online software registration. When a user installs a new software

package, part of the installation process includes an online registration

form that already contains the unique software registration code along

with a data entry form for the user to complete. Once the form is

completed, the results are placed in the user's e-mail outbox to be sent

directly to the software company to confirm the user's software

registration.

• End-user support services. When network end-users have a question

about a software package or need to report a problem with their

workstation or the network, they call up a data entry form prompting them

to state the nature of the problem. This program will also automatically

load the user's system control files and add them as attachments to the

incident report. Once the form is complete, it is sent (along with the

attachments) to the appropriate network administrator for prompt action.

It is important to note that, in some cases, users of message-enabled applications

may not even be aware that they are using the e-mail system as part of their application.

47

MAPI services define properties and methods for logging users in and out of the message

server without using on-screen prompts. MAPI also provides options for addressing and

sending messages without the use of on-screen prompts or user confirmation. By using

these features of MAPI services, we can design a program that starts a message session,

reads mail, composes replies, addresses the new mail, and sends it to the addressee

without ever asking the user for input.

5. Other types of message applications

There are two more types of message-enabled applications that deserve comment

here. These two application types are:

• Electronic forms applications

• Message-driven applications

Electronic forms applications display a data entry screen that contains one or more

data fields for the user to complete. These data fields act as full-fledged windows controls

and can support all the events normally supported by Windows data entry forms. Once

the form is completed, the data, along with additional control information, is sent to the

addressee through MAPI services. When the addressee opens the new mail, the same

formatted data entry form appears with the fields filled in.

The message-driven application looks for data contained in a message and acts based

on the data it finds. Message-driven applications can use any aspect of the message as

control information for taking action. Message-driven applications can inspect the

message body or subject line for important words or phrases, check the sender's name or

the date and time the message was sent, or even scan attachments for important data.

These applications can then use the data to forward messages to another person

automatically, to set alerts to notify the user of important messages, or to start other

programs or processes at the workstation.

Below are some examples of message driven applications:-

• Message filtering agent. Users can enter a list of important keywords into

a list box. This list is used to scan all incoming text messages

automatically. If the message contains one or more of the keywords, the

user is notified immediately that an important message has arrived. Users

48

could also set values to scan for the message sender's name. For example,

if the message came from the user's boss, an alert could sound to warn the

user that an urgent message has arrived. The same technique can be used

to automatically forward specific messages when the user is away on a

trip.

• File transfer database update application. This program could be used by

outlying sales offices to update a central database automatically. Each day

the remote offices would enter sales figures in a database, then attach the

binary database file to an e-mail message, and send the message to the

corporate headquarters. There, a special workstation (logged in as the

addressee for all sales database updates) would receive the message and

automatically run a program that takes the binary database file and merges

it into the central database. This same program could then provide

summary data back to the remote offices to keep them up to date on their

progress.

• Electronic database search tool. Many companies have large libraries of

information on clients, products, company regulations, policies and

procedures, and so on. Often users would like to run a search of the

information but don't have time to physically visit the library and pour

through thousands of pages in search of related items. If the information is

kept in online databases, users at any location around the world could

formulate a set of search criteria to apply against the databases and then

submit these queries, via MAPI messages, to one or more workstations

dedicated to performing searches. After the search is completed, the

resulting data set could be returned to the user who requested the data.

Filtering agents, remote update routines, and long-distance search tools are all

examples of how MAPI services can be used to extend the reach of the local workstation

to resources at far-away locations. The Windows MAPI services provide excellent tools

for building programs that enable users to collect and/or disseminate data over long

distances or to multiple locations.

49

6. MAPI architecture

Now we will see the basic conceptual components of MAPI, the MAPI

Client and the MAPI Server. These two components work together to create, transport,

and store messages within the MAPI system.

 MAPI clients deal with three main objects:-

• Messages and attachments

• Storage folders

• Addresses

Each of these objects is represented slightly differently in the various versions of

MAPI implementations. For example, the MAPI OCX tools that ship with Visual Basic

allow only limited access to folders and address information. The Messaging OLE layer

(provided through the MAPI 1.0 SDK) provides increased access to folders and

addresses, but only the full MAPI 1.0 functions allow programmers to add, edit, and

delete folders and addresses at the client level.

MAPI servers also deal with three main objects:-

• Message transport

• Message stores

• Addresses books

Where the client is concerned with creating and manipulating messages, the

server component is concerned with the transporting of those same messages. Where the

client side is accessing storage folders, the server side is dealing with message storage,

and both client and server must deal with message addresses. However, the MAPI server

has the responsibility of managing the transport, storage, and addressing of messages

from any number of client applications.

In addition to maintaining the message base for all local clients, MAPI servers

also have the task of moving messages to and from remote servers and clients. Finally we

will briefly talk about a special MAPI component that handles this task-the MAPI

Spooler.

50

7. The MAPI client

The MAPI Client is the application that runs on the user's workstation. This is the

application that requests services from the MAPI Server. As mentioned earlier, client

applications can be generic e-mail tools such as Microsoft's Microsoft Mail or Exchange

Mail Client for Windows 95. Client applications can also be message-aware applications

like the Microsoft Office Suite of applications. Each of these applications provides access

to the message server via a send menu option or command button. Lastly, message-

enabled applications, ones that use MAPI services as a primary part of their functionality,

can be built to meet a specific need. These programs usually hide the MAPI services

behind data entry screens that request message-related information and then format and

send messages using the available message server.

All MAPI clients must, at some level, deal with three basic objects:

• Messages and attachments

• Storage folders

• Addresses

Depending on the type of client application, one or more of these MAPI objects

may be hidden from the client interface. However, even though they may not be visible to

the application user, all three objects are present as part of the MAPI architecture.

7.1 Messages and attachments

The MAPI system exists in order to move messages from one location to another.

Therefore, the heart of the system is the MAPI message object. All message objects must

have two components-a message header and a message body. The message header

contains information used by MAPI to route and track the movement of the message

object. The message body contains the actual text message portion of the message object.

Even though every message object must have a message body, the body can be left blank.

In addition to the two required components, message objects can also have one or more

attachments. Attachments can be any valid operating system file such as an ASCII text

file, a binary image, or an executable program.

51

7.1.1 The message header

The Message Header contains all the information needed to deliver the associated

message body and attachments. Data stored in the message header varies, depending on

the messaging service provider. While the exact items and their names and values differ

between messaging systems (CMC, MAPI, OLE Messaging), there is a basic core set that

appears in all message headers. Examples of basic data items that can be found in a

message header are listed in Table 1.

Note

The item names given in Table 1 do not necessarily correspond to a

valid property or variable name in programming code. The actual

property names for each item can vary from one code set to another.

Also, the order in which these properties appear differs greatly for

each MAPI implementation.

Property Name Type Description

Recipients Recipients object

E-mail address of the person who will

receive the message. This could be a

single name, a list of names, or a group

name.

Sender AddressEntry object
E-mail address of the person who sent the

message.

Subject String A short text line describing the message.

TimeReceived Variant (Date/Time)
The date and time the message was

received.

TimeSent Variant (Date/Time) The date and time the message was sent.

Table 1: Basic data items found in a message header

52

Along with this basic set, additional data items may appear or be available to the

programmer. These additional items add functionality to the MAPI interface, but because

they are not part of the core set, they may not be available while writing programs. Table

2 contains a list of additional header data items.

Property Name Type Description

DeliveryReceipt Boolean

Flag that indicates the sender asked for a return

receipt message upon either delivery of the message

to the recipient or the reading of the message by the

recipient.

Importance Long

A value that indicates the relative importance of the

message. Currently, Microsoft Mail clients recognize

three priorities: High, Medium, and Low.

Submitted Boolean
Flag that indicates the item has been sent to the

recipient.

Sent Boolean Read/write.

Signed Boolean Read/write.

Type String

Value that identifies this message as one of a class of

messages. Currently, Microsoft Mail systems

recognize the IPM (Interpersonal Message) type for

sending messages read by persons. Microsoft has

defined the Ipc (Interprocess Communication) type

for use between program processes. Other types can

be defined and used by other programs.

Unread Boolean
Flag that indicates whether the message has been

received and/or read by the recipient.

Table 2: Optional items that may be found in the message header

53

7.1.2 The Message body

The message body contains the text data sent to the recipient from the sender. For

most systems, this is a pure ASCII text message. However, some service providers can

handle rich-text format message bodies, which allows for additional information such as

font, color, and format codes to be included in the message body.

The availability and support of rich-text message bodies vary between service

providers. Some service providers allow us to create rich-text message bodies but

translate the information into simple ASCII upon delivery. For example, Microsoft

Exchange allows users to build rich-text message bodies but translates that message into

simple ASCII text when using the SMTP service provider. All messages received by the

Microsoft Mail system are converted into simple text as well. This behavior ensures that

the message will be delivered but may result in surprise or even unreadable material at

the recipient's end

Other transport providers may transmit the rich-text and allow the receiving

message provider to handle the translation to simple ASCII, if needed. This option allows

for the most flexibility but can result in undeliverable messages. For example, Microsoft

Exchange users have the option of sending rich-text messages through the CompuServe

message transport. The CompuServe transport supports rich-text messages. Rich-text

messages sent from one Windows Messaging Client to another by way of the

CompuServe transport retain their original layout and look. However, recipients using

something other than Microsoft Exchange may see something different.

7.1.3 Message attachments

Message attachments are supported by all forms of Microsoft MAPI. A MAPI

attachment can be any data file, of any type (text, binary programs, graphics, and so on).

These attachments are sent to the recipient along with the message header and body.

Upon receipt of the message, the recipient can, depending on the features of the message

client software, view, manipulate, and store the attachments on the local workstation. The

MAPI system keeps track of attachments with a set of properties. Table 3 lists an

54

example set of attachment properties. The actual properties and their names can differ

between program code sets.

Property Name Type Description

Index Long
Each message object can contain more than one

attachment. Attachments are numbered starting with 0.

Name String
The name to display in a list box or in the client message

area (for example, "June Sales Report").

Position Long

A value that indicates where in the message body the

attachment is to be displayed. Microsoft Mail and

Windows Messaging clients display an icon representing

the attachment within the message body. Other clients

may ignore this information, show an icon, or show

ASCII text that represents the attachment.

Source String

The exact filename used by the operating system to locate

and identify the attachment (for example,

"\\Server1\Data\Accounting\JuneSales.xls").

Type Long

A value that indicates the type of attachment. Microsoft

defines three attachment types:

Data-A direct file attachment

Embedded OLE-An embedded OLE object

Static OLE-A static OLE object

Table 3: Example MAPI attachment properties

Attachments can be handled differently by the message transport provider.

Microsoft Mail and Windows Messaging clients display attachments within the message

body and transport the attachments as part of the message body, too. Microsoft Mail and

55

Microsoft Exchange recipients see the attachment within the message body and can use

the mouse to select, view, and save the attachment when desired. Other transports may

handle the attachment differently.

7.2 Storage folders

MAPI messages can be saved in storage folders. The MAPI model defines

following storage folders:-

• Inbox. This is the place where all incoming messages first appear.

• Outbox. This is the place where all outgoing messages are placed before

they are sent to their destination.

• Sent. This is the place where all outgoing messages are placed after they

are sent to their destination. This is, in effect, a set of message copies that

can be referenced after the original has been sent.

• Deleted. This is the place where all messages are placed once they have

been marked for deletion.

• User-defined folders. This can be one or more folders defined by the user.

Each folder can hold messages that have been received and copies of

messages that have been sent.

Not all implementations of MAPI support all of the folders listed above. For

example, the Simple MAPI interface allows access to the Inbox (by way of the .Fetch

method of the MAPISession Control) and the Outbox (by way of the .Send method of the

MAPISession Control). Simple MAPI allows no other folder access. Programmers cannot

inspect the contents of the Sent folder or move messages from the Inbox to other user-

defined storage folders.

The MAPI model defines a handful of properties for storage folders. Table 4 lists

some of the more commonly used properties of the storage folder.

56

Property Name Type Description

FolderID String
This is a string value that uniquely

identifies this folder.

Folders Folders collection object

This is the set of folder objects

contained by the current folder. Any

folder can contain one or more sublevel

folders.

Messages Messages collection object
This is the set of messages stored in this

folder.

Name String
A unique user-defined string that

identifies the storage folder.

Parent Object

This contains the name of the parent

folder or InfoStore to which the

current folder belongs.

Table 4: Example MAPI storage folder properties

7.3 Addresses

Addresses are the last class of objects dealt with at the client level. Every

electronic message has at least two address objects: the sender object and the recipient

object. MAPI allows us to add several recipient address objects to the same message.

Each address object has several properties. Table 5 shows a set of sample properties for

the MAPI Address object.

57

Property Name Type Description

Address String

This is the unique electronic address for this address

object. The combination of the Type property (see

below) and the Address property creates the complete

MAPI address. Sample address properties are

Asif@isp.net-Internet address

/MailNet1/PostOfc9/MCA-MS Mail address

DisplayType Long

The MAPI service allows programmers to define

addresses by type. This means you can sort or filter

messages using the DisplayType property. Sample

address types are

mapiUser-Local user

mapiDistList-Distribution list

mapiForum-Public folder

mapiRemoteUser-Remote user

Name String

This is the name used in the Address book. Usually,

this is an easy-to-remember name such as "Fred Smith"

or "Mary in Home Office."

Type String

This value contains the name of the message transport

type. This allows MAPI to support the use of external

message transport services. Sample address types are

MS:-Microsoft Mail transport

SMTP:-Simple Mail Transport Protocol

MSN:-Microsoft Network transport

Table 5: MAPI Address object properties

8. The MAPI server

The MAPI Server handles all the message traffic generated by MAPI clients. The

MAPI Server usually runs on a standalone workstation connected to the network, but this

58

is not a requirement. There are versions of user-level MAPI servers that can be used to

handle message services.

Microsoft supports two standalone MAPI servers:

• Microsoft Mail Server (for both PCs and Apple workstations)

• Microsoft Exchange Server (for NT Server workstations)

The Microsoft Mail Server runs standalone on both Intel PCs or Apple

workstations. It provides direct MAPI services for all connected MAPI users and also

provides gateway MAPI services for remote users. The Microsoft Mail Server has, until

recently, been Microsoft's primary electronic mail server. Even though Microsoft is

stressing the early adoption of the new Microsoft Exchange Server for NT, the Microsoft

Mail Server will continue to be the primary mail server for thousands of users. All MAPI

Clients can share information with connected Microsoft Mail Servers regardless of the

client platform.

The Microsoft Exchange Server runs as a service on an NT Server workstation. It

provides MAPI services to all MAPI users. Unlike the Microsoft Mail Server, which

distinguishes between local and remote users, the Microsoft Exchange Server treats all

MAPI users as remote users. This simplifies several aspects of MAPI administration.

Unlike the Microsoft Mail Server, which only supports Microsoft Mail format messages,

the Microsoft Exchange Server supports multiple message formats and services,

including Microsoft Mail. This also means that the administration of gateways and

remote transports is quite different for Microsoft Exchange.

Regardless of the actual server application used, the same basic processes must

occur for all MAPI server systems. The three main tasks of all MAPI servers are:-

• Message transport. Moving the message from location to location.

• Message storage. Providing a filing system for the storage and retrieval of

received messages.

• Address book services. Providing centralized addressing and verification

services that can be used by all MAPI clients.

59

8.1 Message transport

Message Transport is the process of moving messages from one place to another.

Under the MAPI model, message transport is a distinct, and often separate process. MAPI

1.0 allows for the use of external message transports. In other words, programmers can

write software that knows how to handle a particular type or types of message formats

and register this transport mechanism as part of the MAPI system. This allows third-party

vendors to create format-specific transports that can be seamlessly integrated into the

MAPI system.

It is the message transport that knows just how to format and, if necessary, pre-

process messages for a particular messaging format. The message transport knows

exactly what information must be supplied as part of the message header and how it

needs to be arranged. The message transport also knows what types of message bodies

are supported. For example, SMTP format allows only text message bodies. However, the

Microsoft Network message format allows rich-text message bodies. It is the job of the

message transport to keep track of these differences, modify the message where

appropriate, or reject the message if modification or pre-processing is not possible.

One of the key features of the MAPI model is the provision for multiple message

transports within the MAPI system. Once message transports are installed (or registered)

with a MAPI client application, they are called into action whenever the pre-defined

message type is received by the MAPI client software. Since MAPI is designed to accept

the registration of multiple transports, the MAPI Client is potentially capable of handling

an unlimited number of vendor-specific message formats.

Note

Message types are stored as part of the address. These types were

discussed earlier in this chapter in the "Addresses" section.

Under the MAPI system, message transports provide another vital service. It is the

responsibility of the message transport to enforce any security features required by the

60

message format. For example, the MSN mail transport is responsible for prompting the

user for a username and password before attempting to link with the MSN mail system.

It is important to note that the message transport is not responsible for storing the

messages that have been received. The transport is only in charge of moving messages

from one location to another.

8.2 Message stores

Message stores are responsible for providing the filing system for the messages

received via the message transport. The MAPI model dictates that the message store must

be in a hierarchical format that allows multilevel storage. In other words, the system must

allow users to create folders to hold messages, and these folders must also be able to hold

other folders that hold messages. Under the MAPI model, there is no limit to the number

of folder levels that can be defined for a message store.

Under the MAPI model, storage folders can have properties that control how they

are used and how they behave. For example, storage folders can be public or private.

Folders can have properties that make the contained messages read-only to prevent

modification. The options available depend on the implementation of the message store.

In other words, the programmer who designs the message store can establish the scope of

storage options and the MAPI Client will comply with those rules.

As in the case with message transports, MAPI clients can access more than one

message store. The Windows Messaging Client that ships with Microsoft Exchange

Server also allows us to create folder column, grouping, sort, and filter rules for personal

and public folders. By doing this, we can create storage views that reflect the course of an

ongoing discussion and allow for easy search and retrieval of data kept in the message

store.

8.3 Address books

The last of the main MAPI server objects is the address book. The MAPI address

book contains all the directory information about a particular addressee. The book can

contain data for individual users or groups of users (a distribution list). The minimum

61

data stored in the address book is the user's display name, the transport type, and the

user's e-mail address. Additional information such as mailing address, telephone number,

and other data may be available depending on the design of the address book.

Address books, like the other objects described earlier, work independently under

the MAPI model. Also, the MAPI client can access more than one address book at a time.

This means that several address books of various formats can all be viewed (and used) at

the same time when composing messages.

Alongwith storing addresses, the address book interface also acts to resolve

display names used in the MAPI interface with the actual e-mail addresses and transport

types for those display names. To do this, MAPI offers a ResolveName service that

performs lookups upon request. The ResolveName service is able to look at all address

books (regardless of their storage format) in order to locate the proper e-mail address.

Users are also able to designate one of the address books as the default or

personal address book. This is the first address book in which new addresses are stored

and the first address book that is checked when resolving a display name. The Windows

Messaging Client and the Microsoft Mail client both ship with default personal address

books. The Windows Messaging Client allows users to add new address books and

designate their own personal address book container.

9. The MAPI spooler

The MAPI Spooler is a special process that interacts with both message stores and

message transports. It is the spooler's job to route messages from the client to the proper

transport and from the transport to the client. The spooler is the direct link between the

client and the transport. All messages go through the MAPI Spooler.

Note

Actually there are some cases in which a message moves directly

from the message store to the message transport. This occurs when

service providers offer both message store and message transport. E-

mail service providers that offer these features are known as tightly

62

coupled service providers.

As each message is moved from the message store (the "outbox") to the transport,

the MAPI Spooler checks the address type to see which transport should be used. Once

this is determined, the spooler notifies the transport and attempts to pass the message

from the message store to the message transport. If the transport is not currently

available, the MAPI Spooler holds onto the message until the transport is free to accept

messages. This allows transport providers to act as remote connections without any

additional programming or addressing on the client side.

Note

In fact, the implementation used in the Microsoft Exchange version of

MAPI treats all connections as if they were remote-even when the

message is moved from one user's Microsoft Exchange outbox to

another Microsoft Exchange user's inbox on the same network.

In the case of messages that move along a constantly connected transport (that is,

between two addresses on the same Microsoft Exchange Server), the spooler notifies the

transport (Microsoft Exchange) and the transport accepts the message almost

immediately. Often the user is not aware of any delay in the handling of the message.

In the case of messages that move from the Windows Messaging Client by way of

an SMTP transport through a dial-up connection to the Internet, the MAPI Spooler holds

onto the message until the user connects to the Internet account. Once the connection is

made, the MAPI Spooler sends all local messages on to the Internet mail server, retrieves

any waiting mail from the mail server, and passes these new messages to the appropriate

message store.

The MAPI Spooler is also able to move a single message to several recipients

when some of those recipients are not using the same message transport. For example,

users can build distribution lists that contain names of users on the local Microsoft

Exchange Server, users who have addresses on a local Microsoft Mail Server, and users

63

who can only be contacted through a fax address. When the message is sent, it moves

from the message store to the spooler, which then sorts out all the transports needed and

passes the messages on to the correct transports at the first available moment.

The MAPI Spooler is also responsible for marking messages as read or unread,

notifying the sender when a message has been successfully passed to the transport, and,

when requested, notifying the sender when the recipient has received (or read) the

message. The MAPI Spooler also reports when messages cannot be sent due to

unavailable transports or other problems.

64

Chapter 5

TELEPHONY APPLICATION PROGRAMMING INTERFACE

65

1. Introduction

The Telephony Application Programming Interface (TAPI) is one of the most

significant API sets to be released by Microsoft. The telephony API is a single set of

function calls that allows programmers to manage and manipulate any type of

communications link between the PC and the telephone line(s). While telephony models

for the PC have been around for several years, the telephony API establishes a uniform

set of calls that can be applied to any type of hardware that supplies a TAPI-compliant

service provider interface (SPI).

2. The telephony API model

The telephony API model is one designed to provide an abstracted layer for

access to telephone services from all Windows platforms. In other words, the telephony

API is a single set of functions that can be used to access all aspects of telephony services

within the Windows operating system.

This is a huge undertaking. The aim of TAPI is to allow programmers to write

applications that work regardless of the physical telephone medium available to the PC.

Applications written using TAPI to gain direct access to telephone-line services work the

same on analog or digital phone lines. Applications that use TAPI can generate a full set

of dialing tones and flash-hook functions (like that of the simple analog handset found in

most homes), and can also communicate with sophisticated multi-line digital desktop

terminals used in high-tech offices.

The TAPI design model is divided into two areas, each with its own set of API

calls. Each API set focuses on what TAPI refers to as a device. The two TAPI devices

are:-

• Line devices to model the physical telephony lines used to send and

receive voice and data between locations.

• Phone devices to model the desktop handset used to place and receive

calls.

66

2.1 Lines

The line device is used to model the physical telephone line. It is important to

understand that, in TAPI, the line device is not really a physical line; it's just a model or

object representing a physical line. In TAPI applications, a program could keep track of

several line devices, each of which is connected to a physical line. That same TAPI

application could also keep track of multiple line devices that number more than the total

physical lines available to the PC.

For example, a single TAPI application could be designed to provide voice, fax,

and data links for a user. The TAPI application would identify three line devices. One for

voice calls, one for fax transmission, and one for sending and receiving data via an

attached modem. If the PC has only one physical phone line attached, the TAPI

application would share the one line between the three defined line devices. This is called

dynamic line mapping (see Figure 1).

Figure 1: Dynamic line mapping

67

2.2 Phones

The second type of device modeled by TAPI is the phone device. This model

allows TAPI programmers to easily create "virtual phones" within the PC workspace. For

example, a standard PC with a sound card, speakers, and microphone can emulate all the

functions of a desktop phone. These virtual phones, like their line device counterparts,

need not exist in a one-to-one relationship to physical phones. A single PC could model

several phone devices, each with their own unique characteristics. When an actual call

must be made, the user could select one of the phone devices, enter the desired number

and then the TAPI application would attach the phone device to an available line device.

Note that the phone devices link to line devices (which eventually link to physical

telephone lines). One of the primary uses of multiple phone devices would be the

modeling of an office switchboard.

3. TAPI and the WOSA model

TAPI is able to accomplish its task by dividing the job into two distinct layers: the

client API and the SPI. Each interface is a set of functions designed to complete generic

telephony tasks such as opening a line, checking for a dial tone, dialing a number,

checking for a ring or a busy signal, and so on. The client API sends requests from the

application to the SPI for each task. It is the job of the SPI to complete the task and pass

the results back to the calling program through the client API.

4. Typical configurations

The TAPI model is designed to function in several different physical configurations,

which each have advantages and drawbacks. There are four general physical

configurations:-

• Phone-based. This configuration is best for voice-oriented call processing

where the standard handset (or some variation) is used most frequently.

• PC-based. This configuration is best for data-oriented call processing

where the pc is used most frequently for either voice or data processing.

68

• Shared or unified line. This is a compromise between phone-based and

PC-based systems. It allows all devices to operate as equals along the

service line.

• Multi-line. There are several variations of the multi-line configuration.

The primary difference between this configuration and the others is that

the PC acts as either a voice-server or a call switching center that connects

the outside phone lines to one or more PCs and telephone handsets. The

primary advantage of multi-line configurations is that you do not need a

direct one-to-one relationship between phone lines and end devices

(phones or PCs).

4.1 Phone-based configurations

In phone-based TAPI configurations, the standard telephone handset is connected

to the telephone switch and the PC is connected to the telephone (see Figure 2).

Figure 2: A typical phone-based TAPI configuration

69

This configuration is most useful when the telephone handset is the primary

device for accessing the telephone.

4.2 PC-based configurations

 PC-based TAPI configurations place the PC between the telephone switch and the

standard handset. (see Figure 3).

Figure 3: Typical pc-based TAPI configuration

This configuration is most useful when the PC is the primary device for accessing

the telephone line. Another major advantage of the PC-based configuration is that the PC

can act as a call manager for the handset. This is especially valuable in a mixed-mode

environment where voice, data, and fax are all coming in to the same phone address.

70

In a PC-based configuration, the PC can also be used for call screening and

message handling. TAPI-compliant software could record incoming messages for the

user and place them in a queue for later review, or forward calls to another address. With

the addition of caller ID services from the local telephone company, the PC could also act

as a call filter agent, screening the calls as they arrive and allowing only designated

callers access to the PC or the handset.

4.3 Shared or unified line configurations

The shared or unified line configuration is a bit of a compromise between PC-

based and phone-based configurations. The shared line configuration involves a split

along the line leading to the switch. Both the PC and the phone have equal (and

simultaneous) access to the line (see Figure 4).

Figure 4: Typical shared line TAPI configuration

The advantage of the shared-line configuration is that either device can act as the

originator of a call. All that is really needed is a microphone for input and speakers for

output, but some systems offer headphones or a keypad to simulate the familiar telephone

71

handset. Also, with the unified arrangement, users do not need to worry about two

devices ringing at the same time when a call comes in.

4.4 Multi-line configurations

So far, all the configurations reviewed here have been single-line models. This is

commonly referred to as first-party call control. TAPI is also designed to support multi-

line configurations. In this arrangement, TAPI is used to provide third-party call control.

Single lines act as the first (and only) party in a telephone call. In a multi-line

environment, a device can act as a third party in a telephone call. The most common form

of third-party call control is a central switchboard in an office. When a call comes in, the

switchboard (the third party) accepts the call, determines the final destination of the call,

routes the call to the correct extension, and then drops out of the call stream.

These are the two basic multi-line TAPI configurations:

• Voice server. Used to provide voice mail and other services from a central

location.

• PBX server. Used to provide call control for inbound and outbound trunk

lines.

In a voice server configuration, the TAPI-enabled PC acts as a message storage

device accessible from any other telephone handset.

In a PBX server configuration, the TAPI-enabled PC acts as a sort of first line of

defense for all incoming calls to a multi-line location, usually an office building. In this

mode, TAPI functions are used to accept calls, present them to an operator for review,

and then forward them to the final destination. This is using the TAPI PC as a true third-

party control system.

While a Voice Server does its work behind a standard desktop phone, the PBX

Server does its work in front of any desktop phone. In other words, the Voice Server is

designed to handle calls when the desktop phone is busy or in some other way unable to

accept calls. The PBX Server, on the other hand, is used to accept all calls coming into

the office and route those calls to the appropriate desktop phone. Many offices employ

both PBX Server and Voice Server systems. The PBX Server answers the incoming line

72

and routes it to the desktop phone. If the desktop phone is unable to accept the call, the

Voice Server takes a message and stores it for later retrieval.

5. Telephone line services

One of the primary aims of the TAPI model is to allow programmers to design

systems that will work the same way regardless of the physical characteristics of the

telephone line. TAPI functions behave the same on analog, digital, and cellular phone

lines. TAPI is able to operate in single-line or multi-line configurations. In fact, the real

value of the TAPI model for the programmer is that users can usually install TAPI-

compliant software on systems with different physical line types and still operate

properly.

It is important to know that some physical line types offer options not available on

other line types. For example, ISDN lines offer simultaneous data and voice channels not

available on POTS or T1 lines. TAPI cannot make a POTS line offer the same services an

ISDN line offers. TAPI does, however, provide a consistent interface to all services

options shared by line types (such as line open, dial, send data, close line, and so on).

Line types can be divided into three main groups:-

• Analog lines

• Digital lines

• Private protocol lines

Analog lines are the kind of lines available in most homes. Digital lines are

usually used by large organizations, including local telephone service providers, to

transfer large amounts of voice and data channels. T1 and ISDN lines are typical types of

digital lines. Private protocol lines are a special kind of digital line. These lines are used

within private branch exchanges (PBXs). PBX-type lines are used to transport voice,

data, and special control information used by the switching hardware to provide advanced

telephony features such as call transfer, conferencing, and so on.

73

5.1 Plain Old Telephone Service (POTS)

Plain Old Telephone Service (POTS) is the line service type provided to most

homes. POTS is an analog service that provides basic connection to the telephone

company's central office by way of a single-line link. Standard POTS users cannot

perform advanced telephone operations such as call transfers, forwarding, or

conferencing.

The analog POTS is designed to send voice signals, not data. For this reason,

POTS users must employ a data modulator-demodulator (or modem) to send digital

information over POTS lines.

5.2 Digital T1 lines

Digital T1 lines are designed to transport several conversations at once. T1 lines

can send 24 multiple phone connections at the same time. Since T1 lines are digital

instead of analog, data rates can extend well beyond the limits of analog lines. Data rates

in the megabytes-per-minute are typical for dedicated T1 lines. T1 lines are typically used

for dedicated data transmission and for bulk transmission of multiple conversations from

point to point.

5.3 Integrated Services Digital Network (ISDN)

The Integrated Services Digital Network (ISDN) was developed to handle voice,

data, and video services over the same line. The most common form of ISDN service,

called Basic Rate Interface or BRI-ISDN, provides two 64Kbps channels and one 16Kbps

control or signal information channel. The advantage of ISDN is that the two 64Kbps B

channels can be configured to provide a single 128Kbps pipe for voice, video, or data, or

the line can be configured to provide one 64Kbps data channel and a simultaneous

64Kbps digital voice channel. Thus ISDN service provides for transporting more than

one media mode at the same time.

An advanced ISDN format, called Primary Rate Interface or PRI-ISDN, can

provide up to 32 separate channels. PRI-ISDN, however, is a much more expensive

service and is used by businesses that need to quickly move large amounts of data.

74

5.4 Private Branch Exchange (PBX)

The Private Branch Exchange (PBX) format is used in commercial switching

equipment to handle multi-line phone systems in offices. Typically, the local telephone

provider brings multi-line service up to the PBX switch and then the PBX handles all call

control and line switching within the PBX network. PBX phones operate on proprietary

formats and are usually digital-only lines.

6. TAPI architecture

Four different levels of TAPI services:-

• Assisted telephony. This is the simplest form of TAPI service.

• Basic telephony. This provides basic in- and outbound telephony services

for a single-line phone.

• Supplemental telephony. This provides advanced telephone services such

as hold, park, conference, and so on, to single and multi-line phones.

• Extended telephony. This provides a direct interface between Windows

programs and vendor-specific TAPI services.

6.1 Assisted telephony services

API Call Parameters Comments

TapiRequestMakeCal

l

DestAddress,

AppName,

CalledParty,
Comment

Use this function to request an

outbound call placement. Only the

DestAddress is required.

TapiGetLocationInf

o
CountryCode,
CityCode

Use this function to return the current

country code and city code of

theworkstation. These values are stored

in the TELEPHON.INIfile.

Table 1: The assisted telephony API

75

The TapiRequestMakeCall has four parameters. Only the DestAddess is

required. The DestAddress is a string of numbers that represents the telephone number

to dial. The AppName parameter is the name of the application that requested the TAPI

service. This would be the name of your application. The CalledParty is a string that

represents the name of the person you are calling. The Comment parameter could contain

a string of text describing the reason for the call.

The TapiGetLocation function returns two parameters: the CountryCode and
CityCode.

6.2 Basic telephony services

Basic Telephony is the next level up in the TAPI service model. Basic Telephony

function calls allow programmers to create applications that can provide basic in- and

outbound voice and data calls over a single-line analog telephone. The analog phone line

most often used for this level of service is often referred to as a POTS or Plain Old

Telephone Service line. The Basic Telephony API set can also be used with more

sophisticated lines such as T1, ISDN, or digital lines. However, the added features of

these advanced line devices (such as call forwarding, park, hold, conference, and so on)

are not available when using the Basic Telephony API set.

TAPI can "see" multiple TAPI devices on the same machine (data modem,

handset, and fax board) while there is only one physical telephone line attached to the

workstation.

6.2.1 The basic telephony line device API set

The Basic Telephony service model has several API calls handling and fulfilling

service requests. These calls can be collected into logical groups:-

• Basic line-handling calls handle the initialization and opening and closing

of TAPI lines.

76

• Line settings and status calls handle the reading and writing of various

parameter values that control the behavior of the line device.

• Outbound and inbound functions handle the details of placing an

outbound voice or data call and answering an inbound voice or data call.

• Outbound and inbound functions handle the details of recognizing,

translating, and/or building telephone "addresses" or dialing strings.

• Miscellaneous features handle other TAPI-related functions, such as

managing call-monitoring privileges and manipulating call handles.

6.3 Supplemental telephony services

The Supplemental telephony functions provide advanced line device handling

(conference, park, hold, forward etc).

6.3.1 Supplemental telephony API for line devices

The Supplemental API set for line devices adds advanced call control and other

features to the API library. The set can be divided into the following related groups of

functions:

• Digit and tone handling functions allow programmers to detect and

generate digits or tones along the phone line. This capability is needed to

allow some systems to perform advanced line operations such as

forwarding, call holds, and so on.

• Advanced line-handling functions provide call acceptance, rejection,

redirection, and other operations. These are most useful in an environment

where the phone line is connected to a central switch instead of directly to

the external telephone service provider.

• Advanced call features functions provide Call Hold, Transfer, Park,

Forward, and Pickup capabilities. These functions only work if the

telephone line supports the advanced call features.

77

• Miscellaneous advanced features functions provide added features

specific to TAPI service requests, such as monitoring lines and setting call

parameters.

6.3.2 Supplemental telephony API for phone devices

The Supplemental Telephony API also provides function calls for the handling of

phone devices. To TAPI, any device that can place or accept calls can be a phone device.

The phone device API set allows programmers to invent their own phone devices in code.

In effect, you can create a virtual handset using the TAPI phone device. This allows

properly equipped workstations to act as single or multiple-line phones in an office

environment. If our PC has appropriate audio input and output hardware (speakers, sound

card, microphone, and so on) and is connected to the telephone service, we can create a

"handset" using the phone device API set.

The Supplemental Telephony API set for phone devices can be divided into the

following function groups:-

• Basic phone-handling functions provide basic initialization and

shutdown, opening and closing a phone device, and ringing the open

device.

• Phone settings and status functions allow programmers to read and write

various settings of the phone device such as volume, gain, hookswitch

behavior, and so on.

• Physical display, data, button, and lamp functions can be used to read

and write display information to desktop units. Since TAPI can be used to

support more than just PC workstations, these functions allow a central

TAPI program to monitor and update LCD displays, to flash lamps, to

change buttons labels, and to store and retrieve data from desktop

terminals.

78

6.4 Extended telephony services

The last level of Telephony services is Extended Telephony. Extended Telephony

service allows hardware vendors to define their own device-specific functions and

services and still operate under the TAPI service model.

7. TAPI hardware considerations

Now we will see the differences between the three primary types of telephony

hardware for PCs:-

• Basic data modems

• Voice-data modems

• Telephony cards

These three types of interface cards provide a wide range of telephony service for

desktop workstations. We will see the advantages and limits of each of the interface card

types and how we can use them in our telephony applications.

7.1 Basic data modems

These modems can support assisted telephony services (outbound dialing) and

usually are able to support only limited inbound call handling.

7.2 Voice-data modems

These modems are a new breed of low-cost modems that provide additional

features that come close to that of the higher-priced telephony cards. These modems

usually are capable of supporting the Basic Telephony services and many of the

Supplemental services. The key to success with voice-data modems is getting a good

service provider interface for your card.

7.3 Telephony cards

These cards offer the greatest level of service compatibility. Telephony cards

usually support all of the Basic Telephony and all of the Supplemental Telephony

services, including phone device control. Most telephony cards also offer multiple lines

79

on a single card. This makes them ideal for supporting commercial-grade telephony

applications.

80

Chapter 6

SPEECH APPLICATION PROGRAMMING INTERFACE

81

1. Introduction

Microsoft's Speech API or SAPI is an interface specification that enables

developers to create applications for a variety of Speech Recognition (SR) and Text-to-

Speech (TTS) engines from different vendors. It removes the need for developers to

rewrite their applications, if and when they decide to change the underlying engines.

Hence, SAPI is a popular choice over proprietary APIs. To give an analogy, it is what

ODBC is to databases.

SAPI is a COM-based API. Voice applications consist of broadly two parts -

Speech Recognition, and Text-to-Speech Synthesis. SAPI supports this functionality via

its ISpRecognizer and ISpVoice interfaces. Speech Recognition occurs in two modes -

Dictation, and Command & Control. Dictation assumes a set of all the words in a

language. For example, Dictation mode in English would require the entire English

dictionary. This mode requires a large amount of processing. Also, the voice patterns for

a different user speaking the same set of words may differ. This necessitates the need of

training the Speech engine to each user's voice patterns. In Command & Control mode

the user's voice is recognized against an application-defined grammar, called CFG

(Context Free Grammar). This grammar set contains a set of words which are expected to

be spoken by the user, thus reducing the processing requirements for the Speech Engine.

SAPI defines an XML format in which the application grammar can be defined. It can

then be used via SAPI interfaces. Any application developer can design these CFGs and,

if the subset of words expected from the user is small, forego the use of custom

dictionaries. CFGs are also important tools for designing interactive Speech applications.

They enable designing of intuitive prompts and recognition grammars.

2. The model/architecture

SAPI is a specification for both Engine and Application developers. Speech

engine developers can make their engines SAPI compliant by implementing the Engine

level interfaces. Application developers use the Application level interfaces provided by

SAPI to access the features of the underlying engine. This means that the engine being

used by an application can be changed without breaking application code. SAPI exposes

82

a wide set of interface to the application developers that covers most of the features

provided by today's Speech engines. Additionally, it also allows engines to expose engine

specific functionality via its interfaces. As mentioned, SAPI exposes interfaces for SR

and TTS. We'll look at each of them.

Figure 1: SAPI architecture

2.1 Automatic speech recognition

Each application uses a Recognizer object. This encapsulates the Recognition

engine. Each Recognizer object can have multiple Recognition contexts on it. Speech

recognition is performed by the engine via one or more recognition contexts.

Applications can use multiple contexts for recognition pertaining to different parts of the

application, or multiple applications, as we shall see. Let's say that one window requires

83

commands to invoke menu options, and another uses dictation for entering notes. Each of

these windows can use a Recognition context that can be enabled as the specific window

gets user focus.

 Multiple grammar objects can be loaded on each Recognition context.

Different parts of a window might need different grammars. For example, for a voice

enabled Microsoft Windows Explorer, the grammar for folder browser would be

different, enabling user to collapse or expand folders, or go to a specific drive. On the

other hand, the file viewer may require commands like, "Open File…" or "Show

Properties…". The application can query each recognition received on the context for the

Grammar. This helps the application to take appropriate actions based on the recognition.

 Further, each grammar object can allow loading of a CFG and a dictation topic

simultaneously, or individually. For command-based applications, a CFG can be loaded

from a file. This CFG conforms to the SAPI Grammar syntax. For dictation, a dictation

topic can be loaded. This is essentially a domain specific dictionary containing

words specific to let's say, medicine ("Anesthesia, Cortisone, Paracetamol…."), or

scientific ("Quantization, Quasar…"). These dictionaries are provided by engine vendors.

Vendors also provide a default dictionary for a language. This is useful in taking notes,

or Dictaphone type of applications. The combination of both is useful, especially in a

word processing application where both commands and dictation are needed. In such a

case, the user's speech will first be recognized against the CFG, and if recognition fails,

dictation will kick in.

The Recognizer is available in two forms:-

• Shared

• InProc

2.1.1 Shared

Recognizer is useful in desktop applications where multiple applications want to

use a common system wide instance of a Recognizer, residing in a separate process.

Applications create their Reco contexts on the common recognizer. But the limitation

with this is that the speech input to the recognizer can be a through a common device,

84

such as the system microphone. In fact, when the recognizer is first initialized as shared,

SAPI sets up the microphone as the default input device.

2.1.2 InProc recognizer

Each InProc instance is created for its calling application. The input stream needs

to be set manually in this case. This can be set as wave file, microphone, or raw wave

data. InProc, recognizers are used with telephony or server applications, where each

application would need complete control over the recognizer, for activation, deactivation,

setting input streams, etc. SAPI supports multiple wave formats. They cover the most

common PCM, TrueSpeech, A-Law, µ-Law, ADPCM, and GSM formats.

2.2 Text-to-Speech

 SAPI exposes TTS functionality using the following model: SAPI exposes a

single interface for its TTS functionality, ISpVoice. The engine vendor supplies its TTS

engine with a set of one or more voices. These voices can be characterized using a set of

attributes such a Male/Female, Adult/Child, and language supported by the voice. When

created, the ISpVoice object is ready to use with the default voice specified under the

Control Panel's Speech settings dialog. Once created, however, the voices can be

changed. SAPI provides methods to query for available voices on the engine.

Voices can be set depending on the requirements of the application. Some may require an

adult male voice. Others may need a female child voice. Each voice has a characteristic

vocalization, which may or may not provide the best user experience in certain situations.

 SAPI provides application control over many parameters that can alter the

vocalization of each voice. Some of these can be controlled using the ISpVoice methods.

These include, pitch, volume and rate adjustment. Others can be controlled using XML

TTS markup tags. SAPI provides control over voice, silence, emphasis and the

grammatical emphasis of words in addition to pitch, volume and rate. These tags are

embedded in the text that needs to be synthesized.

85

2.2.1 Possible applications for Text-to-Speech

TTS has the following practical uses:-

• Reading dynamic text. TTS is useful for phrases that vary too much to record

and store using all possible alternatives.

• Proofreading. Audible proofreading of text can help users catch errors missed

by visual proofreading.

• Conserving storage space. TTS is useful for phrases that would take up too

much storage space if they were prerecorded in a digital-audio format.

• Event notification and audible feedback. TTS works well for informational

messages. For example, a cashier is entering a sale into a cash register and

enters an obviously unlikely quantity. A TTS-enabled application could

inform the cashier of the mistake and proceed or cancel it depending on the

cashier's reaction. This type of notification should only be used in conjunction

with a visible message in case the user turns the sound off or is out of hearing

range.

• Telephony. One of the major up-and-coming uses for TTS is in the area of

telephony, the use of computers and telephones. Imagine an answering

machine that could tailor its outgoing answer depending on the caller ID.

3. SAPI's strengths

Following are SAPI's strengths as discussed in various sections above:-

• Standard Specification Adoption enables compliance with several speech

engines, without additional development effort.

• COM based API Supports application development and scripting. No

learning curve in terms of implementation.

• Oriented towards feature Rich desktop applications.

86

4. SAPI's Weaknesses

 Following are SAPI's weaknesses:-

• Limited to Microsoft Platform.

• No direct server-side implementation Default implementation limited to

a single user deployment scenario. The interfaces are not designed for

large portal development with multiple access points.

• Engine specific profiles User Profiles can't be ported across speech

engines, as SAPI does not define standards for profile storage. Thus,

Training required for each user on each engine.

87

Chapter 7

WIRELESS ACCESS PROTOCOL

88

1. Introduction
The Wireless Application Protocol (WAP) is the de-facto world standard for the

presentation and delivery of wireless information and telephony services on mobile

phones and other wireless terminals. WAP allows carriers to strengthen their service

offerings by providing subscribers with the information they want and need while on the

move. Enabling information access from handheld devices requires a deep understanding

of both technical and market issues that are unique to the wireless environment.

The WAP specification was developed by the industry’s best minds to address

these issues. Wireless devices represent the ultimate constrained computing device with

limited CPU, memory, and battery life, and a simple user interface. Wireless networks

are constrained by low bandwidth, high latency, and unpredictable availability and

stability. However, most important of all, wireless subscribers have a different set of

essential desires and needs than desktop or even laptop Internet users. WAP-enabled

devices are companion products that will deliver timely information and accept

transactions and inquiries when the user is moving around. WAP services provide

pinpoint information access and delivery when the full screen environment is either not

available or not necessary. The WAP specification addresses these issues by using the

best of existing standards, and developing new extensions where needed. It enables

industry participants to develop solutions that are air interface independent, device

independent and fully interoperable.

WAP is published by the WAP Forum, founded in 1997 by Ericsson, Motorola,

Nokia, and Unwired Planet. Forum members now represent over 90% of the global

handset market, as well as leading infrastructure providers, software developers and other

organizations.

2. Why WAP is necessary?

2.1 Ensure interoperability

Service providers must feel secure that their investments will yield benefits in the

future. They will not be able to do so until equipment and software offered by different

suppliers can be made to work together. The WAP specification has been designed to

encourage easy, open interoperability between its key components. Any solution

89

component built to be compliant with the WAP specification can interoperate with any

other WAP-compliant component.

Bearer and device independence both help foster interoperability. But

interoperability goes beyond these two principles to require that each WAP compatible

component will communicate with all other components in the solution network by using

the standard methods and protocols defined in the specification. Interoperability provides

clear benefits for handset manufacturers and infrastructure providers. Handset

manufacturers are assured that if their device complies with the WAP specification it will

be able to interface with any WAP-compliant server, regardless of the manufacturer.

Likewise, the makers of a WAP-compliant server are assured that any WAP-compliant

handset will interface correctly with their servers.

2.2 Encourage and foster market development

The WAP specification is designed to bring Internet access to the wireless mass

market. By building open specifications, and encouraging communication and technical

exchanges among the industry players, the WAP Forum has already begun to open the

wireless data market in new ways. Just over a year ago, the idea of a single wireless data

standard was unheard of, yet today the WAP specification is available to the public, and

dozens of companies are promoting this vision of the future. The revolution is under way

to bring information access to any handset, at a reasonable price and in an easy to use

form factor. Providing Internet and Web-based services on a wireless data network

presents many challenges to wireless service providers, application developers and

handset manufacturers. While the obvious limitations are rooted in the nature of wireless

devices and data networks, there are also more fundamental differences that are important

to understand.

2.2.1 The market is different

Bringing computing power to a wireless handset opens an extensive new market

for information access. This market is very different from the traditional desktop or even

the laptop market because the subscriber has a different set of needs and expectations.

Some of these differences include:-

90

• Ease of use. Despite the fact that using a desktop computer has

become progressively easier over the last five years, a wireless

computing device must be dramatically easier to use than even the

simplest desktop computer. These devices will be used by people who

potentially have no desktop computing experience. Furthermore, they

will often be used in a dynamic environment where the user is engaged

in multiple activities. Subscribers won’t be focused on their handset

the way they are when they are sitting in front of a desktop computer.

Therefore, the devices must be extremely simple and easy to use.

Applications built for these devices must therefore present the best

possible user interface for quick and simple usage. There can be no

installation scripts, complicated menu structure, application errors,

general protection faults or complicated key sequences such as ctrl-alt-

del, or alt-shift-F5.

• Market size. The growth and size of the wireless subscriber market has

been phenomenal. According to Global Mobile magazine, there are

more than 200 million wireless subscribers in the world today.

According to Nokia, there will be more than one billion wireless

subscribers by the year 2005. The wireless market is enormous: it can

afford and will demand optimized solutions.

• Price sensitivity. Even with today’s sub-$1000 computers, a price

difference of $50 between two models is not considered significant.

However, a difference of $50 between two handsets is very significant,

especially after years of subsidized handset pricing by the service

provider. Market studies have shown that a mass-market handset must

be priced under $149 to be competitive. A solution must add

significant value at a low cost to be effective in this market.

• Usage patterns. Subscribers expect wireless data access to perform

like the rest of their handset: The service should be instantly available,

easy to use and designed to be used for a few minutes at a time.

Hourglass icons telling subscribers to wait will not be acceptable.

91

• Essential tasks. As soon as professionals step out of the office,

information needs and desires change. Wireless Internet subscribers do

not want to use their handset to "surf the Internet." They have small,

specific tasks that need to be accomplished quickly. Subscribers want

to scan email rather than read it all, or see just the top stock quotes of

interest. Receiving timely traffic alerts on the handset is essential,

whereas the same information may not be as valuable at the desktop.

2.2.2 The network is different

Wireless data networks present a more constrained communication environment

compared to wired networks. Because of fundamental limitations of power, available

spectrum and mobility, wireless data networks tend to have:-

• Less bandwidth

• More latency

• Less connection stability

• Less predictable availability

Furthermore, as bandwidth increases, the handset’s power consumption also

increases which further taxes the already limited battery life of a mobile device.

Therefore, even as wireless networks capitalize on higher bandwidth, the power of a

handset is always limited by battery capacity and size, thus challenging the amount of

data throughput. Deployment of the WAP standard accommodates more users per MHz

since it uses the available bandwidth at an extremely efficient level. The result of placing

more users on a given amount of spectrum can yield lower costs for both the network

provider and the customer. A wireless data solution must be able to overcome these

network limitations and still deliver a satisfactory user experience.

2.2.3 The device is different
Similarly, mass-market, handheld wireless devices present a more constrained

computing environment compared to desktop computers. Because of fundamental

limitations of battery life and form factor, mass-market handheld devices tend to have:

• Less powerful CPUs

• Less memory (ROM and RAM)

92

• Restricted power consumption

• Smaller displays

• Different input devices (e.g., a phone keypad, voice input, etc.)

Because of these limitations, the user interface of a wireless handset is

fundamentally different than that of a desktop computer. The limited screen size and lack

of a mouse requires a different user interface metaphor than the traditional desktop GUI.

These conditions are not likely to change dramatically in the near future. The most

popular wireless handsets have been designed to be lightweight and fit comfortably in the

palm of a hand. Furthermore, consumers desire handsets with longer battery life, which

always limits available bandwidth, and the power consumption of the CPU, memory and

display. Because there will always be a performance gap between the very best desktop

computers and the very best handheld devices, the method used to deliver wireless data to

these devices will have to effectively address this gap. As this gap changes over time,

standards will have to continually evolve to keep pace with available functionality and

market needs.

3. WAP specification

The WAP specification is a major achievement because it defines for the first

time an open, standard architecture and set of protocols intended to implement wireless

Internet access. It also provides solutions for problems not solved by other

standardization bodies and is a catalyst for wireless development and standardization.

The key elements of the WAP specification include:-

• WAP programming model. As seen in figure 1 which is based heavily on

the existing WWW Programming Model. This provides several benefits to

the application developer community, including a familiar programming

model, a proven architecture and the ability to leverage existing tools (e.g.,

Web servers, XML tools, etc.). Optimizations and extensions have been

made in order to match the characteristics of the wireless environment.

Wherever possible, existing standards have been adopted or have been

used as the starting point for WAP technology.

93

Figure 1: The WAP programming model

• Markup language. The Wireless Markup Language (WML) and WML

Script do not assume that a keyboard or a mouse are available for user

input, and are designed for small screen displays. Unlike the flat structure

of HTML documents, WML documents are divided into a set of well-

defined units of user interactions. One unit of interaction is called a card,

and services are created by letting the user navigate back and forth

between cards from one or several WML documents. WML provides a

smaller, telephony aware, set of markup tags that makes it more

appropriate than HTML to implement within handheld devices. From the

WAP Gateway, all WML content is accessed over the Internet using

standard HTTP requests, so traditional Web servers, tools and techniques

are used to server this new market.

• A specification for a microbrowser. In the wireless terminal that controls

the user interface and is analogous to a standard Web browser. This

CLIENT GATEWAY ORIGIN SERVER
W

A
E

 U
se

r
A

ge
nt

Encoded Requests

Encoded Response E
nc

od
er

s a
nd

 D
ec

od
er

s Requests

Response
(t t)

CGI
Scripts

etc

Content

94

specification defines how WML and WML Script should be interpreted in

the handset and presented to the user. The microbrowser specification has

been designed for wireless handsets so that the resulting code will be

compact and efficient, yet provide a flexible and powerful user interface.

• A framework for Wireless Telephony Applications (WTA). Allows access

to telephony functionality such as call control, phone book access and

messaging from within WML Script applets. This allows operators to

develop secure telephony applications integrated into WML/WML Script

services. For example, services such as Call Forwarding may provide a

user interface that prompts the user to make a choice between accepting a

call, forwarding it to another person or forwarding it to voicemail.

4. WAP solution benefits

The WAP specification was written to address the challenges of traditional

wireless data access within the context of the design objectives of the WAP Forum. This

section outlines how the WAP specification meets these goals.

4.1 Delivers an appropriate user experience model

The WAP specification defines a powerful and functional user interface model

that is appropriate for handheld devices. Users navigate through cards with up and down

scroll keys instead of a mouse. Soft keys allow the user to perform specific operations

appropriate to the application context, or select menu options. A traditional 12-key phone

keypad is used to enter alphanumeric characters, including a full set of standard symbols.

Navigation functions such as Back, Home, and Bookmark are also provided, in keeping

with the standard browser model. By using the existing Internet model as a starting point,

this user interface provides familiar functionality for those accustomed with the Web. It

also provides a user interface that is easy to learn and highly discoverable for the first

time user. The microbrowser allows devices with larger screens and more features to

automatically display more content, just as a traditional browser does on a PC when the

browser window is expanded on screen.

95

4.2 Leverages proxy technology
The WAP specification uses standard Web proxy technology to connect the

wireless domain with the Web. By using the computing resources in the WAP Gateway,

the WAP architecture permits the handset to be simple and inexpensive. For example, a

WAP Gateway will typically take over all DNS services to resolve domain names used in

URLs, thus offloading this computing task from the handset. The WAP Gateway can also

be used to provision services to subscribers and provide the network operator with a

control point to manage fraud and service utilization. AWAP Gateway typically includes

the following functionality:-

• Protocol gateway. The protocol gateway translates requests from the

WAP protocol stack to the WWW protocol stack (HTTP and TCP/IP).

• Content encoders and decoders. The content encoders translate Web

content into compact encoded formats to reduce the size and number

of packets traveling over the wireless data network. This infrastructure

ensures that mobile terminal users can browse a variety of WAP

content and applications regardless of the wireless network they use.

Application authors are able to build content services and applications

that are network and terminal independent, allowing their applications

to reach the largest possible audience. Because of the WAP proxy

design, content and applications are hosted on standard WWW servers

and can be developed using proven Web technologies such as CGI

scripting.

The WAP Gateway decreases the response time to the handheld device by

aggregating data from different servers on the Web, and caching frequently used

information. The WAP Gateway can also interface with subscriber databases and use

information from the wireless network, such as location information, to dynamically

customize WML pages for a certain group of users.

4.3 Addresses the constraints of a wireless network

The protocol stack defined in WAP optimizes standard Web protocols, such as

HTTP, for use under the low bandwidth, high latency conditions often found in wireless

networks. A number of enhancements to the session, transaction, security and transport

96

layers provide HTTP functionality better suited to the wireless network environment.

Here are just a few examples of these improvements:-

• The plain text headers of HTTP are translated into binary code that

significantly reduces the amount of data that must be transmitted

over the air interface.

• A lightweight session reestablishment protocol has been defined that

allows sessions to be suspended and resumed without the overhead of

initial establishment. This allows a session to be suspended while idle

to free up network resources or save battery power.

• WAP provides a Wireless Transaction Protocol (WTP) that provides

reliable transport for the WAP datagram service. WTP provides

similar reliability as traditional TCP does, but without behaviors that

make TCP unsuitable in a wireless network. For example, TCP

transmits a large amount of information for each request-response

transaction, including information needed to handle out of order packet

delivery. Since there is only one possible route between the WAP

proxy and the handset, there is no need to handle this situation. WTP

eliminates this unnecessary information and reduces the amount of

information needed for each request-response transaction. This is just

one example of the optimizations WTP provides.

• WAP’s WTP solution also means that a TCP stack is not required in

the phone, which allows for significant savings in processing and

memory cost in the handset.

4.4 Provides a secure wireless connection
Many applications on the Web today require a secure connection between the

client and the application server. The WAP specification ensures that a secure protocol is

available for these transactions on a wireless handset. The Wireless Transport Layer

Security (WTLS) protocol is based upon the industry-standard Transport Layer Security

(TLS) protocol, formerly known as Secure Sockets Layer (SSL). WTLS is intended for

use with the WAP transport protocols and has been optimized for use over narrow-band

97

communication channels. WTLS ensures data integrity, privacy, authentication and

denial-of-service protection. For Web applications that employ standard Internet security

techniques with TLS, the WAP Gateway automatically and transparently manages

wireless security with minimal overhead.

4.5 Optimized for handheld wireless devices
The WAP specification defines a microbrowser that is the ultimate thin client,

able to fit in a limited amount of memory in the handheld device. The use of proxy

technology and compression in the network interface reduces the processing load at the

handheld device so that an inexpensive CPU can be used in the handset. This further

helps reduce power consumption and extends battery life, meeting the needs of both

handset manufacturers and wireless subscribers.

4.6 Implements new wireless functionality
The WAP specification also defines new functionality that has not been defined

by any other standard, such as a voice/data integration API and the groundwork for

wireless push functionality.

The Wireless Telephony Application (WTA) allows application developers to

initiate phone calls from the browser and respond to network events as they occur. The

WTAAPI accomplishes this by providing an interface to the local and network telephony

infrastructure. The local interface allows WML and WML Script to access a specific set

of telephony functions, such as a function call to dial a phone number from the mobile

handset. The network interface allows an application to monitor and initiate mobile

network events, so that the application can take action or update information based on

these events. This functionality can be used to keep an updated list of the phone numbers

dialed into an active conference call. These network and local APIs are powerful features

that no other standard provides.

Standard HTTP has no support for "push" functionality. The WAP specification

defines a push mechanism that will allow any Web server to send information to the

client. This is an extremely important feature because it allows applications to alert the

subscriber when time-sensitive information changes. There are a number of applications

98

that make use of this functionality, such as traffic alerts and stock quote triggers, or email

and pager notifications.

4.7 Enables application development using existing tools
Web developers will find it easy to develop WAP applications since the WAP

Programming model closely follows the existing WWW development model. WML is a

tag based document language specified as an XML document type. As such, existing

XML authoring tools, as well as many HTML development environments, can be used to

develop WML applications. Since the WAP specification uses standard HTTP protocol to

communicate between the WAP Gateway and Web servers, Web developers can deploy

their applications on any off-the-shelf Web server. WML developers can use standard

Web tools and mechanisms such as Cold Fusion, CGI, Perl, ASP and others to generate

dynamic WML applications.

Developers can either use separate URLs for their HTML and WML entry points,

or use a single URL to dynamically serve either HTML or WML content according to the

requestor’s browser type. Although it is possible to translate HTML into WML using an

automated system, in practice the best applications use WML to tailor the interface to the

specific needs of the wireless user. This allows for the best possible use of the handset

features, such as soft keys, and provides the best user experience.

The most valuable parts of any Web application are typically the unique content it

provides and the back-end database interaction, not the particular HTML that was written

to interact with the user. Therefore developing a corresponding WML front-end leverages

previous engineering effort, while providing significant user interface benefits.

4.8 Adapts new standards for the industry

Wherever possible, the WAP specification optimizes and extends existing Internet

standards. The WAP Forum has taken technology elements from TCP/IP, HTTP and

XML, optimized them for the wireless environment, and is now submitting these

optimizations to the W3C standards process as input for the next generations of

(XHTML) and HTTP (HTTP-NG). The WAP Forum will continue to evolve the WAP

specification to keep pace with new technologies. In the best tradition of Internet protocol

standards, the WAP specification divides network functionality into several layers, so

99

that each layer can develop independently of the others. Low level layers can be replaced

to support new bearers without requiring changes to the high level APIs or the

intervening stack layers. This protects the initial investment in the protocol stack, and

makes the standard flexible as new and faster wireless data protocols become available.

5. How developers benefit from using WAP-based solutions?

Application developers can reach the largest possible audience when they write

their applications in WML because they are writing to an industry standard. Additional

benefits for developers include:-

• Access to an entirely new, immense market of information-hungry

wireless subscribers, while complementing their existing Internet

services.

• Because WML is an XML-based language, it is an easy markup

language for existing Web developers to learn.

• WML’s basis in XML also positions it well as a future target markup

language for automatic content transformation. The W3C is currently

defining the eXstensible Style Language (XSL), which provides a

powerful mechanism for the dynamic transformation of well-formed

XML. Using an XSL stylesheet, content written in XML-defined

markup languages can be automatically translated into content

suitable for either HTML or WML, as shown in Figure 2. Likewise,

content written in well-formed XML can also be translated to other

XML-based markup languages, using a different XSL style sheet.

100

 WML Browser HTML Browser

Figure 2: The future of content development

• While the technology for universal content is still being developed,

WML has been designed to be an integral part of this technology.

Application developers can feel secure using WML today, knowing

that there will be a migration path to the future.

• Since WML is part of an open standard, and was developed by an

independent organization, all developers can be assured that they are

on equal footing with other developers. No single developer has

unique access to APIs or special functionality.

XSL Processor

WML Style Sheet HTML Style Sheet

Content
(XML)

101

• By writing in WML, a developer’s work becomes available to any

network and device that is WAP-compliant. WML and the WAP

specification truly deliver on the "write once, use anywhere" promise.

• WML provides the application developer with the power to take full

advantage of the user interface. Applications can map soft keys for

easy user input and use special features to maximize the effect of

displaying text on a limited screen.

• WML allows application developers to integrate their applications

with device and network telephony functions. applications that use

these features can truly leverage the advantages of operating in an

integrated voice and data device.

• WML allows the use of icons and bitmapped graphics, for devices that

support them. One application will work equally well on a phone with

or without graphics by offering alternate text to the phone that is not

capable of displaying images.

• An application written in WML will look good on any device that is

WAP-compliant. If one device is able to display more lines of text

than another, the microbrowser will do so automatically, making the

best use of the device’s and application’s capabilities.

• An application can be customized to take advantage of a particular

device’s capabilities, by using standard HTTP header mechanisms to

learn about the device's capabilities.

6. How subscribers benefit from using WAP-based solutions?
Ultimately, subscribers are the most important beneficiaries of the WAP

standards. The WAP specification was developed and written by experienced

telecommunications experts who not only understand the technologies involved, but also

the real needs of the subscriber. Consequently, the WAP specification delivers significant

value to the subscriber.

The WAP specification pulls together existing technologies and defines new

standards to provide subscribers with:-

102

• Fast, efficient access to essential information from a wireless handset.

• Peace of mind that all transactions are completely secure.

• An easy to use interface metaphor that meets the needs of the user

within the restrictions of a constrained network and device.

The widespread adoption of the WAP specification is yielding these benefits:-

• A common user interface metaphor that is being used by all industry

participants. Just as the desktop metaphor is the de-facto standard for

applications on PCs, the WAP card metaphor provides a common

interface to which all applications can conform.

• Ubiquity of service. Wherever subscribers go, they will have access to

their own personal content using a WAP-enabled browser.

• Wide selection of devices. In addition to handsets with different

features and form factors, subscribers will be able to use PDAs and

pagers that are also WAP-enabled.

• A large selection of applications. Over the last few years, the Internet

model has proven to be the least expensive and most effective way to

deliver new applications and services to computing users. Now that

this model has been extended to wireless devices, subscribers will gain

access to a wealth of applications.

103

Chapter 8

DESIGN AND IMPLEMENTATION

104

1. Use case diagram

105

2. Use case description

No

Use case 1

Name Validate admin

Actor Administrator
Preconditions Login screen is available to the

administrator
Postconditions Main screen is initialized.

Description Enter user name

Enter password.
Press login
Open connection
Verify user name and password..
Initialize main screen

No Use case 2
Name Contact mail server
Actor Administrator
Preconditions All conditions required for internet

connection be met
Postconditions Contact with the POP3 compliant mail

server is established.

Description Open port
Enter user name and password.
Verify user name and password.
Establish connection.

No Use case 3

106

Name Retrieve and store mail
Actor Application
Preconditions Contact with the POP3 compliant mail

server is established.

Postconditions Mails of all the subscribers are
retrieved and stored in the database.

Description: Enter user ID.
Verify user ID.
Download mail.
Establish connection with the database.
Store mail.

No Use case 4
Name Dispatch mail
Actor Application
Postconditions Mails of all the subscribers are

delivered either in voice or textual form
and the database is updated
accordingly.

Description Contact customer.
Prompt for ID.
Send ID.
Verify ID.
Prompt for choice.
Enter choice.
Retrieve mail from the database.
Convert TTS.
Send mail.
Update delivery record.

Variations If the user is a mobile phone user, he
can view his mail in textual form. In
that case tts conversion is bypassed

107

No Use case 5
Name Register customer
Actor Customer

Postconditions Customer is added to the system and

the database is updated accordingly.

Description Contact administrator.
Send data.
Process data.
Update customer record.

108

3. Sequence diagrams

109

110

111

112

113

4. Collaboration diagrams

114

115

116

117

118

5. Architecture design

Remote Email Server
Application

1 2 3
4 5 6
7 8 9
* 8 #

POP3
Local

Database

Text to Speech
conversion

TAPI

Fixed Phone User Mobile Phone User

119

6. Flow chart

No

Yes

Validate
Cust

Store Email

Download Email

Contact cust

Start

Validate
Admin?

Contact Server

Invalid Admin
No

A

Yes

Invalid Customer

120

A

Verify
Customer

?

Deliver Mail

End

No

Yes

121

7. Testing

Software testing is the process of testing the functionality and correctness of software

by running it. Software testing is usually performed for one of the following two reasons:

• Defect detection

• Reliability estimation.

The problem of applying software testing to defect detection is that the software

can only suggest the presence of flaws, not their absence (unless the testing is

exhaustive). The problem of applying software testing to reliability estimation is that the

input distribution used for selecting test cases may be flawed. In both of these cases, the

mechanism used to determine whether program output is correct (known as an oracle) is

often impossible to develop. Obviously the benefit of the entire software testing process

is highly dependent on many different pieces. If any of these parts is faulty, the entire

process is compromised.

8. Software testing methods (procedural)

There are many ways to conduct software testing, but the most common methods

are:-

8.1 Test case design

Test cases should be designed in such a way as to uncover quickly and easily as

many errors as possible. They should "exercise" the program by using and producing

inputs and outputs that are both correct and incorrect.

Variables should be tested using all possible values (for small ranges) or typical

and out-of-bound values (for larger ranges). They should also be tested using valid and

invalid types and conditions. Arithmetical and logical comparisons should be examined

as well, again using both correct and incorrect parameters.

The objective is to test all modules and then the whole system as completely as

possible using a reasonably wide range of conditions.

122

8.2 White-box testing

White box method relies on intimate knowledge of the code and a procedural design

to derive the test cases. It is most widely utilized in unit testing to determine all possible

paths within a module, to execute all loops and to test all logical expressions.

Using white-box testing, the software engineer can

• Guarantee that all independent paths within a module have been exercised

at least once.

• Examine all logical decisions on their true and false sides.

• Execute all loops and test their operation at their limits.

• Exercise internal data structures to assure their validity.

This form of testing concentrates on the procedural detail. However, there is no

automated tool or testing system for this testing method. Therefore even for relatively

small systems, exhaustive white-box testing is impossible because of all the possible path

permutations.

8.3Basis path testing

Basis path testing is a white-box technique. It allows the design and definition of

a basis set of execution paths. The test cases created from the basis set allow the program

to be executed in such a way as to examine each possible path through the program by

executing each statement at least once.

To be able to determine the different program paths, the engineer needs a

representation of the logical flow of control. The control structure can be illustrated by a

flow graph. A flow graph can be used to represent any procedural sign.

123

Figure1: Flow graph of an 'If-then-else' statement

Next a metric can be used to determine the number of independent paths. It is

called cyclomatic complexity and it provides the number of test cases that have to be

designed. This ensures coverage of all program statements.

8.4 Control structure testing

Because basis path testing alone is insufficient, other techniques should be utilized.

• Condition testing can be utilized to design test cases which examine the

logical conditions in a program. It focuses on all conditions in the program

and includes testing of both relational expressions and arithmetic expressions.

• This can be accomplished using branch testing and/or domain testing

methods. Branch testing executes both true and false branches of a condition.

124

• Domain testing utilizes values on the left-hand side of the relation by making

them greater than, equal to and less then the right-hand side value. This

method test both values and the relation operators in the expression.

• Data flow testing method is effective for error protection because it is based

on the relationship between statements in the program according to the

definition and uses of variables.

• Loop testing method concentrates on validity of the loop structures.

8.5 Black-box testing

Black box on the other hand focuses on the overall functionality of the software.

That is why it is the chosen method for designing test cases used in functional testing.

This method allows the functional testing to uncover faults like incorrect or missing

functions, errors in any of the interfaces, errors in data structures or databases and errors

related to performance and program initialization or termination.

9. Testing principles

 Following principles were kept in mind while testing our software:-

• Testing should be based on user requirements.

• Testing time and resources are limited. Avoid redundant tests.

• It is impossible to test everything.

• Use effective resources to test. This represents use of the most suitable

tools, procedures and individuals to conduct the tests.

• Test planning should be done early.

• Testing should begin at the module

10. Modular testing

The succeeding paragraphs highlight problems encountered during different stages of

software development:-

10.1 Login. This feature has been developed for the administrator of the system with

following in mind:-

125

• To provide inbuilt security to the system.

• To validate the administrator.

• To act as an entry point.

• To set a pattern to run and execute the system.

10.1.1 Functioning

This window prompts the administrator of the system to enter Name and

Password. Only an authorized administrator having name and password in the database is

allowed to run the system.

Initially it was thought that after entering name and password, if matched with the

database entries, the administrator would be allowed to run the system. The code is as

under:-

LsSql = "Select AdminName, AdminPassword from AdminLogin WHERE AdminName

='" & txtName. Text & "' and AdminPassword = '" & txtPassword. Text & "'"

DataConnection()

If oDr.Read Then

Dim main As New frmwelcome()

main.Show()

Me.Hide()

If end

10.1.2 Bugs encountered

• Entering incorrect Name or Password by the administrator.

• Administrator attempts to login without entering name or password.

• Calling of the new window.

• Providing functionality for both mouse click and enter button.

• Prompting messages by the application.

10.1.3 Rectification

• Message box was introduced to prompt messages to the administrator.

126

• Code was amended as under:-

If e.KeyCode = 13 Then

lsSql = "Select AdminName, AdminPassword from AdminLogin

WHERE AdminName ='" & txtName.Text & "' and AdminPassword

= '" & txtPassword.Text & "'"

 dataConnection()

 If oDr.Read Then

 Dim main As New frmwelcome()

 main.Show()

 Me.Hide()

 Else

 MsgBox("Incorrect name or password.Please try again",

MsgBoxStyle.Exclamation)
 End If

 End If

10.2 Main screen / Window

This window is the main screen for the administrator. It contains most of the

features offered by the application. Different windows and functions can be called while

working in this window.

10.2.1 Functioning

Different windows / functions can be called using a variety of functional

combinations as follows:-

• Using Dropdown Menu.

• Using Buttons with function icons.

• Using Right Click of the mouse.

Besides calling windows / functions the administrator can also perform a variety

of tasks as follows:-

• Can edit text using text editor.

127

• Can take out print.

• Can open other files / programs.

• Can save files.

10.2.2 Bugs encountered

• Simultaneous calling and hiding of windows.

• Providing multiple functional methods to perform the same task for the reason

of backup and ease of use.

10.2.3 Rectification

Code was amended as under:-

(Calling multiple windows using menu item)

 Private Sub MenuItem11_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MenuItem11.Click

 Dim add As AddAdmin = New AddAdmin()

 add.cbDelete.Visible = False

 add.cbAdd.Location = New System.Drawing.Point(40, 8)

 add.cbSave.Location = New System.Drawing.Point(112, 8)

 add.cbClose.Location = New System.Drawing.Point(184, 8)

 add.cbSave.Text = "Insert"

 add.Show()

 End Sub

 Private Sub MenuItem18_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MenuItem18.Click

 Dim retrieve As New frmMailRetrieval()

 retrieve.Show()

128

 End Sub

 Private Sub MenuItem12_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MenuItem12.Click

 Dim add As AddAdmin = New AddAdmin()

 add.cbDelete.Visible = False

 add.cbSave.Text = "update"

 add.cbAdd.Location = New System.Drawing.Point(40, 8)

 add.cbSave.Location = New System.Drawing.Point(112, 8)

 add.cbClose.Location = New System.Drawing.Point(184, 8)

 add.Show()

 End Sub

 Private Sub MenuItem13_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MenuItem13.Click

 Dim add As AddAdmin = New AddAdmin()

 add.cbSave.Visible = False

 add.cbAdd.Visible = False

 add.cbDelete.Location = New System.Drawing.Point(80, 8)

 add.cbClose.Location = New System.Drawing.Point(152, 8)

 add.Show()

 End Sub

(Calling multiple windows using context menu)

 Private Sub tbSystem_ButtonClick(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.ToolBarButtonClickEventArgs) Handles tbSystem.ButtonClick

 Select Case tbSystem.Buttons.IndexOf(e.Button)

 Case 0

129

 Dim tbcbAdmin As New AddAdmin()

 tbcbAdmin.Show()

 ' Insert code to open the file.

 Case 1

 Dim tbcbRetrieveMail As New frmMailRetrieval()

 tbcbRetrieveMail.Show()

 Case 3

 Dim tbcbTapi As New frmTapi()

 tbcbTapi.Show()

 Case 4

 Dim tbcbSapi As New frmBasictts()

 tbcbSapi.Show()

 Case 7

 Dim tbcbLogin As New frmLogin()

 tbcbLogin.Show()

 Case 6

 Dim tbcbCustomer As New frmCustomerProfile()

 tbcbCustomer.Show()

 End Select

 End Sub

10.3 Administrator record

This window is basically meant for the following purpose:-

• To view the record of the administrators.

• To save the new record.

• To update the record.

• To delete the record.

130

10.3.1 Functioning

This window allows the administrator to view, save, update or delete the

administrator record in the database. It also provides instant record viewing as soon as it

is inserted, updated, saved or deleted.

10.3.2 Bugs encountered

• Displaying the updated record as soon as it is entered.

• Leaving a field vacant.

• Prompting messages by the system.

• Position of curser after entering / updating or deleting a record.

• Enabling / disabling of appropriate fields.

• Entering a record with incorrect name or password.

• What to be done if incorrect password is entered in the Confirm Password

field?

10.3.3 Rectification

• Message box is used to prompt the system messages.

• Different checks are used to cater for the various contingencies.

• ADO.NET features are used to dynamically access the database.

• Some important code highlights are as under:

(To cater for blank Name or Password)

SQlConn = New System.Data.SqlClient.SqlConnection()

 connectionString()

 SQlConn.Open()

 If cbAdd.Enabled = True Then

 lssSql = "update AdminLogin set AdminName='" & txtName.Text & "' ,

AdminPassword='" & txtPassword.Text & "' where AdminId='" & txtID.Text & "'"

 oCmd.Connection = SQlConn

131

 oCmd.CommandText = lssSql

 If txtName.Text = "" Or txtPassword.Text = "" Then

 MsgBox("User Name or Password Can't be blank", MsgBoxStyle.Exclamation)

(To cater for confirm Password field)

 Else

 If txtPassword.Text = txtConfirmpassword.Text Then

 oDr = oCmd.ExecuteReader

 MsgBox("Record Updated", MsgBoxStyle.Exclamation)

 If txtName.Text = lstAdmin.SelectedItem Then

 txtID.Text = ""

 txtName.Text = ""

 txtPassword.Text = ""

 txtConfirmpassword.Text = ""

 txtName.Focus()

 Else

 lstAdmin.Items.Remove(lstAdmin.SelectedItem)

 lstAdmin.ClearSelected()

 lstAdmin.Items.Add(txtName.Text)

 txtID.Text = ""

 txtName.Text = ""

 txtPassword.Text = ""

 txtConfirmpassword.Text = ""

 txtName.Focus()

 End If

132

 Else

 MsgBox("Please enter the password again", MsgBoxStyle.Exclamation)

(To cater for empty field)

 If txtName.Text = "" Or txtPassword.Text = "" Then

 MsgBox("Please enter user name and password. These fields can't be empty ",

MsgBoxStyle.Critical)

(To cater for both mouse click and Enter Button)

 If e.KeyCode = 13 Then

 If cbAdd.Enabled = False Then

 lsSql = "Insert into AdminLogin(AdminName,AdminPassword) Values('" &

txtName.Text & "', '" & txtPassword.Text & "')"

 oCmd.Connection = SQlConn

 oCmd.CommandText = lsSql

 If txtPassword.Text = txtConfirmpassword.Text Then

 oDr = oCmd.ExecuteReader

 MsgBox("One record inserted", MsgBoxStyle.Exclamation)

 txtConfirmpassword.Text = ""

 txtPassword.Focus()

 End If

 lstAdmin.Enabled = True

 cbDelete.Enabled = True

133

 cbClose.Enabled = True

 End If

 End If

 SQlConn.Close()

10.4 Customer record / Customer profile

These features/windows are designed to provide customer record for the

consumption of the administrator so that he is able to perform basic functions related to

customer record/profile. These two separate windows are used in conjunction with each

other to make a meaningful executing combination.

10.4.1 Functioning

These features/windows are equipped with following facilities:-

• Insert new customer record.

• Update customer record.

• View customer record.

• Delete customer record.

• List View control functions.

• Double click function

10.4.2 Bugs encountered

• Insertion, updation, deletion in a single session.

• Calling a window within another window, both using different controls (List

View Control and Text Box Control).

• Implementation of List View Operations.

10.4.3 Rectification

The workable solution to all above mentioned bugging problems was

enthusiastically pursued. It involved using some new concepts of calling a window within

another window and executing ListView functions. Solution came in the form of using

the two above mentioned windows / features simultaneously.

134

(To initialize object “locustomerprofile” in customer Record Window)

 Public Sub New()

 MyBase.New()

 InitializeComponent()

 End Sub

 Public Sub New(ByVal loCustomerProfile)

 Me.loCustomerProfile = loCustomerProfile

 InitializeComponent()

 End Sub

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

(To initialize object “pocustomerprofile” in customer profile Window)

 Public Sub New()

 MyBase.New()

 InitializeComponent()

 End Sub

135

 Public Sub New(ByVal poCustomer)

 Me.poCustomer = poCustomer

 InitializeComponent()

 End Sub

(To ensure password field and confirm password field are the same)

If txtPassword.Text = txtConfirmPassword.Text Then

 dataConnection()

 MsgBox("one record inserted")

Else

 MsgBox("Please re-enter the password again")

(To ensure that one window is hidden when the other one is displayed)

Dim populateCustomer As New frmCustomerProfile(Me)

 populateCustomer.Show()

 loCustomerProfile.Hide()

(To cater for Enter Button to work)

If e.KeyCode = 13 Then

 If txtID.Text = "" Then

 If txtName.Text = "" Or txtPassword.Text = "" Or txtConfirmPassword.Text =

"" Or txtEmail.Text = "" Or txtTelephone.Text = "" Or txtAddress.Text = "" Then

 MsgBox("No Field can be Blank", MsgBoxStyle.Exclamation)

136

 Else

 lssSql = "Insert into CustomerLogin(CustomerName,

CustomerPassword, CustomerEmail, CustomerTelephonenumber,

CustomerAddress) Values('" & txtName.Text & "', '" & txtPassword.Text & "', '"

& txtEmail.Text & "', '" & txtTelephone.Text & "', '" & txtAddress.Text & "')"

(To display customer record in list view)

Do While oDr.Read

 lvwCustomer.Items.Add(oDr.Item("CustomerID"))

 With lvwCustomer.Items(lnIndex)

 .SubItems().Add(oDr.Item("CustomerName"))

 .SubItems().Add(oDr.Item("CustomerPassword"))

 .SubItems().Add(oDr.Item("CustomerEmail"))

 .SubItems().Add(oDr.Item("CustomerTelephonenumber"))

 .SubItems().Add(oDr.Item("CustomerAddress"))

 End With

 lnIndex = lnIndex + 1

Loop

(To call customer Record Window in customer profile Window)

Dim editCustomer As New frmCustomer(Me)

 txtID.Text =

lvwCustomer.Items(lvwCustomer.SelectedIndices.Item(0).ToString).Text

 gnCustomerID = Val(txtID.Text)

 editCustomer.Show()

 If response = MsgBoxResult.Yes Then

137

 ' populate()

 End If

10.5 Mail retrieval

 This feature/window is one of the most important aspects of this application. It

takes user email address and password, connects to the POP3 compliant server and then

downloads the mail.

10.5.1 Functioning

This window connects to the POP3 compliant server using socket connection. Once

connected it retrieves mail as specified in the address.

10.5.2 Bugs encountered

• Size of the received messages had to be specified (Lengthy messages

through voice mail were inappropriate).

• Direct method of connecting to POP3 server had to be found.

10.5.3 Rectification

• Use of sockets.

• Setting limit for the messages to be downloaded

• Appropriate changes in the code

10.6 Text to speech conversion

This is another very important feature of the application which converts text messages

to voice for onward transmission to fixed or mobile phone .

10.6.1 Functioning

This feature basically plays the role of a conversion engine of the application. It

utilizes the built in functionality of the windows operating system.

138

10.6.2 Bugs encountered

• Pauses in conversation at appropriate places.

• Speaking speed.

• Speaking of some unwanted characters during speech.

10.6.3 Rectification

(Removing unnecessary characters from the speech)

Dim myString As String = txtFrom.Text

 txtFrom.Text = Replace(myString, "<", " ")

 Dim myString1 As String = txtFrom.Text

 txtFrom.Text = Replace(myString1, ">", " ")

(Incorporating necessary pauses in the speech)

 TextToSpeech1.Speak("from")

 TextToSpeech1.Speak(txtFrom.Text)

 TextToSpeech1.Speak("To")

 TextToSpeech1.Speak(txtTo.Text)

 TextToSpeech1.Speak("Subject")

 TextToSpeech1.Speak(txtSubject.Text)

 TextToSpeech1.Speak("Contents")

 TextToSpeech1.Speak(txtContents.Text)

139

Chapter 9

REMOTE ACCESS

140

1. Introduction
 As has been discussed in the preceding chapters that the system is not fully

automated and because of this, manual interaction of the administrator with the system is

quite pronounced. This interaction from registering the customer for the first time to

establishing the contact with the ISP and the POP3 server and dispatching the mail to the

customer. The first one in the above list i.e registering the customer for the first time

obviously raises privacy concerns of the customer, as apart from other profile information

he will have to furnish information about his email address and password as well. To

address this genuine concern of the customer it was decided to provide him with remote

access to the system where from he can change his password through a registration form

which once submitted will update his record, bypassing the administrator. This forms the

basis of our decision to develop and launch a website as a complementary module to our

application.

2. Links available

The website offers following links:-

• Home. Displays the title of the system together with the other links

available.

• About site. Gives an account of the features available in the website.

• About application. Gives an overview of the application which includes:-

o Project team. Gives a brief account of the development team.

o Basic idea. Describes the motivation and background for undertaking

this very project.

o Operation. Describes the operational flow of the system.

o Technologies. Gives an overview of the technologies employed to

develop the system.

o Salient features. Outlines the basic facilities offered to the subscribers

of the system.

o Limitations. Highlights the boundaries and limitations of the system

which can be taken care of as part of future enhancements.

141

• Login. Prompts the customer to enter his ID and password. On successful

validation the customer is taken to a form which can be used to update any

profile information.

• Guest book. People visiting for the first time can record their comments

and suggestions as well as view the comments given by other visitors.

• Acknowledgements. Acknowledge the help and guidance rendered by

different people which played an instrumental role in successful

completion of the project.

142

CONCLUSION

As a whole, the project has been a success as it gave us a valuable chance to

acquire knowledge in the latest fields of .NET and voice telephony. The rich experience

gained during the course of this project will help us in our forthcoming endeavours. This

project will indeed be a milestone in our academic and professional careers.

 While analyzing designing and implementing this project, we tried to apply all we

had studied in different courses throughout this undergraduate degree program. This

exercise not only allowed us to implement the theoretical concepts of computer science,

but also provided us with an excellent opportunity to revise and refresh everything in

great detail. This has made us ready for the challenges of practical life and abreast of the

cutting edge technological breakthroughs.

143

ILLUSTRATIONS

144

1. Main GUI

2. Admin view

145

3. Customer profile

4. Customer record

146

5. Mail retrieval

147

6. TTS

7. Voice mail

148

8. SMS

149

9. Composing

150

10. Text editor

151

11. Print report

152

12. Home page

153

13. About site

154

14. About application

155

15. Technologies used

156

16. Login

157

17. Customer profile

158

18. Guest book

159

19. Comments recorded

160

20. Guests visited

161

Appendix ‘A’

POP3

a. Summary of QUIT command in the AUTHORIZATION state:

 QUIT

 Arguments: none

 Restrictions: none

 Possible Responses:
 +OK

 Examples:
 C: QUIT
 S: +OK dewey POP3 server signing off

b. Summary of commands in TRANSACTION state:

 STAT

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK nn mm

 Examples:
 C: STAT
 S: +OK 2 320

 LIST [msg]

 Arguments:
 a message-number (optional), which, if present, may NOT
 refer to a message marked as deleted

162

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK scan listing follows
 -ERR no such message

 Examples:
 C: LIST
 S: +OK 2 messages (320 octets)
 S: 1 120

 S: 2 200
 S: .
 ...
 C: LIST 2
 S: +OK 2 200
 ...
 C: LIST 3
 S: -ERR no such message, only 2 messages in maildrop

 RETR msg

 Arguments:
 a message-number (required) which may NOT refer to a
 message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK message follows
 -ERR no such message

 Examples:
 C: RETR 1
 S: +OK 120 octets
 S: <the POP3 server sends the entire message here>
 S: .

 DELE msg

 Arguments:

163

 a message-number (required) which may NOT refer to a
 message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK message deleted
 -ERR no such message

 Examples:
 C: DELE 1
 S: +OK message 1 deleted
 ...
 C: DELE 2
 S: -ERR message 2 already deleted

 NOOP

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK

 Examples:
 C: NOOP
 S: +OK

 RSET

 Arguments: none

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK

 Examples:
 C: RSET

164

 S: +OK maildrop has 2 messages (320 octets)

c. Summary of QUIT command in UPDATE state:

 QUIT

 Arguments: none

 Restrictions: none

 Possible Responses:
 +OK
 -ERR some deleted messages not removed

 Examples:
 C: QUIT
 S: +OK POP3 server signing off (maildrop empty)
 ...
 C: QUIT

 S: +OK POP3 server signing off (2 messages left)

d. Summary of optional commands:

 TOP msg n

 Arguments:
 a message-number (required) which may NOT refer to to a
 message marked as deleted, and a non-negative number
 of lines (required)

 Restrictions:
 may only be given in the TRANSACTION state

 Possible Responses:
 +OK top of message follows
 -ERR no such message

 Examples:
 C: TOP 1 10
 S: +OK

 S: <the POP3 server sends the headers of the
 message, a blank line, and the first 10 lines

165

 of the body of the message>
 S: .
 ...
 C: TOP 100 3
 S: -ERR no such message

 UIDL [msg]

 Arguments:
 a message-number (optional), which, if present, may NOT
 refer to a message marked as deleted

 Restrictions:
 may only be given in the TRANSACTION state.

 Possible Responses:
 +OK unique-id listing follows
 -ERR no such message

 Examples:
 C: UIDL
 S: +OK
 S: 1 whqtswO00WBw418f9t5JxYwZ
 S: 2 QhdPYR:00WBw1Ph7x7
 S: .
 ...
 C: UIDL 2
 S: +OK 2 QhdPYR:00WBw1Ph7x7
 ...
 C: UIDL 3
 S: -ERR no such message, only 2 messages in maildrop

 USER name

 Arguments:
 a string identifying a mailbox (required), which is of
 significance ONLY to the server

 Restrictions:
 may only be given in the AUTHORIZATION state after the POP3
 greeting or after an unsuccessful USER or PASS command

166

 Possible Responses:
 +OK name is a valid mailbox
 -ERR never heard of mailbox name

 Examples:
 C: USER frated
 S: -ERR sorry, no mailbox for frated here
 ...
 C: USER mrose
 S: +OK mrose is a real hoopy frood

 PASS string

 Arguments:
 a server/mailbox-specific password (required)

 Restrictions:
 may only be given in the AUTHORIZATION state immediately
 after a successful USER command

 Possible Responses:
 +OK maildrop locked and ready
 -ERR invalid password
 -ERR unable to lock maildrop

 Examples:
 C: USER mrose
 S: +OK mrose is a real hoopy frood
 C: PASS secret
 S: -ERR maildrop already locked
 ...
 C: USER mrose
 S: +OK mrose is a real hoopy frood
 C: PASS secret
 S: +OK mrose's maildrop has 2 messages (320 octets)

 APOP name digest

 Arguments:
 a string identifying a mailbox and a MD5 digest string
 (both required)

 Restrictions:

167

 may only be given in the AUTHORIZATION state after the
POP3 greeting or after an unsuccessful USER or PASS command

 Possible Responses:
 +OK maildrop locked and ready
 -ERR permission denied

 Examples:
 S: +OK POP3 server ready
 C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
 S: +OK maildrop has 1 message (369 octets)

 In this example, the shared secret is the string `tan-
 staaf'. Hence, the MD5 algorithm is applied to the string
 which produces a digest value of

 c4c9334bac560ecc979e58001b3e22fb

e. Algorithm for Retrieving Mail

 Client : +OK Server POP Ready!!
 Client : USER xxx
 Server : +OK
 Client : PASS yyy
 Server : +OK user successfully logged on
 Client : STAT
 Server : +OK n m
 Client : RETR 1
 Server : +OK
 ---{ data }-----
 Client : QUIT
 Server : +OK Server POP signing off

168

BIBLIOGRAPHY

1. [RFC821] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,

USC/Information Sciences Institute, August 1982.

2. [RFC822] Crocker, D., "Standard for the Format of ARPA-Internet Text

Messages", STD 11, RFC 822, University of Delaware, August 1982.

3. [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, MIT

Laboratory for Computer Science, April 1992.

4. [RFC1730] Crispin, M., "Internet Message Access Protocol – Version 4", RFC 1730,

University of Washington, December 1994.

5. [RFC1734] Myers, J., "POP3 AUTHentication command", RFC 1734, Carnegie

Mellon, December 1994.

6. Agarwal , Tushar. SAPI Technical documentation, Digital GlobalSoft Limited,

Hewlett-Packard Co., USA.

7. Agarwal , Tushar. MAPI Technical documentation, Digital GlobalSoft Limited,

Hewlett-Packard Co., USA.

8. Agarwal , Tushar. TAPI Technical documentation, Digital GlobalSoft Limited,

Hewlett-Packard Co., USA.

