NUST Institutional Repository

Convolutional Neural Network Based Monocular Depth Estimation

Show simple item record

dc.contributor.author Suleman, Iqra
dc.date.accessioned 2023-08-09T07:49:40Z
dc.date.available 2023-08-09T07:49:40Z
dc.date.issued 2019
dc.identifier.other 00000203984
dc.identifier.uri http://10.250.8.41:8080/xmlui/handle/123456789/35972
dc.description Supervisor: Dr. Muhammad Usman Akram en_US
dc.description.abstract Foriailongitime,istereoicamerasihaveibeenideployediinivisualisimultaneousi locationiandimappingi(SLAM)isystemsitoiobtaini3Diinformation.iAlthoughistereoi camerasishowigoodiperformance,itheimainidrawbackiisitheicomplexiandi expensiveihardwareisetupiitirequires,iwhichirestrictsitheiuseiofitheisystem.i Monocularicamerasiareia simpleriandicheaperialternative.iRecentiworkihasi shown ithatiaccessitoidepthimapsiinitheimonocularisystemiisibeneficialiasitheyicanibeiuse ditoiimprovei3Direconstruction.iThisiworkiproposesiaideepineuralinetworkithatipr edictsidenseihigh-resolutionidepthimapsifromimonoculariRGBiimages.i Networkiarchitectureifollowsianiencoder-decoderistructureiiniwhichimultiscaleiinformationiisicapturediandiskip-connectionsiareiuseditoiretrieveidetails.i TheinetworkiisitrainediandievaluatedioniaiNYUiv2idatasetiwithiresultsi comparableitoistate-ofi-ithe-artimethods.iTheiproblemiofidepthiestimationiisiani importanticomponentiforiunderstandingitheigeometryiofiaisceneiandifori navigatingithroughispace.iMoreiunderstandingiofitheienvironment,isuchi asirecognitioniactivities,Icontributesitoichangesiiniotherifields. Inimanyiapplications,iaccurateimeasurementiofidepthifromiimagesiisiaicrucialitask involvingiinterpretationiandirestorationiofitheiscene.iExistingimethodsifori calculatingidepthiofteniyieldifuzzyiapproximationsiwithilowiresolution.iThisi thesisidescribesiaiconvolutionineuralinetworkitoiuseitransferilearningitoi computeiaihighiresolutionimapiofidepthiwithioneisingleiRGBiimage.iUsingiai typicaliencoder-decoderimodel,iwheniinitializingiouriencoder,iweiexploitifeaturesi derivediusingihighiperformanceipre-trainedinetworksialongiwithiextensioniandi testing techniques ithatiresultiinimoreiaccurateiresults. xiii Weidemonstrateihowiouriapproachicaniachieveiaccurate,ihigh-resolutioni depthimaps,ieveniforiaiveryisimpleidecoder.iWeitrainidatasetionithreeimodelsii.e.i denseneti169,i201iandiResnet50.iOurinetworkiconductsiresultsiwithistateiofitheiart ionitwoidatasetsiwithilessiparametersianditrainingiiterations,iandialsoioffersi qualitativelyibetteritestsithatireflectihumaniboundariesimoreiaccurately.iOuri algorithmigivesistateiofitheiartiresultsiandiitigivesirmsivalueiofi0.4611. en_US
dc.language.iso en en_US
dc.publisher College of Electrical & Mechanical Engineering (CEME), NUST en_US
dc.subject Keywords:idepthiestimation,istereo,imonocular,icameras,iconvolutionalineuralinetworks,i NYU Depth v2. en_US
dc.title Convolutional Neural Network Based Monocular Depth Estimation en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

  • MS [329]

Show simple item record

Search DSpace


Advanced Search

Browse

My Account