Abstract:
Mechanics of materials is a basic engineering subject that must be
understood by anyone concerned with the strength and physical
performance of structures, whether those structures are man-made or
natural. The subject matter includes such fundamental concepts as
stresses and strains, deformations and displacements, elasticity and
inelasticity, strain energy, and load-carrying capacity. These concepts
underlie the design and analysis of a huge variety of mechanical and
structural systems.
At the college level, mechanics of materials is usually taught during
the sophomore and junior years. The subject is required for most
students majoring in mechanical, structural, civil, aeronautical, and aerospace engineering. Furthermore, many students from such diverse fields
as materials science, industrial engineering, architecture, and agricultural engineering also find it useful to study this subject.
About this Book
The main topics covered in this book are the analysis and design of
structural members subjected to tension, compression, torsion, and
bending, including the fundamental concepts mentioned in the first
paragraph. Other topics of general interest are the transformations of
stress and strain, combined loadings, stress concentrations, deflections
of beams, and stability of columns.
Specialized topics include the following: Thermal effects, dynamic
loading, nonprismatic members, beams of two materials, shear centers,
pressure vessels, discontinuity (singularity) functions, and statically
indeterminate beams. For completeness and occasional reference,
elementary topics such as shear forces, bending moments, centroids, and
moments of inertia also are presented.
Much more material than can be taught in a single course is
included in this book, and therefore instructors have the opportunity to
select the topics they wish to cover. As a guide, some of the more
specialized topics are identified in the table of contents by stars.