dc.contributor.author |
Suleman, Iqra |
|
dc.date.accessioned |
2023-08-09T07:49:40Z |
|
dc.date.available |
2023-08-09T07:49:40Z |
|
dc.date.issued |
2019 |
|
dc.identifier.other |
00000203984 |
|
dc.identifier.uri |
http://10.250.8.41:8080/xmlui/handle/123456789/35972 |
|
dc.description |
Supervisor: Dr. Muhammad Usman Akram |
en_US |
dc.description.abstract |
Foriailongitime,istereoicamerasihaveibeenideployediinivisualisimultaneousi
locationiandimappingi(SLAM)isystemsitoiobtaini3Diinformation.iAlthoughistereoi
camerasishowigoodiperformance,itheimainidrawbackiisitheicomplexiandi
expensiveihardwareisetupiitirequires,iwhichirestrictsitheiuseiofitheisystem.i
Monocularicamerasiareia simpleriandicheaperialternative.iRecentiworkihasi shown
ithatiaccessitoidepthimapsiinitheimonocularisystemiisibeneficialiasitheyicanibeiuse
ditoiimprovei3Direconstruction.iThisiworkiproposesiaideepineuralinetworkithatipr
edictsidenseihigh-resolutionidepthimapsifromimonoculariRGBiimages.i
Networkiarchitectureifollowsianiencoder-decoderistructureiiniwhichimultiscaleiinformationiisicapturediandiskip-connectionsiareiuseditoiretrieveidetails.i
TheinetworkiisitrainediandievaluatedioniaiNYUiv2idatasetiwithiresultsi
comparableitoistate-ofi-ithe-artimethods.iTheiproblemiofidepthiestimationiisiani
importanticomponentiforiunderstandingitheigeometryiofiaisceneiandifori
navigatingithroughispace.iMoreiunderstandingiofitheienvironment,isuchi
asirecognitioniactivities,Icontributesitoichangesiiniotherifields.
Inimanyiapplications,iaccurateimeasurementiofidepthifromiimagesiisiaicrucialitask
involvingiinterpretationiandirestorationiofitheiscene.iExistingimethodsifori
calculatingidepthiofteniyieldifuzzyiapproximationsiwithilowiresolution.iThisi
thesisidescribesiaiconvolutionineuralinetworkitoiuseitransferilearningitoi
computeiaihighiresolutionimapiofidepthiwithioneisingleiRGBiimage.iUsingiai
typicaliencoder-decoderimodel,iwheniinitializingiouriencoder,iweiexploitifeaturesi
derivediusingihighiperformanceipre-trainedinetworksialongiwithiextensioniandi
testing techniques ithatiresultiinimoreiaccurateiresults.
xiii
Weidemonstrateihowiouriapproachicaniachieveiaccurate,ihigh-resolutioni
depthimaps,ieveniforiaiveryisimpleidecoder.iWeitrainidatasetionithreeimodelsii.e.i
denseneti169,i201iandiResnet50.iOurinetworkiconductsiresultsiwithistateiofitheiart
ionitwoidatasetsiwithilessiparametersianditrainingiiterations,iandialsoioffersi
qualitativelyibetteritestsithatireflectihumaniboundariesimoreiaccurately.iOuri
algorithmigivesistateiofitheiartiresultsiandiitigivesirmsivalueiofi0.4611. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
College of Electrical & Mechanical Engineering (CEME), NUST |
en_US |
dc.subject |
Keywords:idepthiestimation,istereo,imonocular,icameras,iconvolutionalineuralinetworks,i NYU Depth v2. |
en_US |
dc.title |
Convolutional Neural Network Based Monocular Depth Estimation |
en_US |
dc.type |
Thesis |
en_US |