Abstract:
Cognitive Radio (CR) is an emerging and promising communication technology geared towards improving vacant licensed band utilization, intended for unlicensed users. Security of Cognitive Radio Networks (CRN) is a highly challenging domain. At present, plenty of efforts are in place for defining new paradigms, techniques and technologies to secure radio spectrum. In a distributed cognitive radio ad-hoc network, despite dynamically changing topologies, lack of central administration, bandwidth-constrains and shared wireless connections, the nodes are capable of sensing the spectrum and selecting the appropriate channels for communication. These unique characteristics unlock new paths for attackers. Standard security techniques are not an effective shield against attacks on these networks e.g. Primary User Emulation (PUE) attacks. This thesis presents a novel PUE attack detection technique based on energy detection and location verification. Next, a game model and a mean field game approach are introduced for the legitimate nodes of CRN to reach strategic defence decisions in the presence of multiple attackers. Simulation of the proposed technique shows a detection accuracy of 89% when the probability of false alarm is 0.09. This makes it 1.32 times more accurate than compared work. Furthermore, the proposed framework for defence is state considerate in making decisions.