NUST Institutional Repository

Development of New Content Based Image Retrieval Techniques

Show simple item record

dc.contributor.author Sukhia, Komal Nain
dc.contributor.author Supervised by Abdul Ghafoor
dc.date.accessioned 2020-10-23T05:58:15Z
dc.date.available 2020-10-23T05:58:15Z
dc.date.issued 2020-06
dc.identifier.other PhD CS-11
dc.identifier.uri http://10.250.8.41:8080/xmlui/handle/123456789/3727
dc.description.abstract The exponential increase and wide accessibility of visual content on internet have led to research in the field of image retrieval and search. Image retrieval has been broadly categorized into content based image retrieval (CBIR) and text based image retrieval (TBIR). TBIR describes images by manually assigning them words which are processed by a database management system. However, the manual annotation of images among large databases requires a lot of time and prone to human error. Whereas, CBIR systems provide automatic retrieval using texture, shape and color features present in the images. CBIR uses visual content to identify the similar images. In this thesis, six CBIR techniques have been proposed to obtain high efficiency and retrieval precision. Two natural image retrieval techniques have been presented. The first natural image retrieval technique performs feature extraction based on frequency adder based local binary pattern (FALBP) and blur detection metric. The extracted features are combined for accurate image retrieval. The second natural image retrieval technique uses saliency detection and automatic feature weighting. The technique combines features optimally to improve the overall time efficiency and precision. Two techniques for medical image retrieval have been presented. The first technique focuses on the retrieval of similar retinal disease image. Feature extraction has been done on normal, choroidal neovascularization (CNV), diabetic retinopathy (DR) and Coats cases. Weights are assigned to the extracted features using an automatic scheme. The second technique performs histopathological image retrieval by using multi-channel based decoder concept and vector of locally aggregated descriptors (VLAD) coding. Two remote sensing image retrieval techniques have been discussed to address the challenge of finding interesting content (geographic locations etc) from large number of images. The first technique achieves building image retrieval by utilizing novel dense angle descriptor and dictionary learning (DL). The second technique obtains remote sensing based image retrieval by using dense patch-based local ternary pattern (LTP) and fisher vector coding. The proposed techniques can be used for biomedical image retrieval to relieve the workload of doctors and offer a consistent image analysis. Moreover, proposed techniques can also be used for the retrieval of natural and remote sensing images. Visual and quantitative results ensure the significance of the proposed techniques. The techniques provide considerably accurate image retrieval. en_US
dc.language.iso en en_US
dc.publisher MCS en_US
dc.title Development of New Content Based Image Retrieval Techniques en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account