dc.description.abstract |
Cyber-attackslaunchedbynation-states,organizations,andindividualswithinand
acrossbordersareontherise.Modern-dayadversarieschangesignaturesanduse
multiple malwaretolaunchattacks.SuchattacksaretermedasAdvancedPersistence
Threats(APTs).Although,alargeamountofcyberthreatdataregardingtheseAPTsis
available online,however,duetoitshighveracityandlargevolume,timelyanalysis
of APTsisachallengingtaskforsecurityanalysts.Moreover,itisbeingwitnessedthat
APTslaunchedagainstanorganizationsubsequentlysucceededwithhighprobability
against othersimilarorganizations.Therefore,ithasbecomeaneedofthetimethator-
ganizations accumulateandsharecyberthreatdatawithpeers.Furthermore,thisdata
should incorporateinformationregardingvariousphasesofcyberthreatmanagement
(CTM) namelycyberthreatprevention,detection,andtheresponse.Inthisregard,a
few effortshavebeenmadetowardsthestructuringandsharingofcyberthreatdata.
Noteworthy amongtheseistheStructuredThreatInformationExpression(STIX).Un-
fortunately,thecurrentstateofthestructureddataispoor.Structuredreportsarenot
appropriatelyformatted,useincorrectvocabulary,wronglylabelthreatdataorleave
out keycomponents,whichcurtailtheirusefulnessforCTM.Thesolutionpresented
in thisthesistoaddresstheaforesaidproblemscanbecategorizedunderthreeformal
sub-frameworks namely STIXGEN, SCERM, and A2CS. Eachofthesesub-frameworks
is designedtowardsobtainingthreeexclusivethesisgoals.
The STIXGeneration(STIGEN)frameworkisproposedanditsprototypeisdevel-
oped toautomaticallygeneratedistinct,threatrelevant,anderror-freestructureddata.
A comprehensiveSTIXdatasetofwell-knownAPTshasbeengeneratedandshared
with thecommunityforthebenefitofresearchers.
The StructuredthreatdataCleansing,Evaluation,andRefinement(SCERM)frame-
work hasbeendevelopedtoacquireSTIXreportsfromtheSTIXGENandotherre-
i
sourcesandupliftCyberThreatIntelligence(CTI)data,refiningincompleteormissing
components, andvaluatingitfordifferentphasesofCTM.DuringSCERM’sevalua-
tion, itisobservedthatcurrentSTIXreportshavelimitedinformationonprevention
and almostnonefortheresponsephaseofCTM.Theresultsfurtherdemonstratethat
SCERM significantlyenrichesSTIXreports.Theimprovementinpreventionis73%
and intheresponseis100%.
Subsequently,theAPTsAnalysisandClassificationSystem(A2CS)hasbeendevel-
oped forautomaticanalysisofAPTs.Itemploysontologymodelingandsemanticrules
for APTsanalysis,identificationoftheirmissingartifacts,andinferencingofthetac-
tics, techniquesandprocedures(TTPs)beingemployed.A2CStakesrefinedstructured
data asinputfromSCERMandextractsbothhighandlow-levelartifactsaccordingto
the variousattackeranddefendermodels.Then,itmapsthisdataontheontologythat
helps inidentificationofthemissingartifactsofAPTsandinferencingofhigh-level
TTPs withhelpoflow-levelartifacts.
Overall theproposedsolutiongeneratesrefined,distinct,error-free,andproperly
labeled structuredthreatdata,valuatesitfordifferentphasesofCTMandemploys
differentattackeranddefendermodelsforautomatedanalysisofAPTs,identification
of missingartifacts,andinferencingofthehigh-levelartifacts. |
en_US |