Abstract:
Foriailongitime,istereoicamerasihaveibeenideployediinivisualisimultaneousi
locationiandimappingi(SLAM)isystemsitoiobtaini3Diinformation.iAlthoughistereoi
camerasishowigoodiperformance,itheimainidrawbackiisitheicomplexiandi
expensiveihardwareisetupiitirequires,iwhichirestrictsitheiuseiofitheisystem.i
Monocularicamerasiareia simpleriandicheaperialternative.iRecentiworkihasi shown
ithatiaccessitoidepthimapsiinitheimonocularisystemiisibeneficialiasitheyicanibeiuse
ditoiimprovei3Direconstruction.iThisiworkiproposesiaideepineuralinetworkithatipr
edictsidenseihigh-resolutionidepthimapsifromimonoculariRGBiimages.i
Networkiarchitectureifollowsianiencoder-decoderistructureiiniwhichimultiscaleiinformationiisicapturediandiskip-connectionsiareiuseditoiretrieveidetails.i
TheinetworkiisitrainediandievaluatedioniaiNYUiv2idatasetiwithiresultsi
comparableitoistate-ofi-ithe-artimethods.iTheiproblemiofidepthiestimationiisiani
importanticomponentiforiunderstandingitheigeometryiofiaisceneiandifori
navigatingithroughispace.iMoreiunderstandingiofitheienvironment,isuchi
asirecognitioniactivities,Icontributesitoichangesiiniotherifields.
Inimanyiapplications,iaccurateimeasurementiofidepthifromiimagesiisiaicrucialitask
involvingiinterpretationiandirestorationiofitheiscene.iExistingimethodsifori
calculatingidepthiofteniyieldifuzzyiapproximationsiwithilowiresolution.iThisi
thesisidescribesiaiconvolutionineuralinetworkitoiuseitransferilearningitoi
computeiaihighiresolutionimapiofidepthiwithioneisingleiRGBiimage.iUsingiai
typicaliencoder-decoderimodel,iwheniinitializingiouriencoder,iweiexploitifeaturesi
derivediusingihighiperformanceipre-trainedinetworksialongiwithiextensioniandi
testing techniques ithatiresultiinimoreiaccurateiresults.
xiii
Weidemonstrateihowiouriapproachicaniachieveiaccurate,ihigh-resolutioni
depthimaps,ieveniforiaiveryisimpleidecoder.iWeitrainidatasetionithreeimodelsii.e.i
denseneti169,i201iandiResnet50.iOurinetworkiconductsiresultsiwithistateiofitheiart
ionitwoidatasetsiwithilessiparametersianditrainingiiterations,iandialsoioffersi
qualitativelyibetteritestsithatireflectihumaniboundariesimoreiaccurately.iOuri
algorithmigivesistateiofitheiartiresultsiandiitigivesirmsivalueiofi0.4611.