Abstract:
In iComputer ivision, iobject idetection iand iclassification iare iactive ifields iof iresearch.
iApplications iof iobject idetection iand iclassification iincludes ia idiverse irange iof ifields isuch ias
isurveillance, iautonomous icars, irobotic ivision, isearch iand irescue, idriver iassistance isystems iand
imilitary iapplications. iIn ithe ilast icouple iof idecades, iConvolution iNeural iNetwork i(CNN) iemerged
ias ithe imost iactive ifield iof iresearch. iThere iare ia inumber iof iapplications iof iCNN, iand iits
iarchitectures iare iused ifor ithe iimprovement iof iaccuracy iand iefficiency iin ivarious ifields. iIn ithis
iresearch, iautomated iimage iinterpretation ifor itarget idetection iand irecognition iin isatellite/aerial
iimages iis ipresented ithat iattracted imuch iattention iin ipast ifew iyears. iBut ilarge iimages iwith
icomplex ibackground iand ithe iuneven idistribution iof itrainings isamples imake iit imore ichallenging,
iparticularly iwith ismall iand idense iobjects. iRecently ivarious ideep ilearning itechniques imainly
ibased ion ithe iCNN iare iproposed. iThe iperformance iof iall ithese itechniques, ihowever, idepends ion
ithe isituations ithey iare iuse. iHowever, iin ithe icontext iof iobject idetection ifrom isatellite iimages
iwe iexamine ithe iperformance iof ithe ilatest iCNN ialgorithms. iThis iresearch idetails ithe iprocedure
iand iparameters iused ifor ithe itraining iof iconvolutional ineural inetworks i(CNNs) ion ia iset iof iaerial
iimages ifor iefficient iand iautomated iobject idetection. iPotential iapplication iareas iin ithe
itransportation iand imany iother ifields iare ialso ihighlighted. iThe iaccuracy iand ireliability iof iCNNs
idepend ion ithe inetwork’s itraining iand ithe iselection iof ioperational iparameters. iThe iobject
idetection iresults ishow ithat iby iselecting ia iproper iset iof iparameters, ia iCNN ican idetect iand
iclassify iobjects iwith ia ihigh ilevel iof iaccuracy iand icomputational iefficiency. iFurthermore, iusing
ia iconvolutional ineural inetwork iimplemented iin ithe i“YOLOv3” i(“You iOnly iLook iOnce”)
iplatform, iwe idemonstrated ithat iYOLOv3 inot ionly iexceeds iin ithe isensitivity iand iprocessing itime
iof iother iCNN ialgorithms ibut ialso iin idetecting ismall iand idense itargets. iThe ieffectiveness iof ithe
iYOLOv3 iframework ihas ibeen idemonstrated ithrough iextensive iexperiments iand icomprehensive
ievaluations ion iDOTA: iA iLarge iScale iDataset ifor iObject iDetection iin iAerial iImages. iThis
idataset icontains ihigh iresolution iimages ithat iare icollected ifrom ithe iGoogle iEarth, isome iare itaken
iby isatellite iJL-1, iand ithe iothers iare itaken iby isatellite iGF-2 iof ithe iChina iCentre ifor iResources
iSatellite iData iand iApplication.YOLOv3 iachieves imAp iof i61.94% ithat iis i1.08% ihigher ias
icompared ito iother idetecting imethods.