dc.contributor.author |
Muhammad Abdullah, Supervisor by Dr. Aamir Mubahsar |
|
dc.date.accessioned |
2023-02-03T10:33:38Z |
|
dc.date.available |
2023-02-03T10:33:38Z |
|
dc.date.issued |
2023 |
|
dc.identifier.uri |
http://10.250.8.41:8080/xmlui/handle/123456789/32338 |
|
dc.description.abstract |
This research investigates the reduction in weight of hip implant by the application of parametric
and non-parametric optimization techniques. Orthopaedic hip implants can be made from metals,
ceramics, composites, or metallic alloys and are generally solid structures. The stiffness of
orthopaedic hip implant is a pertaining problem when implanted in the human body as Hip implant
are stiffer than bone material and causes stress shielding. This results in bone weakening which
causes osteoporosis. Reduction in mass of femur stem results in stiffness reduction of femur stem.
Non-Parametric topology optimization results in 34.9 % mass reduction and parametric
optimization based on Central Composite Design technique in Design of Experiments (DoE) uses
hole diameters as parameters and performs structural optimization that results in 22% mass
reduction. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
SMME |
en_US |
dc.subject |
Structural Optimization, Orthopedic Hip Implant, femur stem, topology optimization, Design of Experiments (DOE), Optimization, Central Composite Design |
en_US |
dc.title |
Structural Optimization of Orthopedic Hip Implant Using Different Topology Optimization Algorithms |
en_US |
dc.type |
Thesis |
en_US |